1
|
Katayama K, Shiozawa K, Lee JB, Seo N, Kondo H, Saito M, Ishida K, Millar PJ, Banno R, Ogoh S. Influence of sex on sympathetic vasomotor outflow responses to passive leg raising in young individuals. J Physiol Sci 2025; 74:19. [PMID: 39843025 PMCID: PMC10949681 DOI: 10.1186/s12576-024-00909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º. Each angle lasted for 3 min. Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. Baseline MSNA was lower in females compared to males. MSNA burst frequency was decreased during the PLR in both males (- 6.2±0.4 bursts/min at 40º) and females (- 6.5±0.4 bursts/min at 40º), but no significant difference was detected between the two groups (P = 0.61). These results suggest that sex has minimal influence on the inhibition of sympathetic vasomotor outflow during the loading of cardiopulmonary baroreceptors in young individuals.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, 464-8601, Nagoya, Japan; Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan.
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Jordan B Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Natsuki Seo
- Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Haruna Kondo
- Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, 464-8601, Nagoya, Japan; Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Ryoichi Banno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, 464-8601, Nagoya, Japan; Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| |
Collapse
|
2
|
Takeda R, Nojima H, Hirono T, Okudaira M, Nishikawa T, Watanabe K. Impact of subtetanic neuromuscular electrical stimulation on cardiac autonomic nervous system in young individuals. J Sports Med Phys Fitness 2024; 64:78-87. [PMID: 37902806 DOI: 10.23736/s0022-4707.23.15352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND Although subtetanic neuromuscular electrical stimulation (NMES) has been proposed as an exercise training and/or rehabilitation tool, the impact of NMES on the autonomic nervous system (ANS) is unclear. Thus, we hypothesized that NMES would alter ANS, i.e., increase sympathetic activity and decrease parasympathetic activity, in young individuals. METHODS Eighteen healthy young individuals (16 males, mean age: 22 [SD: 4] years, Body Mass Index: 21.7 [2.2] kg/m2) volunteered. Blood pressure (BP), heart rate (HR), and R-R intervals were recorded during 6-minute resting, NMES, and recovery conditions. Short-term heart rate variability analysis of R-R intervals was performed for the frequency and time domains during each condition. Time domain indices included the root mean square of successive R-R interval differences (RMSSD), and the percentage of successive R-R intervals differing by more than 50ms (pRR50%). Frequency domain indices (fast Fourier transform) of R-R intervals included total power (TP), low-frequency (LF) power (0.04-0.15 Hz), and high-frequency (HF) power (0.15-0.4 Hz). RESULTS BP was not altered but HR was significantly increased during NMES (P<0.001), and it returned to the resting level at recovery. RMSSD and pRR50 decreased from resting to NMES and returned at recovery conditions (P<0.05, respectively). TP and HF decreased from resting to NMES and returned at recovery conditions (P<0.05, respectively). LF increased from NMES to recovery (P<0.05). The LF/HF ratio showed no significant differences between conditions (P=0.210). CONCLUSIONS Cardiac ANS fluctuated by subtetanic NMES without BP elevation in healthy young individuals. Parasympathetic but not sympathetic activity was affected by NMES stimulation.
