1
|
Hoover J, Wambach J, Vachharajani A, Warner B, Carroll JL, Kemp JS. Postmenstrual age at discharge in premature infants with and without ventilatory pattern instability. J Perinatol 2020; 40:157-162. [PMID: 31611617 PMCID: PMC7480785 DOI: 10.1038/s41372-019-0530-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 01/01/2023]
Abstract
RATIONALE To determine if ventilatory pattern instability, manifested as periodic breathing (PB) during physiologic challenge testing, affects postmenstrual age (PMA) at discharge. METHODS Eighty infants underwent challenge testing at 36 weeks PMA. Infants breathing supplemental O2 received a room air challenge (RAC, N = 51); those breathing ambient air underwent a hypoxic challenge test (HCT, N = 29). Infants were assigned one of four ventilatory control phenotypes based on the presence or absence of PB during their test, and if they passed or failed because of hypoxemia during the challenge test. RESULTS There were no clinical or demographic differences between groups. Infants who passed their challenge testing were, on average, discharged 1.6 weeks sooner than those who failed. The groups of ventilatory control phenotypes differed in PMA at discharge (p = 0.0020), but those with PB were younger by PMA at discharge. CONCLUSIONS Ventilatory pattern instability did not prolong time to discharge. Passing either challenge was associated with earlier discharge, suggesting these tests might identify infants who can have nasal cannula support removed and be safely discharged sooner. Most of the infants who failed their challenge tests with PB were receiving nasal cannula support. Nasal cannula support may be not only treating hypoxemia due to bronchopulmonary dysplasia (BPD), but also mitigating their ventilatory pattern instability.
Collapse
Affiliation(s)
- Jeffery Hoover
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Jennifer Wambach
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Akshaya Vachharajani
- Division of Neonatology, University of Missouri in Columbia, Columbia, MO 65211, USA
| | - Barbara Warner
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John L. Carroll
- Division of Pulmonary and Sleep Medicine, University of Arkansas for Medical Sciences, Fayetteville, AR 72701, USA
| | - James S. Kemp
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Edwards BA, Nava-Guerra L, Kemp JS, Carroll JL, Khoo MC, Sands SA, Terrill PI, Landry SA, Amin RS. Assessing ventilatory instability using the response to spontaneous sighs during sleep in preterm infants. Sleep 2019; 41:5077835. [PMID: 30137560 DOI: 10.1093/sleep/zsy161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Study Objectives Periodic breathing (PB) is common in newborns and is an obvious manifestation of ventilatory control instability. However, many infants without PB may still have important underlying ventilatory control instabilities that go unnoticed using standard clinical monitoring. Methods to detect infants with "subclinical" ventilatory control instability are therefore required. The current study aimed to assess the degree of ventilatory control instability using simple bedside recordings in preterm infants. Methods Respiratory inductance plethysmography (RIP) recordings were analyzed from ~20 minutes of quiet sleep in 20 preterm infants at 36 weeks post-menstrual age (median [range]: 36 [34-40]). The percentage time spent in PB was also calculated for each infant (%PB). Spontaneous sighs were identified and breath-by-breath measurements of (uncalibrated) ventilation were derived from RIP traces. Loop gain (LG, a measure of ventilatory control instability) was calculated by fitting a simple ventilatory control model (gain, time-constant, delay) to the post-sigh ventilatory pattern. For comparison, periodic inter-breath variability was also quantified using power spectral analysis (ventilatory oscillation magnitude index [VOMI]). Results %PB was strongly associated with LG (r2 = 0.77, p < 0.001) and moderately with the VOMI (r2 = 0.21, p = 0.047). LG (0.52 ± 0.05 vs. 0.30 ± 0.03; p = 0.0025) and the VOMI (-8.2 ± 1.1 dB vs. -11.8 ± 0.9 dB; p = 0.026) were both significantly higher in infants that displayed PB vs. those without. Conclusions LG and VOMI determined from the ventilatory responses to spontaneous sighs can provide a practical approach to assessing ventilatory control instability in preterm infants. Such simple techniques may help identify infants at particular risk for ventilatory instabilities with concomitant hypoxemia and its associated consequences.
