1
|
Ferreira-Cravo M, Moreira DC, Hermes-Lima M. Glutathione Depletion Disrupts Redox Homeostasis in an Anoxia-Tolerant Invertebrate. Antioxidants (Basel) 2023; 12:1197. [PMID: 37371926 PMCID: PMC10294987 DOI: 10.3390/antiox12061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The upregulation of endogenous antioxidants is a widespread phenomenon in animals that tolerate hypoxia/anoxia for extended periods. The identity of the mobilized antioxidant is often context-dependent and differs among species, tissues, and stresses. Thus, the contribution of individual antioxidants to the adaptation to oxygen deprivation remains elusive. This study investigated the role of glutathione (GSH) in the control of redox homeostasis under the stress of anoxia and reoxygenation in Helix aspersa, an animal model of anoxia tolerance. To do so, the total GSH (tGSH) pool was depleted with l-buthionine-(S, R)-sulfoximine (BSO) before exposing snails to anoxia for 6 h. Then, the concentration of GSH, glutathione disulfide (GSSG), and oxidative stress markers (TBARS and protein carbonyl) and the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione transferase, glutathione reductase, and glucose 6-phosphate dehydrogenase) were measured in foot muscle and hepatopancreas. BSO alone induced tGSH depletion by 59-75%, but no other changes happened in other variables, except for foot GSSG. Anoxia elicited a 110-114% increase in glutathione peroxidase in the foot; no other changes occurred during anoxia. However, GSH depletion before anoxia increased the GSSG/tGSH ratio by 84-90% in both tissues, which returned to baseline levels during reoxygenation. Our findings indicate that glutathione is required to withstand the oxidative challenge induced by hypoxia and reoxygenation in land snails.
Collapse
Affiliation(s)
- Marlize Ferreira-Cravo
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Daniel C. Moreira
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcelo Hermes-Lima
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
2
|
Moreira DC, Campos ÉG, Giraud-Billoud M, Storey KB, Hermes-Lima M. Commentary: On the merit of an early contributor of the "Preparation for Oxidative Stress" (POS) theory. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111341. [PMID: 36368609 DOI: 10.1016/j.cbpa.2022.111341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
This commentary acknowledges the contributions of the Ukrainian biologist, Dr. Volodymyr Lushchak, to the understanding of the physiological adaptive strategy called "Preparation for Oxidative Stress" (POS). In the 1990s, various studies revealed that activities of antioxidant enzymes rose in animals under hypometabolic conditions. These timely observations allowed scientists to propose that this increase could prepare animals for reoxygenation events following the release of oxygen restriction, but in doing so, would trigger oxidative damage, hence the use of the term "preparation". Over next 25 years, the phenomenon was described in detail in more than one hundred studies of animals under conditions of aestivation, hypoxia/anoxia, freezing, severe dehydration, ultraviolet exposure, air exposure of water-breathing animals, salinity stress, and others. The POS phenomenon remained without a mechanistic explanation until 2013, when it was proposed that a small increase in oxyradical formation during hypoxia exposure (in hypoxia-tolerant animals) could activate redox-sensitive transcription factors that, in turn, would initiate transcription and translation of antioxidant enzymes. Dr. Lushchak, who studied goldfish under severe hypoxia in the 1990s, had actually proposed the increased production of oxyradicals under this condition and concluded that it would lead to an upregulation of antioxidant enzymes, the hallmark of the POS strategy. However, his research partner at the time, Dr. Hermes-Lima, thought the idea did not have sufficient evidence to support it and recommended the removal of this explanation. In those days, the main line of thinking was that increased oxyradical formation under hypoxia was "impossible". So, as it turns out, the ideas of Dr. Lushchak were well ahead of his time. It then took >10 years before the biochemical and molecular mechanisms responsible for triggering the POS response were clarified. In the present article, this fascinating history is described to highlight Dr. Lushchak's contributions and insights about the POS theory.
Collapse
Affiliation(s)
- Daniel C Moreira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil; Research Center in Morphology and Applied Immunology (NuPMIA), Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Élida G Campos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Maximiliano Giraud-Billoud
- CONICET, Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina; National University of Cuyo, Mendoza, Argentina; National University of Villa Mercedes, Villa Mercedes, Argentina
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Marcelo Hermes-Lima
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
3
|
Banerjee B, Khrystoforova I, Polis B, Zvi IB, Karasik D. Acute hypoxia elevates arginase 2 and induces polyamine stress response in zebrafish via evolutionarily conserved mechanism. Cell Mol Life Sci 2021; 79:41. [PMID: 34913090 PMCID: PMC11072480 DOI: 10.1007/s00018-021-04043-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Living organisms repeatedly encounter stressful events and apply various strategies to survive. Polyamines are omnipresent bioactive molecules with multiple functions. Their transient synthesis, inducible by numerous stressful stimuli, is termed the polyamine stress response. Animals developed evolutionarily conserved strategies to cope with stresses. The urea cycle is an ancient attribute that deals with ammonia excess in terrestrial species. Remarkably, most fish retain the urea cycle genes fully expressed during the early stages of development and silenced in adult animals. Environmental challenges instigate urea synthesis in fish despite substantial energetic costs, which poses the question of the urea cycle's evolutionary significance. Arginase plays a critical role in oxidative stress-dependent reactions being the final urea cycle enzyme. Its unique subcellular localization, high inducibility, and several regulation levels provide a supreme ability to control the polyamine synthesis rate. Notably, oxidative stress instigates the arginase-1 activity in mammals. Arginase is also dysregulated in aging organisms' brain and muscle tissues, indicating its role in the pathogenesis of age-associated diseases. We designed a study to investigate the levels of the urea cycle and polyamine synthesis-related enzymes in a fish model of acute hypoxia. We evidence synchronized elevation of arginase-2 and ornithine decarboxylase following oxidative stress in adult fish and aging animals signifying the specific function of arginase-2 in fish. Moreover, we demonstrate oxidative stress-associated polyamine synthesis' induction and urea cycle' arrest in adult fish. The subcellular arginase localization found in the fish seems to correspond to its possible evolutionary roles.
Collapse
Affiliation(s)
| | | | - Baruh Polis
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Inbar Ben Zvi
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
4
|
Giraud-Billoud M, Rivera-Ingraham GA, Moreira DC, Burmester T, Castro-Vazquez A, Carvajalino-Fernández JM, Dafre A, Niu C, Tremblay N, Paital B, Rosa R, Storey JM, Vega IA, Zhang W, Yepiz-Plascencia G, Zenteno-Savin T, Storey KB, Hermes-Lima M. Twenty years of the ‘Preparation for Oxidative Stress’ (POS) theory: Ecophysiological advantages and molecular strategies. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:36-49. [DOI: 10.1016/j.cbpa.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
|
5
|
Moreira DC, Oliveira MF, Liz-Guimarães L, Diniz-Rojas N, Campos ÉG, Hermes-Lima M. Current Trends and Research Challenges Regarding "Preparation for Oxidative Stress". Front Physiol 2017; 8:702. [PMID: 28993737 PMCID: PMC5622305 DOI: 10.3389/fphys.2017.00702] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Survival under stress, such as exposure to hypoxia, anoxia, freezing, dehydration, air exposure of water breathing organisms, and estivation, is commonly associated to enhanced endogenous antioxidants, a phenomenon coined "preparation for oxidative stress" (POS). The regulation of free radical metabolism seems to be crucial under these selective pressures, since this response is widespread among animals. A hypothesis of how POS works at the molecular level was recently proposed and relies on two main processes: increased reactive species production under hypoxia, and activation of redox-sensitive transcription factors and signaling pathways, increasing the expression of antioxidants. The present paper brings together the current knowledge on POS and considers its future directions. Data indicate the presence of POS in 83 animal species (71.6% among investigated species), distributed in eight animal phyla. Three main research challenges on POS are presented: (i) to identify the molecular mechanism(s) that mediate/induce POS, (ii) to identify the evolutionary origins of POS in animals, and (iii) to determine the presence of POS in natural environments. We firstly discuss the need of evidence for increased RS production in hypoxic conditions that underlie the POS response. Secondly, we discuss the phylogenetic origins of POS back 700 million years, by identifying POS-positive responses in cnidarians. Finally, we present the first reports of the POS adaptation strategy in the wild. The investigation of these research trends and challenges may prove useful to understand the evolution of animal redox adaptations and how they adapt to increasing stressful environments on Earth.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
- Área de Morfologia, Faculdade de Medicina, Universidade de BrasíliaBrasilia, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lara Liz-Guimarães
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | - Nilda Diniz-Rojas
- Departamento de Genética e Morfologia, Universidade de BrasíliaBrasilia, Brazil
| | - Élida G. Campos
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | | |
Collapse
|
6
|
Khaliullina H, Love NK, Harris WA. Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway. J Dev Biol 2016; 4. [PMID: 27280081 PMCID: PMC4894462 DOI: 10.3390/jdb4020017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
At a cellular level, nutrients are sensed by the mechanistic Target of Rapamycin (mTOR). The response of cells to hypoxia is regulated via action of the oxygen sensor Hypoxia-Inducible Factor 1 (HIF-1). During development, injury and disease, tissues might face conditions of both low nutrient supply and low oxygen, yet it is not clear how cells adapt to both nutrient restriction and hypoxia, or how mTOR and HIF-1 interact in such conditions. Here we explore this question in vivo with respect to cell proliferation using the ciliary marginal zone (CMZ) of Xenopus. We found that both nutrient-deprivation and hypoxia cause retinal progenitors to decrease their proliferation, yet when nutrient-deprived progenitors are exposed to hypoxia there is an unexpected rise in cell proliferation. This increase, mediated by HIF-1 signalling, is dependent on glutaminolysis and reactivation of the mTOR pathway. We discuss how these findings in non-transformed tissue may also shed light on the ability of cancer cells in poorly vascularised solid tumours to proliferate.