Collapse
Affiliation(s)
- Ryosuke Takeda
- School of Health and Sport Science, Laboratory of Neuromuscular Biomechanics, Chukyo University, Toyota, Japan -
| | - Hiroya Nojima
- School of Health and Sport Science, Laboratory of Neuromuscular Biomechanics, Chukyo University, Toyota, Japan
| | - Tetsuya Hirono
- School of Health and Sport Science, Laboratory of Neuromuscular Biomechanics, Chukyo University, Toyota, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masamichi Okudaira
- School of Health and Sport Science, Laboratory of Neuromuscular Biomechanics, Chukyo University, Toyota, Japan
| | - Taichi Nishikawa
- School of Health and Sport Science, Laboratory of Neuromuscular Biomechanics, Chukyo University, Toyota, Japan
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Kohei Watanabe
- School of Health and Sport Science, Laboratory of Neuromuscular Biomechanics, Chukyo University, Toyota, Japan
| |
Collapse
|
3
|
Boyes NG, Mannozzi J, Rapin N, Alvarez A, Al-Hassan MH, Lessanework B, Lahti DS, Olver TD, O'Leary DS, Tomczak CR. Augmented sympathoexcitation slows postexercise heart rate recovery. J Appl Physiol (1985) 2023; 135:1300-1311. [PMID: 37883101 PMCID: PMC11550897 DOI: 10.1152/japplphysiol.00549.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Slow heart rate recovery following exercise may be influenced by persistent sympathoexcitation. This study examined 1) the effect of muscle metaboreflex activation (MMA) on heart rate recovery following dynamic exercise; and 2) whether the effect of MMA on heart rate recovery is reversible by reducing sympathoexcitation [baroreflex activation via phenylephrine (PE)] in canines. Twenty-two young adults completed control and MMA protocols during cycle ergometry at 110% ventilatory threshold with 5 min recovery. Heart rate recovery kinetics [tau (τ), amplitude, end-exercise, and end-recovery heart rate] and root mean square of successive differences (RMSSD) were measured. Five chronically instrumented canines completed control, MMA (50%-60% imposed reduction in hindlimb blood flow), and MMA with end-exercise PE infusion (MMA + PE) protocols during moderate exercise (6.4 km·h-1) and 3 min recovery. Heart rate recovery kinetics and MAP were measured. MAP increased during MMA versus control in canines (P < 0.001). Heart rate recovery τ was slower during MMA versus control in humans (17% slower; P = 0.011) and canines (150% slower; P = 0.002). Heart rate recovery τ was faster during MMA + PE versus MMA (40% faster; P = 0.034) and was similar to control in canines (P = 0.426). Amplitude, end-exercise, and end-recovery heart rate were similar between conditions in humans (all P ≥ 0.122) and in canines (all P ≥ 0.084). MMA decreased RMSSD in early recovery (P = 0.004). MMA-induced sympathoexcitation slows heart rate recovery and this effect is markedly attenuated with PE. Therefore, elevated sympathoexcitation via MMA impairs heart rate recovery and inhibition of this stimulus normalizes, in part, heart rate recovery.NEW & NOTEWORTHY Augmented sympathoexcitation, via muscle metaboreflex activation, functionally slows heart rate recovery in both young healthy adults and chronically instrumented canines. Furthermore, elevated sympathoexcitation corresponded with lower parasympathetic activity, as assessed by heart rate variability, during the first 3 min of recovery. Finally, sympathoinhibition, via phenylephrine infusion, normalizes heart rate recovery during muscle metaboreflex activation.
Collapse
Affiliation(s)
- Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph Mannozzi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Nicole Rapin
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alberto Alvarez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Mohamed-Hussein Al-Hassan
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Beruk Lessanework
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Dana S Lahti
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Donal S O'Leary
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Notarius CF, Badrov MB, Tobushi T, Keir DA, Keys E, Floras JS. Cardiovascular reflex contributions to sympathetic inhibition during low intensity dynamic leg exercise in healthy middle-age. Physiol Rep 2023; 11:e15821. [PMID: 37701968 PMCID: PMC10498156 DOI: 10.14814/phy2.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Aging augments resting muscle sympathetic nerve activity (MSNA) and sympatho-inhibition during mild dynamic 1-leg exercise. To elucidate which reflexes elicit exercise-induced inhibition, we recruited 19 (9 men) healthy volunteers (mean age 56 ± 9 SD years), assessed their peak oxygen uptake (VO2peak ), and, on another day, measured heart rate (HR), blood pressure (BP) and MSNA (microneurography) at rest and during 1-leg cycling (2 min each at 0 load and 30%-40% VO2peak ), 3 times: (1) seated +2 min of postexercise circulatory occlusion (PECO) (elicit muscle metaboreflex); (2) supine (stimulate cardiopulmonary baroreflexes);and (3) seated, breathing 32% oxygen (suppress peripheral chemoreceptor reflex). While seated, MSNA decreased similarly during mild and moderate exercise (p < 0.001) with no increase during PECO (p = 0.44). Supine posture lowered resting MSNA (main effect p = 0.01) BP and HR. MSNA fell further (p = 0.04) along with diastolic BP and HR during mild, not moderate, supine cycling. Hyperoxia attenuated resting (main effect p = 0.01), but not exercise MSNA. In healthy middle-age, the cardiopulmonary baroreflex and arterial chemoreflex modulate resting MSNA, but contrary to previous observations in young subjects, without counter-regulatory offset by the sympatho-excitatory metaboreflex, resulting in an augmented sympatho-inhibitory response to mild dynamic leg exercise.
