1
|
Keeling H, Williams EJ, Itasaki N. Consideration of the thoracic phenotype of cerebro-costo-mandibular syndrome. Clin Anat 2024; 37:254-269. [PMID: 37265362 DOI: 10.1002/ca.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
Cerebro-costo-mandibular syndrome (CCMS) is a congenital condition with skeletal and orofacial abnormalities that often results in respiratory distress in neonates. The three main phenotypes in the thorax are posterior rib gaps, abnormal costovertebral articulation and absent ribs. Although the condition can be lethal, accurate diagnosis, and subsequent management help improve the survival rate. Mutations in the causative gene SNRPB have been identified, however, the mechanism whereby the skeletal phenotypes affect respiratory function is not well-studied due to the multiple skeletal phenotypes, lack of anatomy-based studies into the condition and rarity of CCMS cases. This review aims to clarify the extent to which the three main skeletal phenotypes in the thorax contribute to respiratory distress in neonates with CCMS. Despite the posterior rib gaps being unique to this condition and visually striking on radiographic images, anatomical consideration, and meta-analyses suggested that they might not be the significant factor in causing respiratory distress in neonates. Rather, the increase in chest wall compliance due to the rib gaps and the decrease in compliance at the costovertebral complex was considered to result in an equilibrium, minimizing the impact of these abnormalities. The absence of floating ribs is likely insignificant as seen in the general population; however, a further absence of ribs or vestigial rib formation is associated with respiratory distress and increased lethality. Based on these, we propose to evaluate the number of absent or vestigial ribs as a priority indicator to develop a personalized treatment plan based on the phenotypes exhibited.
Collapse
Affiliation(s)
- Holly Keeling
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - Nobue Itasaki
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Rib cage anatomy in Homo erectus suggests a recent evolutionary origin of modern human body shape. Nat Ecol Evol 2020; 4:1178-1187. [PMID: 32632258 DOI: 10.1038/s41559-020-1240-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
The tall and narrow body shape of anatomically modern humans (Homo sapiens) evolved via changes in the thorax, pelvis and limbs. It is debated, however, whether these modifications first evolved together in African Homo erectus, or whether H. erectus had a more primitive body shape that was distinct from both the more ape-like Australopithecus species and H. sapiens. Here we present the first quantitative three-dimensional reconstruction of the thorax of the juvenile H. erectus skeleton, KNM-WT 15000, from Nariokotome, Kenya, along with its estimated adult rib cage, for comparison with H. sapiens and the Kebara 2 Neanderthal. Our three-dimensional reconstruction demonstrates a short, mediolaterally wide and anteroposteriorly deep thorax in KNM-WT 15000 that differs considerably from the much shallower thorax of H. sapiens, pointing to a recent evolutionary origin of fully modern human body shape. The large respiratory capacity of KNM-WT 15000 is compatible with the relatively stocky, more primitive, body shape of H. erectus.
Collapse
|
3
|
Beyer B, Van Sint Jan S, Chèze L, Sholukha V, Feipel V. Relationship between costovertebral joint kinematics and lung volume in supine humans. Respir Physiol Neurobiol 2016; 232:57-65. [PMID: 27421681 DOI: 10.1016/j.resp.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022]
Abstract
This study investigates the relationship between the motion of the first ten costovertebral joints (CVJ) and lung volume over the inspiratory capacity (IC) using detailed kinematic analysis in a sample of 12 asymptomatic subjects. Retrospective codified spiral-CT data obtained at total lung capacity (TLC), middle of inspiratory capacity (MIC) and at functional residual capacity (FRC) were analysed. CVJ 3D kinematics were processed using previously-published methods. We tested the influence of the side, CVJ level and lung volume on CVJ kinematics. In addition, the correlations between anthropologic/pulmonary variables and CVJ kinematics were analysed. No linear correlation was found between lung volumes and CVJ kinematics. Major findings concerning 3D kinematics can be summarized as follows: 1) Ranges-of-motion decrease gradually with increasing CVJ level; 2) rib displacements are significantly reduced at lung volumes above the MIC and do not differ between CVJ levels; 3) the axes of rotation of the ribs are similarly oriented for all CVJ levels.