Collapse
Affiliation(s)
- Helena Khaliullina
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK;
| | - Nicola K Love
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK;
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK;
| |
Collapse
|
7
|
Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic Biol Med 2015; 89:1122-43. [PMID: 26408245 DOI: 10.1016/j.freeradbiomed.2015.07.156] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation. These observations have puzzled researchers for more than 20 years. Initially, two predominant ideas seemed to be irreconcilable: on one hand, hypoxia would decrease reactive oxygen species (ROS) production, while on the other the induction of antioxidant enzymes would require the overproduction of ROS. This induction of antioxidant enzymes during hypoxia was viewed as a way to prepare animals for oxidative damage that may happen ultimately during reoxygenation. The term "preparation for oxidative stress" (POS) was coined in 1998 based on such premise. However, there are many cases of increased oxidative damage in several hypoxia-tolerant organisms under hypoxia. In addition, over the years, the idea of an assured decrease in ROS formation under hypoxia was challenged. Instead, several findings indicate that the production of ROS actually increases in response to hypoxia. Recently, it became possible to provide a comprehensive explanation for the induction of antioxidant enzymes under hypoxia. The supporting evidence and the limitations of the POS idea are extensively explored in this review as we discuss results from research on estivation and situations of low oxygen stress, such as hypoxia, freezing exposure, severe dehydration, and air exposure of water-breathing animals. We propose that, under some level of oxygen deprivation, ROS are overproduced and induce changes leading to hypoxic biochemical responses. These responses would occur mainly through the activation of specific transcription factors (FoxO, Nrf2, HIF-1, NF-κB, and p53) and post translational mechanisms, both mechanisms leading to enhanced antioxidant defenses. Moreover, reactive nitrogen species are candidate modulators of ROS generation in this scenario. We conclude by drawing out the future perspectives in this field of research, and how advances in the knowledge of the mechanisms involved in the POS strategy will offer new and innovative study scenarios of biological and physiological cellular responses to environmental stress.
Collapse
Affiliation(s)
- Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil.
| | - Daniel C Moreira
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| | - Georgina A Rivera-Ingraham
- Groupe Fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Maximiliano Giraud-Billoud
- Laboratorio de Fisiología (IHEM-CONICET), and Instituto de Fisiología (Facultad de Ciencias Médicas, Universidad Nacional de Cuyo), Casilla de Correo 33, 5500 Mendoza, Argentina
| | - Thiago C Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasí;lia, DF, Brazil
| | - Élida G Campos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| |
Collapse
|
8
|
Woodside JDS, Gutowski M, Fall L, James PE, McEneny J, Young IS, Ogoh S, Bailey DM. Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity. Exp Physiol 2014; 99:1648-62. [DOI: 10.1113/expphysiol.2014.081265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John D. S. Woodside
- Vascular Physiology Unit; Institute of Cardiovascular Science; University College London; London UK
| | - Mariusz Gutowski
- Institute of Biochemistry and Cell Biology; Shanghai Institute for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Lewis Fall
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| | - Philip E. James
- Wales Heart Research Institute; Cardiff University School of Medicine; Heath Park Cardiff Pontypridd UK
| | - Jane McEneny
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Ian S. Young
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Shigehiko Ogoh
- Department of Biomedical Engineering; Toyo University; Kawagoe-Shi Saitama Japan
| | - Damian M. Bailey
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| |
Collapse
|
9
|
Micheal AS, Subramanyam MVV. Antioxidant enzymes as defense mechanism against oxidative stress in midgut tissue and hemocytes of Bombyx mori larvae subjected to various stressors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:222-234. [PMID: 24222080 DOI: 10.1002/arch.21138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, larvae of silkworm Bombyx mori were subjected to low temperature, hypoxia, and viral infection to evaluate stressor-mediated oxidative stress (OS) and the induction of antioxidant enzymes (AOEs). Exposure to cold, hypoxia, and nuclear polyhedral virus for 24 h resulted in a significant increase in hydrogen peroxide generation with concomitant increase in lipid peroxidation (LPO) and protein carbonyl levels in midgut and hemocytes. AOEs such as superoxide dismutase and catalase also increased significantly in both the tissues and the increased AOEs reverted to control values during recovery. Ontogenic stages of the larvae showed a diminishing ability of the tissues to overcome OS induced by the stressors. A significant increase in AOE activity during short stress period indicated a possible transitory defense mechanism to avoid OS-induced cell damage.