Collapse
Affiliation(s)
- Catherine F. Notarius
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Mark B. Badrov
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - Tomoyuki Tobushi
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - Daniel A. Keir
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- School of KinesiologyThe University of Western OntarioLondonOntarioCanada
| | - Evan Keys
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
| | - John S. Floras
- University Health Network and Sinai Health Division of CardiologyToronto General Research InstituteTorontoOntarioCanada
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Katayama K, Ogoh S. Response to Letter to Editor - Comments on: Sympathetic vasomotor outflow during low-intensity leg cycling in healthy older males. Exp Physiol 2023; 108:320-322. [PMID: 36634155 PMCID: PMC10103846 DOI: 10.1113/ep091030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Keisho Katayama
- Research Center of HealthPhysical Fitness and SportsGraduate School of MedicineNagoya UniversityNagoyaJapan
| | - Shigehiko Ogoh
- Department of Biomedical EngineeringToyo UniversityKawagoeJapan
| |
Collapse
|
6
|
Moore JP, Simpson LL, Drinkhill MJ. Differential contributions of cardiac, coronary and pulmonary artery vagal mechanoreceptors to reflex control of the circulation. J Physiol 2022; 600:4069-4087. [PMID: 35903901 PMCID: PMC9544715 DOI: 10.1113/jp282305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Distinct populations of stretch-sensitive mechanoreceptors attached to myelinated vagal afferents are found in the heart and adjoining coronary and pulmonary circulations. Receptors at atrio-venous junctions appear to be involved in control of intravascular volume. These atrial receptors influence sympathetic control of the heart and kidney, but contribute little to reflex control of systemic vascular resistance. Baroreceptors at the origins of the coronary circulation elicit reflex vasodilatation, like feedback control from systemic arterial baroreceptors, as well as having characteristics that could contribute to regulation of mean pressure. In contrast, feedback from baroreceptors in the pulmonary artery and bifurcation is excitatory and elicits a pressor response. Elevation of pulmonary arterial pressure resets the vasomotor limb of the systemic arterial baroreflex, which could be relevant for control of sympathetic vasoconstrictor outflow during exercise and other states associated with elevated pulmonary arterial pressure. Ventricular receptors, situated mainly in the inferior posterior wall of the left ventricle, and attached to unmyelinated vagal afferents, are relatively inactive under basal conditions. However, a change to the biochemical environment of cardiac tissue surrounding these receptors elicits a depressor response. Some ventricular receptors respond, modestly, to mechanical distortion. Probably, ventricular receptors contribute little to tonic feedback control; however, reflex bradycardia and hypotension in response to chemical activation may decrease the work of the heart during myocardial ischaemia. Overall, greater awareness of heterogeneous reflex effects originating from cardiac, coronary and pulmonary artery mechanoreceptors is required for a better understanding of integrated neural control of circulatory function and arterial blood pressure.
Collapse
Affiliation(s)
| | - Lydia L. Simpson
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Mark J. Drinkhill
- Leeds Insititute for Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
7
|
Katayama K, Saito M, Ishida K, Shimizu K, Shiozawa K, Mizuno S, Ogoh S. Sympathetic vasomotor outflow during low-intensity leg cycling in healthy older males. Exp Physiol 2022; 107:825-833. [PMID: 35749656 DOI: 10.1113/ep090497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Sympathetic vasomotor outflow is reduced during low-intensity dynamic leg exercise in younger individuals: does ageing influence the sympathoinhibitory effect during low-intensity leg cycling? What is the main finding and its importance? Muscle sympathetic nerve activity during low-intensity cycling decreased in older males, as seen in young males. It is possible that cardiopulmonary baroreflex-mediated inhibition of sympathetic vasomotor outflow during dynamic leg exercise is preserved in healthy older males. ABSTRACT Muscle sympathetic nerve activity (MSNA) is reduced during low-intensity dynamic leg exercise in young males. It is suggested that this inhibition is mediated by loading of the cardiopulmonary baroreceptors. The purpose of this study was to clarify the impact of age on MSNA during dynamic leg exercise. Nine younger males (YM, mean ± SD, 20 ± 1 years) and