1
|
Yu YB, Fu XJ, Xu GF, Niu LY, Duan RN, Yao J, Zhao NH. Effects of nocturnal snacks on body composition in patients with liver cirrhosis. World J Hepatol 2024; 16:1458-1467. [DOI: 10.4254/wjh.v16.i12.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Patients with liver cirrhosis are universally malnourished and the nocturnal snacks intervention is the currently recommended nutritional intervention for patients with liver cirrhosis. Body composition is an important indicator for the assessment of nutritional conditions. We investigated the effects of nocturnal snacks (200 kcal/day) for 3 months on body composition in patients with liver cirrhosis.
AIM To investigate the effect of nocturnal snacks on body composition in patients with cirrhosis.
METHODS Seventy patients with liver cirrhosis and 30 healthy controls were enrolled, and differences in body composition were detected using InBody 720, a body composition analyzer. The patients were further randomized into a normal diet group (three meals a day) and nocturnal snacks group (three meals a day + nocturnal snacks). The effect of nocturnal snacks on the body composition of patients with cirrhosis was assessed after 3 months of intervention.
RESULTS Body fat mass (BFM), skeletal muscle mass (SMM), fat free mass, visceral fat area (VFA), and body cell mass (BCM) were significantly lower in the liver cirrhosis patients than in the healthy controls. After 3 months’ intervention, BFM, VFA and BCM were significantly higher in the nocturnal snacks group than in the normal diet group, with no significant differences in total caloric intake and daily activity. However, there was no significant difference in SMM between the nocturnal snacks and normal diet groups.
CONCLUSION Long-term nocturnal snacks may improve body composition indices such as BFM, VFA and BCM in patients with cirrhosis. However, the improvement was minor for SMM.
Collapse
Affiliation(s)
- Yong-Bo Yu
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Xiu-Juan Fu
- Department of Gastroenterology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Guo-Fen Xu
- Department of Gastroenterology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Ling-Yun Niu
- Department of Gastroenterology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Ruo-Nan Duan
- Department of Nutrition, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Jia Yao
- Department of Gastroenterology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| | - Ning-Hui Zhao
- Department of Gastroenterology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi Province, China
| |
Collapse
|
2
|
Walluks K, Hoffmann B, Svensson CM, Förster G, Müller AH, Jarvis J, Perkins J, Figge MT, Arnold D. Long-term stimulation by implanted pacemaker enables non-atrophic treatment of bilateral vocal fold paresis in a human-like animal model. Sci Rep 2024; 14:10440. [PMID: 38714750 PMCID: PMC11076618 DOI: 10.1038/s41598-024-60875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/29/2024] [Indexed: 05/10/2024] Open
Abstract
A wide variety of treatments have been developed to improve respiratory function and quality of life in patients with bilateral vocal fold paresis (BVFP). One experimental method is the electrical activation of the posterior cricoarytenoid (PCA) muscle with a laryngeal pacemaker (LP) to open the vocal folds. We used an ovine (sheep) model of unilateral VFP to study the long-term effects of functional electrical stimulation on the PCA muscles. The left recurrent laryngeal nerve was cryo-damaged in all animals and an LP was implanted except for the controls. After a reinnervation phase of six months, animals were pooled into groups that received either no treatment, implantation of an LP only, or implantation of an LP and six months of stimulation with different duty cycles. Automated image analysis of fluorescently stained PCA cross-sections was performed to assess relevant muscle characteristics. We observed a fast-to-slow fibre type shift in response to nerve damage and stimulation, but no complete conversion to a slow-twitch-muscle. Fibre size, proportion of hybrid fibres, and intramuscular collagen content were not substantially altered by the stimulation. These results demonstrate that 30 Hz burst stimulation with duty cycles of 40% and 70% did not induce PCA atrophy or fibrosis. Thus, long-term stimulation with an LP is a promising approach for treating BVFP in humans without compromising muscle conditions.
Collapse
Affiliation(s)
- Kassandra Walluks
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Bianca Hoffmann
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Gerhard Förster
- Clinic for Otorhinolaryngology/Plastic Surgery, Wald-Klinikum Gera, Gera, Germany
| | - Andreas H Müller
- Clinic for Otorhinolaryngology/Plastic Surgery, Wald-Klinikum Gera, Gera, Germany
| | - Jonathan Jarvis
- Faculty of Science, Sport and Exercise Sciences, John Moores University, Liverpool, UK
| | | | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Dirk Arnold
- Clinic and Polyclinic for Otorhinolaryngology, University Hospital Jena, Jena, Germany.
| |
Collapse
|
3
|
Yuan Y, Liu Y, He Y, Zhang B, Zhao L, Tian S, Wang Q, Chen S, Li Z, Liang S, Hou G, Liu B, Li Y. Intestinal-targeted nanotubes-in-microgels composite carriers for capsaicin delivery and their effect for alleviation of Salmonella induced enteritis. Biomaterials 2022; 287:121613. [PMID: 35700621 DOI: 10.1016/j.biomaterials.2022.121613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 02/09/2023]
Abstract
Salmonella is a word-wide food-borne pathogen, which can cause severe enteritis and intestinal microbiota imbalance. Capsaicin (Cap), a food-based bioactive ingredient, has antibacterial and anti-inflammatory properties. However, its low solubility, low bioavailability and the irritation to digestive tract greatly limit its applications. Here, an intestinal responsively "nanotubes-in-microgel" composite carrier was constructed by capturing α-lactalbumin (α-lac) nanotubes in low-methoxy pectin microgels (LMP-NT) (52 μm). Cap was loaded in such system via hydrophobic interaction with a loading capacity of 38.02 mg/g. The LMP microgels remained stable and protected NT/Cap from early releasing in the gastric condition. It showed an excellent mucoadhesive capacity, which can prolong the intestinal retention up to 12 h and control release NT/Cap in intestine. Afterward, NT/Cap could penetrate across the mucus layer deeply and enter the intestinal villi epithelial cells efficiently. LMP-NT microgels achieved a mucoadhesive-to-penetrating transition in response to intestinal pH, improving the epithelium absorption and the in vivo bioavailability of Cap. Oral administration of LMP-NT/Cap could effectively alleviate enteritis caused by Salmonella infection and maintain the homeostasis of gut microbiota. Overall, this work suggested that LMP-NT composite microgels were promising for intestine-targeted and oral delivery of hydrophobic bioactive food compounds.
Collapse
Affiliation(s)
- Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Liang Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Simin Tian
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qimeng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zekun Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Guohua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
4
|
Sumi K, Munakata K, Konno S, Ashida K, Nakazato K. Inorganic Iron Supplementation Rescues Hematological Insufficiency Even Under Intense Exercise Training in a Mouse Model of Iron Deficiency with Anemia. Biol Trace Elem Res 2021; 199:2945-2960. [PMID: 33025520 DOI: 10.1007/s12011-020-02402-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Iron deficiency anemia (IDA) due to malnutrition and/or blood loss is a common condition, especially in women of reproductive age. Intense exercise can induce anemia via an inflammatory response, but whether intense exercise affects the efficacy of iron supplementation to treat IDA is unclear. Here, we show in a mouse model of IDA that acute intense swimming increased IL-6 levels in the blood, but did not affect the maximum elevation of plasma iron following oral administration of 0.5 mg/kg Bw iron. However, compared with the control group without intense exercise, acute intense swimming was associated with a significant decrease in plasma iron 2 and 4 h after iron loading that could be attributed to rapid iron absorption in peripheral tissues. In the chronic experiment, IDA mice administered 0.36, 1.06, or 3.2 mg/kg Bw iron per day that were subjected to 11 intense swimming sessions over 3 weeks showed significantly decreased recovery levels for hemoglobin and red blood cell count during the early phase of the experimental period. At the end of the experimental period, significant, dose-dependent effects of iron, but not the main effect of intense exercise, were seen for recovery of hemoglobin and red blood cell counts, consistent with the acute exercise study. These results suggested that intense exercise in the presence of IDA does not inhibit iron absorption from the gastrointestinal tract and that iron supplementation can enhance the recovery process even after intense exercise.
Collapse
Affiliation(s)
- Koichiro Sumi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan.
| | - Kinuyo Munakata
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Saori Konno
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Kinya Ashida
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
5
|
Ueno M, Maeshige N, Hirayama Y, Yamaguchi A, Ma X, Uemura M, Kondo H, Fujino H. Pulsed ultrasound prevents lipopolysaccharide-induced muscle atrophy through inhibiting p38 MAPK phosphorylation in C2C12 myotubes. Biochem Biophys Res Commun 2021; 570:184-190. [PMID: 34293592 DOI: 10.1016/j.bbrc.2021.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Inflammation contributes to skeletal muscle atrophy via protein degradation induced by p38 mitogen-activated protein kinase (MAPK) phosphorylation. Meanwhile, pulsed ultrasound irradiation provides the mechanical stimulation to the target tissue, and has been reported to show anti-inflammatory effects. This study investigated the preventive effects of pulsed ultrasound irradiation on muscle atrophy induced by lipopolysaccharide (LPS) in C2C12 myotubes. METHODS C2C12 myotubes were used in this research. The pulsed ultrasound (a frequency of 3 MHz, duty cycle of 20%, intensity of 0.5 W/cm2) was irradiated to myotube before LPS administration. RESULTS The LPS increased phosphorylation of p38 MAPK and decreased the myofibril and myosin heavy chain protein (P < 0.05), followed by atrophy in C2C12 myotubes. The pulsed ultrasound irradiation attenuated p38 MAPK phosphorylation and myotube atrophy induced by LPS (P < 0.05). CONCLUSIONS Pulsed ultrasound irradiation has the preventive effects on inflammation-induced muscle atrophy through inhibiting phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Mizuki Ueno
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yusuke Hirayama
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
6
|
Sumi K, Sakuda M, Munakata K, Nakamura K, Ashida K. α-Hydroxyisocaproic Acid Decreases Protein Synthesis but Attenuates TNFα/IFNγ Co-Exposure-Induced Protein Degradation and Myotube Atrophy via Suppression of iNOS and IL-6 in Murine C2C12 Myotube. Nutrients 2021; 13:nu13072391. [PMID: 34371902 PMCID: PMC8308709 DOI: 10.3390/nu13072391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
There is ongoing debate as to whether or not α-hydroxyisocaproic acid (HICA) positively regulates skeletal muscle protein synthesis resulting in the gain or maintenance of skeletal muscle. We investigated the effects of HICA on mouse C2C12 myotubes under normal conditions and during cachexia induced by co-exposure to TNFα and IFNγ. The phosphorylation of AMPK or ERK1/2 was significantly altered 30 min after HICA treatment under normal conditions. The basal protein synthesis rates measured by a deuterium-labeling method were significantly lowered by the HICA treatment under normal and cachexic conditions. Conversely, myotube atrophy induced by TNFα/IFNγ co-exposure was significantly improved by the HICA pretreatment, and this improvement was accompanied by the inhibition of iNOS expression and IL-6 production. Moreover, HICA also suppressed the TNFα/IFNγ co-exposure-induced secretion of 3-methylhistidine. These results demonstrated that HICA decreases basal protein synthesis under normal or cachexic conditions; however, HICA might attenuate skeletal muscle atrophy via maintaining a low level of protein degradation under cachexic conditions.
Collapse
|
7
|
Sumi K, Osada K, Sakuda M, Ashida K, Nakazato K. Fermented milk retains beneficial effects on skeletal muscle protein anabolism after processing by centrifugation and supernatant removal. J Dairy Sci 2020; 104:1336-1350. [PMID: 33246620 DOI: 10.3168/jds.2020-18780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
Abstract
Lactobacillus-fermented milk can stimulate anabolic effects in skeletal muscle. Fermented milk containing Lactobacillus produces aqueous molecules, such as free AA and lactate. This study aimed to investigate how processing fermented milk by centrifugation and removal of supernatant affects AA absorption and postprandial skeletal muscle protein synthesis (MPS) when mice are fed fermented milk. We gavaged male Sprague-Dawley rats with skim milk (S), fermented milk (F), or processed fermented milk (P), and examined the total AA content in portal vein blood (reflecting AA absorption) and plantaris muscle MPS at 30, 60, and 90 min following administration. Relative to fasted rats, at 30 min the total AA concentration in portal vein blood from rats in the P groups was significantly higher, followed by F and S, respectively. The MPS rates were higher for the F or P groups compared with the S group. Phosphorylation levels of p70S6 kinase in the P and F groups were significantly higher than those for the S group 30 min after administration, although the level of Akt phosphorylation was similar among the groups. These results suggested that fermentation improves AA absorption that in turn enhances postprandial MPS via Akt-independent mechanisms, and that processed fermented milk retains these favorable effects on MPS.
Collapse
Affiliation(s)
- K Sumi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co. Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan.