Collapse
|
10
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
11
|
Al Ahmad A, Gassmann M, Ogunshola OO. Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res 2012; 84:222-5. [PMID: 22668821 DOI: 10.1016/j.mvr.2012.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/01/2012] [Accepted: 05/25/2012] [Indexed: 01/19/2023]
Abstract
The blood-brain barrier (BBB) is a cellular barrier formed by specialized brain endothelial cells under the influence of astrocytes and pericytes. Among the several stress factors known to induce BBB breakdown, hypoxia is probably the most represented but also the least understood. Recent evidence of oxidative stress occurring during hypoxia/ischemia situation raises its possible contribution to barrier breakdown. In this study, we investigated the relevance of oxidative stress in hypoxia-induced barrier disruption. Prolonged hypoxic exposure induced reactive oxygen species (ROS) formation and induced glutathione oxidation. Such effects were accentuated under extreme O(2) deprived environment. Pro-oxidant treatment significantly disrupted barrier function under normal conditions, whereas anti-oxidant treatment contributed to maintain better barrier function and cell survival in an O(2)-reduced environment. In addition, the endothelial response to oxidative stress appeared modulated by the presence of astrocytes and pericytes, thus explaining some of the beneficial contribution of these cells as previously described. Taken together, this study highlights the importance of oxidative stress signaling at the barrier. In addition, cells of the neurovascular compartment differentially modulate ROS levels and also regulate barrier function. Thus, use of reactive oxygen scavengers may be useful to support barrier function following stroke injury.
Collapse
Affiliation(s)
- Abraham Al Ahmad
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Knight AR, Fry LE, Clancy RL, Pierce JD. Understanding the effects of oxygen administration in haemorrhagic shock. Nurs Crit Care 2011; 16:28-35. [PMID: 21199552 DOI: 10.1111/j.1478-5153.2010.00403.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS AND OBJECTIVES the aim of this article is to provide a review of the literature regarding oxygen administration and the use of oxygen in patients experiencing haemorrhagic shock (HS). RESULTS oxygen is administered to patients to assist them in maintaining oxygenation. The administration of oxygen is complex and varies significantly among patients. In order to optimize patient care, clinicians need to be aware of the potential effects, both beneficial and harmful, that oxygen can have on the body. INCLUSION AND EXCLUSION CRITERIA literature inclusion criteria for this article was any article (1995 to present) pertaining to oxygen administration and HS. Also included were articles related to tissue injury caused by an overabundance of free radicals with the administration of oxygen. Articles related to oxygen and wound healing, pollution, aerospace, food and industrial uses were excluded. CONCLUSIONS this review of the literature provides an overview of the use of oxygen in clinical practice and HS. The harmful effects of oxygen are highlighted to alert the clinician to this potential when there is an overabundance of oxygen. RELEVANCE TO CLINICAL PRACTICE oxygen is one of the most common drugs used in the medical community; however, the effects of oxygen on the body are not well understood. The use of oxygen if not prescribed correctly can cause cellular damage and death. Clinicians need to be more aware of the effects of oxygen and the damage it may cause if not administered properly.
Collapse
Affiliation(s)
- Amanda R Knight
- School of Nursing, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
13
|
Bailey DM, Bärtsch P, Knauth M, Baumgartner RW. Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cell Mol Life Sci 2009; 66:3583-94. [PMID: 19763397 PMCID: PMC3085779 DOI: 10.1007/s00018-009-0145-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 01/09/2023]
Abstract
Acute mountain sickness (AMS) is a neurological disorder that typically affects mountaineers who ascend to high altitude. The symptoms have traditionally been ascribed to intracranial hypertension caused by extracellular vasogenic edematous brain swelling subsequent to mechanical disruption of the blood-brain barrier in hypoxia. However, recent diffusion-weighted magnetic resonance imaging studies have identified mild astrocytic swelling caused by a net redistribution of fluid from the "hypoxia-primed" extracellular space to the intracellular space without any evidence for further barrier disruption or additional increment in brain edema, swelling or pressure. These findings and the observation of minor vasogenic edema present in individuals with and without AMS suggest that the symptoms are not explained by cerebral edema. This has led to a re-evaluation of the relevant pathogenic events with a specific focus on free radicals and their interaction with the trigeminovascular system.
Collapse
Affiliation(s)
- Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, Pontypridd, CF37 1DL, South Wales, UK.
| | | | | | | |
Collapse
|
14
|
Abstract
Chronic intermittent or episodic hypoxia, as occurs during a number of disease states, can have devastating effects, and prolonged exposure to this hypoxia can result in cell injury or cell death. Indeed, intermittent hypoxia activates a number of signaling pathways that are involved in oxygen sensing, oxidative stress, metabolism, catecholamine biosynthesis, and immune responsiveness. The cumulative effect of these processes over time can undermine cell integrity and lead to a decline in function. Furthermore, the ability to respond adequately to various stressors is hampered, and this is traditionally defined as premature aging or senescence. This review highlights recent advances in our understanding of the cellular and molecular mechanisms that are involved in the response to intermittent hypoxia and the potential interplay among various pathways that may accelerate the aging process.
Collapse
Affiliation(s)
- Robert M Douglas
- Department of Pediatrics, University of California San Diego, and Rady Children's Hospital-San Diego, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
15
|
Magalhães J, Ferreira R, Neuparth MJ, Oliveira PJ, Marques F, Ascensão A. Vitamin E prevents hypobaric hypoxia-induced mitochondrial dysfunction in skeletal muscle. Clin Sci (Lond) 2007; 113:459-66. [PMID: 17576196 DOI: 10.1042/cs20070075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, the effect of vitamin E (alpha-tocopherol) on mice skeletal muscle mitochondrial dysfunction and oxidative damage induced by an in vivo acute and severe hypobaric hypoxic insult (48 h at a barometric pressure equivalent to 8500 m) has been investigated. Male mice (n=24) were randomly divided into the following four groups (n=6): control (C), hypoxia (H), vitamin E (VE; 60 mg/kg of body weight intraperitoneally, three times/week for 3 weeks) and hypoxia+VE (HVE). A significant increase in mitochondrial protein CGs (carbonyl groups) was found in the H group compared with the C group. Confirming previous observations from our group, hypoxia induced mitochondrial dysfunction, as identified by altered respiratory parameters. Hypoxia exposure increased Bax content and decreased the Bcl-2/Bax ratio, whereas Bcl-2 remained unchanged. Inner and outer mitochondrial membrane integrity were significantly affected by hypoxia exposure; however, vitamin E treatment attenuated the effect of hypoxia on mitochondrial oxidative phosphorylation and on the levels of CGs. Vitamin E supplementation also prevented the Bax and Bcl-2/Bax ratio impairments caused by hypoxia, as well as the decrease in inner and outer mitochondrial membrane integrity. In conclusion, the results suggest that vitamin E prevents the loss of mitochondrial integrity and function, as well as the increase in Bax content, which suggests that mitochondria are involved in increased cell death induced by severe hypobaric hypoxia in mice skeletal muscle.
Collapse
Affiliation(s)
- José Magalhães
- Research Center in Physical Activity, Health and Leisure, University of Porto, 4200-450 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The existence of hypoxia-induced reactive oxygen species (ROS) production remains controversial. However, numerous observations with a variety of methods and in many cells and tissue types are supportive of this idea. Skeletal muscle appears to behave much like heart in that in the early stages of hypoxia there is a transient elevation in ROS, whereas in chronic exposure to very severe hypoxia there is evidence of ongoing oxidative stress. Important remaining questions that are addressed in this review include the following. Are there levels of PO2 in skeletal muscle, typical of physiological or mildly pathophysiological conditions, that are low enough to induce significant ROS production? Does the ROS associated with muscle contractile activity reflect imbalances in oxygen uptake and demand that drive the cell to a more reduced state? What are the possible molecular mechanisms by which ROS may be elevated in hypoxic skeletal muscle? Is the production of ROS in hypoxia of physiological significance, both with respect to cell signaling pathways promoting cell function and with respect to damaging effects of long-term exposure? Discussion of these and other topics leads to general conclusions that hypoxia-induced ROS may be a normal physiological response to imbalance in oxygen supply and demand or environmental stress and may play a yet undefined role in normal response mechanisms to these stimuli. However, in chronic and extreme hypoxic exposure, muscles may fail to maintain a normal redox homeostasis, resulting in cell injury or dysfunction.
Collapse
Affiliation(s)
- Thomas L Clanton
- Department of Internal Medicine, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, 473 W. 12th, Columbus, OH 43210, USA.
| |
Collapse
|