nine older males (OM, 72 ± 3 years) completed the study. The subjects performed two 4-min cycling exercises at 10% of their heart rate reserve using a cycle ergometer in a semirecumbent position (MSNA and estimated central venous pressure (eCVP) trials). MSNA was recorded via microneurography of the left radial nerve. The CVP was estimated based on peripheral venous pressure, which was monitored using a cannula in the right large antecubital vein. The magnitude of the increase in mean arterial blood pressure during leg cycling was larger in OM (+9.3 ± 5.5 mmHg) compared with YM (+2.8 ± 4.7 mmHg). MSNA burst frequency was decreased during cycling in both YM (-8.1 ± 3.8 bursts/min) and OM (-10.6 ± 3.3 bursts/min), but no significant difference was found between the two groups. The eCVP increased during exercise in both groups, and there was no difference in the changes in eCVP between YM (+1.1 ± 0.4 mmHg) and OM (+1.2 ± 0.7 mmHg). These data indicate that inhibition of sympathetic vasomotor outflow during low-intensity cycling appears in OM as seen in YM. It is possible that the muscle pump-induced loading of the cardiopulmonary baroreflex is preserved during cycling in healthy older males.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Shimizu
- Faculty of Human Development, Kokugakuin University, Yokohama, Japan
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Sahiro Mizuno
- Research and Development, Hosei University, Tokyo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| |
Collapse
|
8
|
Saito S, Washio T, Watanabe H, Katayama K, Ogoh S. Influence of cardiac output response to the onset of exercise on cerebral blood flow. Eur J Appl Physiol 2022; 122:1939-1948. [PMID: 35660969 DOI: 10.1007/s00421-022-04973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Change in cardiac output (Q) contributes to cerebral blood flow (CBF) regulation at rest and even during steady-state exercise. At the onset of cycling exercise, Q increases acutely and largely via muscle pump. The purpose of the present study was to examine whether onset exercise-induced a large increase in Q contributes to CBF regulation at the onset of exercise. METHODS In 20 young healthy participants (10 males and 10 females), Q, mean arterial pressure (MAP), and mean blood velocities of middle and posterior cerebral arteries (MCA Vm and PCA Vm) were continuously measured during light cycling exercise for 3 min. RESULTS At the onset of exercise, Q increased acutely to the peak (P < 0.001), while the CBF peak responses were not significantly higher than the values during the steady-state exercise (MCA Vm and PCA Vm; P = 0.183 and P = 0.101, respectively). The change in Q was correlated with that of MCA Vm or PCA Vm from resting baseline to the steady-state exercise (r = 0.404, P < 0.001 and r = 0.393, P < 0.001, respectively). However, the change in Q was not correlated with that of MCA Vm or PCA Vm at the onset of exercise (P = 0.853 and P = 0.893, respectively). Any sex differences in the onset response of peripheral and cerebral hemodynamics to exercise were not observed. CONCLUSION These findings suggest that the acute change in Q does not contribute to CBF regulation at the onset of exercise for protecting cerebral vasculature against a large and acute elevation in Q at the onset of exercise.
Collapse
Affiliation(s)
- Shotaro Saito
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan
| | - Keisho Katayama
- Research Center of Health, Physical Fitness, and Sports, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan. .,Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK.
| |
Collapse
|
9
|
Hansen AB, Amin SB, Hofstätter F, Mugele H, Simpson LL, Gasho C, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte FC, Hearon CM, Lawley JS, Moralez G. Global Reach 2018: sympathetic neural and hemodynamic responses to submaximal exercise in Andeans with and without chronic mountain sickness. Am J Physiol Heart Circ Physiol 2022; 322:H844-H856. [PMID: 35333117 PMCID: PMC9018046 DOI: 10.1152/ajpheart.00555.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS+, n = 7) and without (CMS-, n = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each]. Cycling caused similar increases in heart rate, cardiac output, and oxygen delivery at both workloads between both Andean groups. However, at 60% PPO, CMS+ had a blunted reduction in Δtotal peripheral resistance (CMS-, -10.7 ± 3.8 vs. CMS+, -4.9 ± 4.1 mmHg·L-1·min-1; P = 0.012; d = 1.5) that coincided with a greater Δforearm vasoconstriction (CMS-, -0.2 ± 0.6 vs. CMS+, 1.5 ± 1.3 mmHg·mL-1·min-1; P = 0.008; d = 1.7) and a rise in Δdiastolic blood pressure (CMS-, 14.2 ± 7.2 vs. CMS+, 21.6 ± 4.2 mmHg; P = 0.023; d = 1.2) compared with CMS-. