1
|
Schock S, Hakim A. The Physiological and Molecular Links Between Physical Activity and Brain Health: A Review. Neurosci Insights 2023; 18:26331055231191523. [PMID: 37600456 PMCID: PMC10436988 DOI: 10.1177/26331055231191523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
There is currently an epidemic of sedentary behavior throughout the world, leading to negative impacts on physical health and contributing to both mortality and burden of disease. The consequences of this also impact the brain, where increased levels of cognitive decline are observed in individuals who are more sedentary. This review explores the physiological and molecular responses to our sedentary propensity, its contribution to several medical conditions and cognitive deficits, and the benefits of moderate levels of physical activity and exercise. Also presented is the recommended level of activity for overall physical health improvement.
Collapse
Affiliation(s)
- Sarah Schock
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Antoine Hakim
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Lapidaire W, Forkert ND, Williamson W, Huckstep O, Tan CM, Alsharqi M, Mohamed A, Kitt J, Burchert H, Mouches P, Dawes H, Foster C, Okell TW, Lewandowski AJ, Leeson P. Aerobic exercise increases brain vessel lumen size and blood flow in young adults with elevated blood pressure. Secondary analysis of the TEPHRA randomized clinical trial. Neuroimage Clin 2023; 37:103337. [PMID: 36709637 PMCID: PMC9900452 DOI: 10.1016/j.nicl.2023.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
IMPORTANCE Cerebrovascular changes are already evident in young adults with hypertension and exercise is recommended to reduce cardiovascular risk. To what extent exercise benefits the cerebrovasculature at an early stage of the disease remains unclear. OBJECTIVE To investigate whether structured aerobic exercise increases brain vessel lumen diameter or cerebral blood flow (CBF) and whether lumen diameter is associated with CBF. DESIGN Open, parallel, two-arm superiority randomized controlled (1:1) trial in the TEPHRA study on an intention-to-treat basis. The MRI sub-study was an optional part of the protocol. The outcome assessors remained blinded until the data lock. SETTING Single-centre trial in Oxford, UK. PARTICIPANTS Participants were physically inactive (<150 min/week moderate to vigorous physical activity), 18 to 35 years old, 24-hour ambulatory blood pressure 115/75 mmHg-159/99 mmHg, body mass index below 35 kg/m2 and never been on prescribed hypertension medications. Out of 203 randomized participants, 135 participated in the MRI sub-study. Randomisation was stratified for sex, age (<24, 24-29, 30-35 years) and gestational age at birth (<32, 32-37, >37 weeks). INTERVENTION Study participants were randomised to a 16 week aerobic exercise intervention targeting 3×60 min sessions per week at 60 to 80 % peak heart rate. MAIN OUTCOMES AND MEASURES cerebral blood flow (CBF) maps from ASL MRI scans, internal carotid artery (ICA), middle cerebral artery (MCA) M1 and M2 segments, anterior cerebral artery (ACA), basilar artery (BA), and posterior cerebral artery (PCA) diameters extracted from TOF MRI scans. RESULTS Of the 135 randomized participants (median age 28 years, 58 % women) who had high quality baseline MRI data available, 93 participants also had high quality follow-up data available. The exercise group showed an increase in ICA (0.1 cm, 95 % CI 0.01 to 0.18, p =.03) and MCA M1 (0.05 cm, 95 % CI 0.01 to 0.10, p =.03) vessel diameter compared to the control group. Differences in the MCA M2 (0.03 cm, 95 % CI 0.0 to 0.06, p =.08), ACA (0.04 cm, 95 % CI 0.0 to 0.08, p =.06), BA (0.02 cm, 95 % CI -0.04 to 0.09, p =.48), and PCA (0.03 cm, 95 % CI -0.01 to 0.06, p =.17) diameters or CBF were not statistically significant. The increase in ICA vessel diameter in the exercise group was associated with local increases in CBF. CONCLUSIONS AND RELEVANCE Aerobic exercise induces positive cerebrovascular remodelling in young people with early hypertension, independent of blood pressure. The long-term benefit of these changes requires further study. TRIAL REGISTRATION Clinicaltrials.gov NCT02723552, 30 March 2016.
Collapse
Affiliation(s)
- Winok Lapidaire
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Nils D Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Wilby Williamson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Odaro Huckstep
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Life Sciences Research Center, Department of Biology, United States Air Force Academy, United States.
| | - Cheryl Mj Tan
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| | - Maryam Alsharqi
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Cardiac Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Afifah Mohamed
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Malaysia.
| | - Jamie Kitt
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Holger Burchert
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
| | - Pauline Mouches
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Helen Dawes
- NIHR Exeter BRC, Medical School, University of Exeter, Exeter, United Kingdom.
| | - Charlie Foster
- Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Rodríguez-Núñez I, Pontes RB, Romero F, Campos RR. Effects of physical exercise on baroreflex sensitivity and renal sympathetic nerve activity in chronic nicotine-treated rats. Can J Physiol Pharmacol 2021; 99:786-794. [PMID: 33290163 DOI: 10.1139/cjpp-2020-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic nicotine exposure may increase cardiovascular risk by impairing the cardiac autonomic function. Besides, physical exercise (PE) has shown to improve cardiovascular health. Thus, we aimed to investigate the effects of PE on baroreflex sensitivity (BRS), heart rate variability (HRV), and sympathetic nerve activity (SNA) in chronically nicotine-exposed rats. Male Wistar rats were assigned to four independent groups: Control (treated with saline solution), Control+Ex (treated with saline and submitted to treadmill training), Nicotine (treated with Nicotine), and Nicotine+Ex (treated with nicotine and submitted to treadmill training). Nicotine (1 mg·kg-1) was administered daily for 28 consecutive days. PE consisted of running exercise (60%-70% of maximal aerobic capacity) for 45 min, 5 days per week, for 4 weeks. At the end of the protocol, cardiac BRS, HRV, renal SNA (rSNA), and renal BRS were assessed. Nicotine treatment decreased absolute values of HRV indexes, increased low frequency/high frequency ratio of HRV, reduced the bradycardic and sympatho-inhibitory baroreceptor reflex responses, and reduced the rSNA. PE effectively restored time-domain HRV indexes, the bradycardic and sympatho-inhibitory reflex responses, and the rSNA in chronic nicotine-treated rats. PE was effective in preventing the deterioration of time-domain parameters of HRV, arterial baroreceptor dysfunction, and the rSNA after nicotine treatment.
Collapse
Affiliation(s)
- Iván Rodríguez-Núñez
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Chile
| | - Roberto B Pontes
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Fernando Romero
- Programa de Doctorado en Ciencias Médicas, Departamento de Cirugía, Facultad de Medicina, Universidad de La Frontera, Temuco. Chile
| | - Ruy R Campos
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
4
|
Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol (Oxf) 2021; 231:e13631. [PMID: 33595878 DOI: 10.1111/apha.13631] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular diseases (CVDs). However, the role of nicotine, the addictive component of all tobacco products, in the development of CVD is incompletely understood. Although increased public awareness of the harms of cigarette smoking has successfully led to a decline in its prevalence, the use of electronic cigarettes (e-cig) or electronic nicotine delivery system has increased dramatically in recent years because of the perception that these products are safe. This review summarizes our current knowledge of the expression and function of the nicotinic acetylcholine receptors in the cardiovascular system and the impact of nicotine exposure on cardiovascular health, with a focus on nicotine-induced vascular dysfunction. Nicotine alters vasoreactivity through endothelium-dependent and/or endothelium-independent mechanisms, leading to clinical manifestations in both cigarette smokers and e-cig users. In addition, nicotine induces vascular remodelling through its effects on proliferation, migration and matrix production of both vascular endothelial and vascular smooth muscle cells. The purpose of this review is to identify critical knowledge gaps regarding the effects of nicotine on the vasculature and to stimulate continued nicotine research.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Abigail P. Erwin
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Xinping Yue
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| |
Collapse
|
5
|
Li C, Sun H, Xu G, McCarter KD, Li J, Mayhan WG. Mito-Tempo prevents nicotine-induced exacerbation of ischemic brain damage. J Appl Physiol (1985) 2018; 125:49-57. [PMID: 29420160 DOI: 10.1152/japplphysiol.01084.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nicotine may contribute to the pathogenesis of cerebrovascular disease via the generation of reactive oxygen species (ROS). Overproduction of ROS leads to brain damage by intensifying postischemic inflammation. Our goal was to determine the effect of Mito-Tempo, a mitochondria-targeted antioxidant, on ischemic brain damage and postischemic inflammation during chronic exposure to nicotine. Male Sprague-Dawley rats were divided into four groups: control, nicotine, Mito-Tempo-treated control, and Mito-Tempo-treated nicotine. Nicotine (2 mg·kg-1·day-1) was administered via an osmotic minipump for 4 wk. Mito-Tempo (0.7 mg·kg-1·day-1 ip) was given for 7 days before cerebral ischemia. Transient focal cerebral ischemia was induced by occlusion of the middle cerebral artery for 2 h. Brain damage and inflammation were evaluated after 24 h of reperfusion by measuring infarct volume, expression of adhesion molecules, activity of matrix metalloproteinase, brain edema, microglial activation, and neutrophil infiltration. Nicotine exacerbated infarct volume and worsened neurological deficits. Nicotine did not alter baseline ICAM-1 expression, matrix metallopeptidase-2 activity, microglia activation, or neutrophil infiltration but increased these parameters after cerebral ischemia. Mito-Tempo did not have an effect in control rats but prevented the chronic nicotine-induced augmentation of ischemic brain damage and postischemic inflammation. We suggest that nicotine increases brain damage following cerebral ischemia via an increase in mitochondrial oxidative stress, which, in turn, contributes to postischemic inflammation. NEW & NOTEWORTHY Our findings have important implications for the understanding of mechanisms contributing to increased susceptibility of the brain to damage in smokers and users of nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Chun Li
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Guodong Xu
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana.,Department of Neurology, Hebei General Hospital , Shijiazhuang, Hebei , China
| | - Kimberly D McCarter
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Jiyu Li
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
6
|
Billinger SA, Craig JC, Kwapiszeski SJ, Sisante JFV, Vidoni ED, Maletsky R, Poole DC. Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. J Appl Physiol (1985) 2017; 122:1125-1133. [PMID: 28280106 DOI: 10.1152/japplphysiol.00995.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
The dynamic response to a stimulus such as exercise can reveal valuable insights into systems control in health and disease that are not evident from the steady-state perturbation. However, the dynamic response profile and kinetics of cerebrovascular function have not been determined to date. We tested the hypotheses that bilateral middle cerebral artery blood flow mean velocity (MCAV) increases exponentially following the onset of moderate-intensity exercise in 10 healthy young subjects. The MCAV response profiles were well fit to a delay (TD) + exponential (time constant, τ) model with substantial agreement for baseline [left (L): 69, right (R): 64 cm/s, coefficient of variation (CV) 11%], response amplitude (L: 16, R: 13 cm/s, CV 23%), TD (L: 54, R: 52 s, CV 9%), τ (L: 30, R: 30 s, CV 22%), and mean response time (MRT) (L: 83, R: 82 s, CV 8%) between left and right MCAV as supported by the high correlations (e.g., MRT r = 0.82, P < 0.05) and low CVs. Test-retest reliability was high with CVs for the baseline, amplitude, and MRT of 3, 14, and 12%, respectively. These responses contrasted markedly with those of three healthy older subjects in whom the MCAV baseline and exercise response amplitude were far lower and the kinetics slowed. A single older stroke patient showed baseline ipsilateral MCAV that was lower still and devoid of any exercise response whatsoever. We conclude that kinetics analysis of MCAV during exercise has significant potential to unveil novel aspects of cerebrovascular function in health and disease.NEW & NOTEWORTHY Resolution of the dynamic stimulus-response profile provides a greater understanding of the underlying the physiological control processes than steady-state measurements alone. We report a novel method of measuring cerebrovascular blood velocity (MCAv) kinetics under ecologically valid conditions from rest to moderate-intensity exercise. This technique reveals that brain blood flow increases exponentially following the onset of exercise with 1) a strong bilateral coherence in young healthy individuals, and 2) a potential for unique age- and disease-specific profiles.
Collapse
Affiliation(s)
- Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas;
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,College of Veterinary Medicine, Kansas State University, Manhattan, Kansas; and
| | - Sarah J Kwapiszeski
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason-Flor V Sisante
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Center, Fairway, Kansas
| | | | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,College of Veterinary Medicine, Kansas State University, Manhattan, Kansas; and
| |
Collapse
|
7
|
Chirico EN, Di Cataldo V, Chauveau F, Geloën A, Patsouris D, Thézé B, Martin C, Vidal H, Rieusset J, Pialoux V, Canet‐Soulas E. Magnetic resonance imaging biomarkers of exercise-induced improvement of oxidative stress and inflammation in the brain of old high-fat-fed ApoE -/- mice. J Physiol 2016; 594:6969-6985. [PMID: 27641234 PMCID: PMC5134731 DOI: 10.1113/jp271903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/13/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Vascular brain lesions and atherosclerosis are two similar conditions that are characterized by increased inflammation and oxidative stress. Non-invasive imaging in a murine model of atherosclerosis showed vascular brain damage and peripheral inflammation. In this study, exercise training reduced magnetic resonance imaging-detected abnormalities, insulin resistance and markers of oxidative stress and inflammation in old ApoE-/- mice. Our results demonstrate the protective effect of exercise on neurovascular damage in the ageing brain of ApoE-/- mice. ABSTRACT Vascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented, especially by non-invasive imaging. Through a combination of in vivo and post-mortem techniques, we aimed to characterize vascular brain damage in old ApoE-/- mice fed a high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the beneficial effects of exercise training on oxidative stress and inflammation in the brain as a treatment option in an ageing atherosclerosis mouse model. Using in vivo magnetic resonance imaging (MRI) and biological markers of oxidative stress and inflammation, we evaluated the occurrence of vascular abnormalities in the brain of HC-diet fed ApoE-/- mice >70 weeks old, its association with local and systemic oxidative stress and inflammation, and whether both can be modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities (present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation, 9.1 ± 1.4 vs. 5.2 ± 0.9 μmol mg-1 ; P < 0.01) and inflammation (interleukin-1β, 226.8 ± 27.1 vs. 182.5 ± 21.5 pg mg-1 ; P < 0.05) in the brain, and the mortality rate. Exercise also decreased peripheral insulin resistance, oxidative stress and inflammation, but significant associations were seen only within brain markers. Highly localized vascular brain damage is a frequent finding in this ageing atherosclerosis model, and exercise is able to reduce this outcome and improve lifespan. In vivo MRI evaluated both the neurovascular damage and the protective effect of exercise.
Collapse
Affiliation(s)
- Erica N. Chirico
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
- Laboratoire Inter‐Universitaire de Biologie de la MotricitéUniversity of Lyon, University Lyon 1(LIBMEA7424)VilleurbanneFrance
- Department of Biomedical SciencesCooper Medical School of Rowan UniversityCamdenNJUSA
| | - Vanessa Di Cataldo
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Fabien Chauveau
- Lyon Neuroscience Research CentreUniversité de LyonUniversité Lyon 1CNRS UMR5292; Inserm U1028LyonFrance
| | - Alain Geloën
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - David Patsouris
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Benoît Thézé
- Laboratoire Réparation et VieillissementInstitut de Radiobiologie Cellulaire et MoléculaireCEAFontenay‐aux‐RosesFrance
| | - Cyril Martin
- Laboratoire Inter‐Universitaire de Biologie de la MotricitéUniversity of Lyon, University Lyon 1(LIBMEA7424)VilleurbanneFrance
| | - Hubert Vidal
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Jennifer Rieusset
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| | - Vincent Pialoux
- Laboratoire Inter‐Universitaire de Biologie de la MotricitéUniversity of Lyon, University Lyon 1(LIBMEA7424)VilleurbanneFrance
| | - Emmanuelle Canet‐Soulas
- Cardiovascular, MetabolismDiabetes and Nutrition (CarMeN INSERM U‐1060)Faculty of Medicine Hospital Lyon SudUniversity of LyonUniversity Lyon 1OullinsFrance
| |
Collapse
|
8
|
Hypertension and physical exercise: The role of oxidative stress. MEDICINA-LITHUANIA 2016; 52:19-27. [PMID: 26987496 DOI: 10.1016/j.medici.2016.01.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress.
Collapse
|
9
|
|
10
|
NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention. Healthcare (Basel) 2015; 3:233-51. [PMID: 27417759 PMCID: PMC4939544 DOI: 10.3390/healthcare3020233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.
Collapse
|
11
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
12
|
Gohar EY, El-gowilly SM, El-Gowelli HM, El-Mas MM. Nicotine paradoxically affects the facilitatory effect of ovarian hormones on the adenosine receptor-mediated renal vasodilation. Eur J Pharmacol 2013; 710:1-9. [DOI: 10.1016/j.ejphar.2013.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 01/08/2023]
|
13
|
Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology (Bethesda) 2011; 26:132-45. [PMID: 21670160 PMCID: PMC3286126 DOI: 10.1152/physiol.00052.2010] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endothelial adaptations to exercise training are not exclusively conferred within the active muscle beds. Herein, we summarize key studies that have evaluated the impact of chronic exercise on the endothelium of vasculatures perfusing nonworking skeletal muscle, brain, viscera, and skin, concluding with discussion of potential mechanisms driving these endothelial adaptations.
Collapse
Affiliation(s)
- Jaume Padilla
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | |
Collapse
|