Collapse
Affiliation(s)
- Bradley A Edwards
- Sleep and Circadian Medicine Laboratory, Department of Physiology, Monash University, Melbourne, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Leonardo Nava-Guerra
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - James S Kemp
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - John L Carroll
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Michael C Khoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Philip I Terrill
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Shane A Landry
- Sleep and Circadian Medicine Laboratory, Department of Physiology, Monash University, Melbourne, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | - Raouf S Amin
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
3
|
Abstract
Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Department of Allergy, Immunology and Respiratory Medicine and Central Clinical School, Alfred Hospital and Monash University, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Robert L Owens
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Abstract
Congestive heart failure (CHF) is among the most common causes of admission to hospitals in the United States, especially in those over age 65. Few data exist regarding the prevalence CHF of Cheyne-Stokes respiration (CSR) owing to congestive heart failure in the intensive care unit (ICU). Nevertheless, CSR is expected to be highly prevalent among those with CHF. Treatment should focus on the underlying mechanisms by which CHF increases loop gain and promotes unstable breathing. Few data are available to determine prevalence of CSR in the ICU, or how CSR might affect clinical management and weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Department of Allergy, Immunology and Respiratory Medicine and Central Clinical School, Alfred Hospital and Monash University, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Robert L Owens
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Moraga FA, Jiménez D, Richalet JP, Vargas M, Osorio J. Periodic breathing and oxygen supplementation in Chilean miners at high altitude (4200m). Respir Physiol Neurobiol 2014; 203:109-15. [DOI: 10.1016/j.resp.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 11/28/2022]
|
6
|
Edwards BA, Sands SA, Berger PJ. Postnatal maturation of breathing stability and loop gain: the role of carotid chemoreceptor development. Respir Physiol Neurobiol 2012; 185:144-55. [PMID: 22705011 DOI: 10.1016/j.resp.2012.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 06/01/2012] [Indexed: 11/17/2022]
Abstract
Any general model of respiratory control must explain a puzzling array of breathing patterns that are observed during the course of a lifetime. Particular challenges are to understand why periodic breathing is rarely seen in the first few days after birth, reaches a peak at 2-4 weeks postnatal age, and disappears by 6 months, why it is prevalent in preterm infants, and why it reappears in adults at altitude or with heart failure. In this review we use the concept of loop gain to obtain quantitative insight into the genesis of unstable breathing patterns with a particular focus on how changes in carotid body function could underlie the age-related dependence of periodic breathing.
Collapse
Affiliation(s)
- Bradley A Edwards
- Division of Sleep Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
7
|
Sands SA, Edwards BA, Kee K, Turton A, Skuza EM, Roebuck T, O'Driscoll DM, Hamilton GS, Naughton MT, Berger PJ. Loop Gain As a Means to Predict a Positive Airway Pressure Suppression of Cheyne-Stokes Respiration in Patients with Heart Failure. Am J Respir Crit Care Med 2011; 184:1067-75. [DOI: 10.1164/rccm.201103-0577oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Nemati S, Edwards BA, Sands SA, Berger PJ, Wellman A, Verghese GC, Malhotra A, Butler JP. Model-based characterization of ventilatory stability using spontaneous breathing. J Appl Physiol (1985) 2011; 111:55-67. [PMID: 21474696 DOI: 10.1152/japplphysiol.01358.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclic ventilatory instabilities are widely attributed to an increase in the sensitivity or loop gain of the chemoreflex feedback loop controlling ventilation. A major limitation in the conventional characterization of this feedback loop is the need for labor-intensive methodologies. To overcome this limitation, we developed a method based on trivariate autoregressive modeling using ventilation, end-tidal Pco(2) and Po(2); this method provides for estimation of the overall "loop gain" of the respiratory control system and its components, chemoreflex gain and plant gain. Our method was applied to recordings of spontaneous breathing in 15 anesthetized, tracheostomized, newborn lambs before and after administration of domperidone (a dopamine D(2)-receptor antagonist that increases carotid body sensitivity). We quantified the known increase in hypoxic ventilatory sensitivity in response to domperidone; controller gain for O(2) increased from 0.06 (0.03, 0.09) l·min(-1)·mmHg(-1) to 0.09 (0.08, 0.13) l·min(-1)·mmHg(-1); median (interquartile-range). We also report that domperidone increased the loop gain of the control system more than twofold [0.14 (0.12, 0.22) to 0.40 (0.15, 0.57)]. We observed no significant changes in CO(2) controller gain, or plant gains for O(2) and CO(2). Furthermore, our estimate of the cycle duration of periodic breathing compared favorably with that observed experimentally [measured: 7.5 (7.2, 9.1) vs. predicted: 7.9 (7.0, 9.2) breaths]. Our results demonstrate that model-based analysis of spontaneous breathing can 1) characterize the dynamics of the respiratory control system, and 2) provide a simple tool for elucidating an individual's propensity for ventilatory instability, in turn allowing potential therapies to be directed at the underlying mechanisms.
Collapse
Affiliation(s)
- Shamim Nemati
- Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kee K, Sands SA, Edwards BA, Berger PJ, Naughton MT. Positive Airway Pressure in Congestive Heart Failure. Sleep Med Clin 2010. [DOI: 10.1016/j.jsmc.2010.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Edwards BA, Sands SA, Skuza EM, Brodecky V, Stockx EM, Wilkinson MH, Berger PJ. Maturation of respiratory control and the propensity for breathing instability in a sheep model. J Appl Physiol (1985) 2009; 107:1463-71. [DOI: 10.1152/japplphysiol.00587.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limited evidence suggests that the ventilatory interaction between O2 and CO2 is additive after birth and becomes multiplicative with postnatal development. Such a switch may be linked to the propensity for periodic breathing (PB) in infancy. To test this idea, we characterized the maturation of the respiratory controller and its effect on breathing stability in ∼10-day-old lambs and 6-mo-old sheep. We measured 1) carotid body sensitivity via dynamic ventilatory responses to step changes in O2 and CO2, 2) steady-state ventilatory sensitivity to CO2 under hypoxic and hyperoxic conditions, 3) the dependence of the apneic threshold on arterial Po2, and 4) the effect of hypoxic or hypercapnic gas inhalation during induced PB. Stability of the system was assessed using surrogate measures of loop gain. Peripheral sensitivity to O2 was higher in newborn than in older animals ( P < 0.05), but peripheral CO2 sensitivity was unchanged. Central CO2 sensitivity was reduced with age, but the slopes of the ventilatory responses to CO2 were the same in hypoxia and hyperoxia. Reduced arterial Po2 caused a leftward shift in the apneic threshold at both ages. Inspiration of hypoxic gas during PB immediately halted PB, whereas hypercapnia stopped PB only after one or two further PB cycles. We conclude that the controller in the sheep remains additive over the first 6 mo of life. Our results also show that the loop gain of the respiratory control system is reduced with age, possibly as a result of a reduction of peripheral O2 sensitivity.
Collapse
Affiliation(s)
- Bradley A. Edwards
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Scott A. Sands
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Elizabeth M. Skuza
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Vojta Brodecky
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Elaine M. Stockx
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Malcolm H. Wilkinson
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Philip J. Berger
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| |
Collapse
|
11
|
Continuous positive airway pressure reduces loop gain and resolves periodic central apneas in the lamb. Respir Physiol Neurobiol 2009; 168:239-49. [PMID: 19616133 DOI: 10.1016/j.resp.2009.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 11/24/2022]
Abstract
Continous positive airway pressure (CPAP) is used to treat infant respiratory distress syndrome and apnea of prematurity, but its mode of action is not fully understood. We hypothesised that CPAP increases lung volume and stabilises respiratory control by decreasing loop gain (LG). Experimentally induced periodic breathing (PB) in the lamb was terminated early by CPAP in a dose-dependent manner, with a control epoch of 45.4+/-5.1s at zero CPAP falling to 32.9+/-5.4, 13.2+/-4.2 and 9.8+/-3.1s at 2.5, 5 and 10 cmH(2)O, respectively (p<0.001); corresponding duty ratios (duration of the ventilatory phase of PB divided by its cycle duration) increased from 0.50+/-0.02 to 0.62+/-0.05, 0.76+/-0.06 and 0.68+/-0.08, respectively (p<0.001). Since epoch duration and duty ratio are surrogate measures of LG, we conclude that CPAP ameliorates the effects of recurrent central apneas, and perhaps mixed and obstructive apneas, by decreasing LG via increases in lung volume.
Collapse
|
12
|
Weiss MD, Tamisier R, Boucher J, Lynch M, Gilmartin G, Weiss JW, Thomas RJ. A pilot study of sleep, cognition, and respiration under 4 weeks of intermittent nocturnal hypoxia in adult humans. Sleep Med 2009; 10:739-45. [PMID: 19282237 DOI: 10.1016/j.sleep.2008.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/12/2008] [Accepted: 07/23/2008] [Indexed: 11/28/2022]
Abstract
STUDY OBJECTIVES A pilot study to examine the effects of intermittent nocturnal hypoxia on sleep, respiration and cognition in healthy adult humans. METHODS Participants were eight healthy, non-smoking subjects (four male, four female), mean age of 26.4+/-5.2 years, and BMI 22.3+/-2.6 kg/m(2), exposed to 9h of intermittent hypoxia between the hours of 10 P.M. and 7 A.M. for 28 consecutive nights. At a simulated altitude of 13,000 feet (FIO(2) 0.13), intermittent hypoxia was achieved by administering nasal nitrogen, alternating with brief (approximately 5s) boluses of nasal oxygen. Pre- and post-exposure assessments included polysomnography, attention (20-min Psychomotor Vigilance Test), working memory (10-min verbal 2 and 3-back), Multiple Sleep Latency Test, and the Rey Auditory Verbal Learning Test. Obstructive and non-obstructive respiratory events were scored. RESULTS Overall sleep quality showed worsening trends but no statistically significant change following exposure. There was no difference after hypoxia in sleepiness, encoding, attention or working memory. Hyperoxic central apneas and post-hyperoxic respiratory instability were noted as special features of disturbed respiratory control induced by intermittent nocturnal hypoxia. CONCLUSIONS In this model, exposure to nocturnal intermittent hypoxia for 4 weeks caused no significant deficits in subjective or objective alertness, vigilance, or working memory.
Collapse
Affiliation(s)
- Matthew D Weiss
- Beth Israel Deaconess Medical Center & Harvard Medical School, KB 023, Pulmonary Office, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Increased peripheral chemosensitivity via dopaminergic manipulation promotes respiratory instability in lambs. Respir Physiol Neurobiol 2008; 164:419-28. [DOI: 10.1016/j.resp.2008.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 12/20/2022]
|
14
|
Wilkinson MH, Skuza EM, Rennie GC, Sands SA, Yiallourou SR, Horne RSC, Berger PJ. Postnatal development of periodic breathing cycle duration in term and preterm infants. Pediatr Res 2007; 62:331-6. [PMID: 17622961 DOI: 10.1203/pdr.0b013e3180db29e5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies of the maturation of periodic breathing cycle duration (PCD) with postnatal age in infants have yielded conflicting results. PCD is reported to fall in term infants over the first 6 mo postnatally, whereas in preterm infants PCD is reported either not to change or to fall. Contrary to measured values, use of a theoretical respiratory control model predicts PCD should increase with postnatal age. We re-examined this issue in a longitudinal study of 17 term and 22 preterm infants. PCD decreased exponentially from birth in both groups, reaching a plateau between 4 and 6 mo of age. In preterm infants, PCD fell from a mean of 18.3 s to 9.8 s [95% confidence interval (CI) is +/- 3.2 s]. In term infants, PCD fell from 15.4 s to 10.1 s (95% CI is +/- 3.1 s). The higher PCD at birth in preterm infants, and the similar PCD value at 6 mo in the two groups, suggest a more rapid maturation of PCD in preterm infants. This study confirms that PCD declines after birth. The disagreement between our data and theoretical predictions of PCD may point to important differences between the respiratory controller of the infant and adult.
Collapse
Affiliation(s)
- Malcolm H Wilkinson
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia.
| | | | | | | | | | | | | |
Collapse
|