| | - K Osada
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co. Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| | - M Sakuda
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co. Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| | - K Ashida
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co. Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo 192-0919, Japan
| | - K Nakazato
- Department of Exercise Physiology, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
8
|
de Oliveira Santos R, da Silva Cardoso G, da Costa Lima L, de Sousa Cavalcante ML, Silva MS, Cavalcante AKM, Severo JS, de Melo Sousa FB, Pacheco G, Alves EHP, Nobre LMS, Medeiros JVR, Lima-Junior RC, Dos Santos AA, Tolentino M. L-Glutamine and Physical Exercise Prevent Intestinal Inflammation and Oxidative Stress Without Improving Gastric Dysmotility in Rats with Ulcerative Colitis. Inflammation 2020; 44:617-632. [PMID: 33128666 DOI: 10.1007/s10753-020-01361-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the effects of glutamine supplementation or exercise on gastric emptying and intestinal inflammation in rats with ulcerative colitis (UC). Strength exercise consisted of jump training 4 × 10 repetitions/5 days a week/8 weeks with progressive overload. Endurance exercise consisted of swimming without overload for a period of 1 h a day/5 days a week/8 weeks. Another group (sedentary) of animals was supplemented with L-glutamine (1 g/kg of body weight) orally for 8 weeks before induction of UC. Colitis was induced by intra-colonic administration of 1 mL of 4% acetic acid. We assessed gastric emptying, macroscopic and microscopic scoring, oxidative stress markers, and IL-1β, IL-6, and (TNF-α) levels. The UC significantly increased (p < 0.05) the gastric emptying compared with the saline control group. We observed a significantly decrease (p < 0.05) in body weight gain in UC rats compared with the control groups. Both exercise interventions and L-glutamine supplementation significantly prevented (p < 0.05) weight loss compared with the UC group. Strength and endurance exercises significantly prevented (p < 0.05) the increase of microscopic scores and oxidative stress (p < 0.05). L-glutamine supplementation in UC rats prevented hemorrhagic damage and improved oxidative stress markers (p < 0.05). Strength and endurance exercises and glutamine decreased the concentrations of inflammatory cytokines IL-1β, IL-6, and TNF-α compared with the UC group (p < 0.05). Strength and endurance exercises and L-glutamine supplementation prevented intestinal inflammation and improved cytokines and oxidative stress levels without altering gastric dysmotility in rats with UC.
Collapse
Affiliation(s)
| | - Geovane da Silva Cardoso
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | - Lara da Costa Lima
- Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
| | | | - Mariana Sousa Silva
- Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Juliana Soares Severo
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Gabriella Pacheco
- Graduate Program in Biotechnology, Federal University of Piauí, Parnaiba, PI, Brazil
| | | | - Lívia Maria Soares Nobre
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Roberto Cesar Lima-Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armênio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Moisés Tolentino
- Graduate Program in Food and Nutrition, Federal University of Piauí, Teresina, PI, Brazil. .,Laboratory of Exercise and Gastrointestinal Tract - Department of Physical Education, Center for Health Sciences, Federal University of Piauí, Teresina, PI, 64049-550, Brazil. .,Graduate Program in Pharmacology, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
9
|
Sumi K, Ashida K, Nakazato K. Repeated stretch-shortening contraction of the triceps surae attenuates muscle atrophy and liver dysfunction in a rat model of inflammation. Exp Physiol 2020; 105:1111-1123. [PMID: 32394614 DOI: 10.1113/ep088622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is stretch-shortening contraction effective to attenuate skeletal muscle atrophy and hepatic dysfunction in a rat model of peptidoglycan-polysaccharide (PG-PS)-induced inflammation (PG-PS rat)? What are the main findings and their importance? Stretch-shortening contraction attenuates skeletal muscle atrophy in the trained leg and increases circulating interleukin-10 in PG-PS rats. Stretch-shortening contraction also ameliorates liver dysfunction in PG-PS rats, possibly via increased blood interleukin-10. These findings are important because they suggest that stretch-shortening contraction is effective to maintain liver function in addition to exercised skeletal muscle mass. ABSTRACT Stretch-shortening contraction (SSC) is an effective modality to improve skeletal muscle mass. However, the beneficial effects of SSC in the presence of chronic inflammation remain unclear. Here, we imposed five SSC sessions unilaterally on the triceps surae in young female Lewis rats. Rats were injected with vehicle or peptidoglycan-polysaccharide (PG-PS) to induce long-lasting inflammation. The PG-PS reduced gastrocnemius muscle mass in both legs, but that of the SSC-trained leg was significantly greater than that of the contralateral leg. Circulating pro-inflammatory cytokines, such as IL-1β, were significantly increased by PG-PS injection, even if carrying out SSC. The circulating anti-inflammatory cytokine IL-10 increased with SSC in both healthy and inflammatory conditions. Stretch-shortening contraction also prevented increases in serum aspartate aminotransferase activity and plasma free phenylalanine concentration induced by PG-PS, in comparison to the control resistance exercise consisting of isometric contractions. Moreover, aspartate aminotransferase and phenylalanine concentrations demonstrated a significant and negative correlation with IL-10/IL-1β values (r = -0.61, P = 0.017, and r = -0.66, P = 0.008, respectively). These results suggest that SSC training is effective to reduce both muscle atrophy and the hepatic dysfunction induced by PG-PS, mediated, at least in part, through an increase in circulating IL-10.
Collapse
Affiliation(s)
- Koichiro Sumi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachiouji, Tokyo, Japan
| | - Kinya Ashida
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachiouji, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sports Science University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|