Collapse
Affiliation(s)
- Benoît Beyer
- Laboratory of Anatomy, Biomechanics and Organogenesis (L.A.B.O), Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Functional Anatomy, Université Libre de Bruxelles, Brussels, Belgium; Univ Lyon, Université Claude Bernard Lyon 1, Ifsttar, UMR_T9406, LBMC, F69622 Lyon, France.
| | - Serge Van Sint Jan
- Laboratory of Anatomy, Biomechanics and Organogenesis (L.A.B.O), Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Chèze
- Univ Lyon, Université Claude Bernard Lyon 1, Ifsttar, UMR_T9406, LBMC, F69622 Lyon, France
| | - Victor Sholukha
- Laboratory of Anatomy, Biomechanics and Organogenesis (L.A.B.O), Université Libre de Bruxelles, Brussels, Belgium; Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University (SPbPU), Russia
| | - Véronique Feipel
- Laboratory of Functional Anatomy, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Navarrete-Opazo A, Mitchell GS. Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats. J Appl Physiol (1985) 2014; 117:180-8. [PMID: 24833779 DOI: 10.1152/japplphysiol.00130.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Although rats are a frequent model for studies of plasticity in respiratory motor control, the relative capacity of rat accessory respiratory muscles to express plasticity is not well known, particularly in unanesthetized animals. Here, we characterized external intercostal (T2, T4, T5, T6, T7, T8, T9 EIC) and abdominal muscle (external oblique and rectus abdominis) electromyogram (EMG) activity in unanesthetized rats via radiotelemetry during normoxia (Nx: 21% O2) and following acute intermittent hypoxia (AIH: 10 × 5-min, 10.5% O2; 5-min intervals). Diaphragm and T2-T5 EIC EMG activity, and ventilation were also assessed during maximal chemoreceptor stimulation ( MCS 7% CO2, 10.5% O2) and sustained hypoxia (SH: 10.5% O2). In Nx, T2 EIC exhibits prominent inspiratory activity, whereas T4, T5, T6, and T7 EIC inspiratory activity decreases in a caudal direction. T8 and T9 EIC and abdominal muscles show only tonic or sporadic activity, without consistent respiratory activity. MCS increases diaphragm and T2 EIC EMG amplitude and tidal volume more than SH (0.94 ± 0.10 vs. 0.68 ± 0.05 ml/100 g; P < 0.001). Following AIH, T2 EIC EMG amplitude remained above baseline for more than 60 min post-AIH (i.e., EIC long-term facilitation, LTF), and was greater than diaphragm LTF (41.5 ± 1.3% vs. 19.1 ± 2.0% baseline; P < 0.001). We conclude that 1) diaphragm and rostral T2-T5 EIC muscles exhibit inspiratory activity during Nx; 2) MCS elicits greater ventilatory, diaphragm, and rostral T2-T5 EIC muscle activity vs. SH; and 3) AIH induces greater rostral EIC LTF than diaphragm LTF.
Collapse
Affiliation(s)
- A Navarrete-Opazo
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - G S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
5
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Perry SF, Similowski T, Klein W, Codd JR. The evolutionary origin of the mammalian diaphragm. Respir Physiol Neurobiol 2010; 171:1-16. [PMID: 20080210 DOI: 10.1016/j.resp.2010.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/18/2022]
Abstract
The comparatively low compliance of the mammalian lung results in an evolutionary dilemma: the origin and evolution of this bronchoalveolar lung into a high-performance gas-exchange organ results in a high work of breathing that cannot be achieved without the coupled evolution of a muscular diaphragm. However, despite over 400 years of research into respiratory biology, the origin of this exclusively mammalian structure remains elusive. Here we examine the basic structure of the body wall muscles in vertebrates and discuss the mechanics of costal breathing and functional significance of accessory breathing muscles in non-mammalian amniotes. We then critically examine the mammalian diaphragm and compare hypotheses on its ontogenetic and phylogenetic origin. A closer look at the structure and function across various mammalian groups reveals the evolutionary significance of collateral functions of the diaphragm as a visceral organizer and its role in producing high intra-abdominal pressure.
Collapse
|
8
|
Leduc D, De Troyer A. Mechanism of increased inspiratory rib elevation in ascites. J Appl Physiol (1985) 2009; 107:734-40. [PMID: 19608930 DOI: 10.1152/japplphysiol.00470.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The detrimental effect of ascites on the lung-expanding action of the diaphragm is partly compensated for by an increase in the inspiratory elevation of the ribs, but the mechanism of this increase is uncertain. To identify this mechanism, the effect of ascites on the response of rib 4 to isolated phrenic nerve stimulation was first assessed in four dogs with bilateral pneumothoraces. Stimulation did not produce any axial displacement of the rib (X(r)) in the control condition and caused a cranial rib displacement in the presence of ascites. This displacement, however, was small. In a second experiment, the effects of ascites on the pleural pressure swing (DeltaP(pl)), intercostal activity, and X(r) during spontaneous inspiration were measured in eight animals. As the volume of ascites increased from 0 to 200 ml/kg body wt, X(r) increased from 3.5 +/- 0.5 to 7.5 +/- 0.9 mm (P < 0.001), DeltaP(pl) decreased from -6.4 +/- 0.4 to -3.6 +/- 0.3 cmH(2)0 (P < 0.001), and parasternal intercostal activity increased 61 +/- 19% (P < 0.001). The role of the decrease in DeltaP(pl) in causing the increase in X(r) was then separated from that of the increase in intercostal muscle force using the relation between X(r) and DeltaP(pl) during passive lung inflation. The loss in DeltaP(pl) accounted for two-thirds of the increase in X(r). These observations indicate that 1) the increased inspiratory elevation of the ribs in ascites is not the result of the increase in the rib cage-expanding action of the diaphragm and 2) it is due mostly to the decrease in DeltaP(pl) and partly to the increase in the force exerted by the parasternal intercostals on the ribs. These observations also suggest, however, that the rib cage expansion caused by ascites makes the parasternal intercostals less effective in pulling the ribs cranially.
Collapse
Affiliation(s)
- Dimitri Leduc
- Laboratory of Cardiorespiratory Physiology, Brussels School of Medicine, Brussels, Belgium
| | | |
Collapse
|
9
|
Ratnovsky A, Elad D, Halpern P. Mechanics of respiratory muscles. Respir Physiol Neurobiol 2008; 163:82-9. [DOI: 10.1016/j.resp.2008.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 04/26/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
|
10
|
Abstract
The mechanical advantages of the external and internal intercostals depend partly on the orientation of the muscle but mostly on interspace number and the position of the muscle within each interspace. Thus the external intercostals in the dorsal portion of the rostral interspaces have a large inspiratory mechanical advantage, but this advantage decreases ventrally and caudally such that in the ventral portion of the caudal interspaces, it is reversed into an expiratory mechanical advantage. The internal interosseous intercostals in the caudal interspaces also have a large expiratory mechanical advantage, but this advantage decreases cranially and, for the upper interspaces, ventrally as well. The intercartilaginous portion of the internal intercostals (the so-called parasternal intercostals), therefore, has an inspiratory mechanical advantage, whereas the triangularis sterni has a large expiratory mechanical advantage. These rostrocaudal gradients result from the nonuniform coupling between rib displacement and lung expansion, and the dorsoventral gradients result from the three-dimensional configuration of the rib cage. Such topographic differences in mechanical advantage imply that the functions of the muscles during breathing are largely determined by the topographic distributions of neural drive. The distributions of inspiratory and expiratory activity among the muscles are strikingly similar to the distributions of inspiratory and expiratory mechanical advantages, respectively. As a result, the external intercostals and the parasternal intercostals have an inspiratory function during breathing, whereas the internal interosseous intercostals and the triangularis sterni have an expiratory function.
Collapse
Affiliation(s)
- André De Troyer
- Laboratory of Cardiorespiratory Physiology, Brussels School of Medicine and Chest Service, Erasme University Hospital, Belgium.
| | | | | |
Collapse
|
11
|
|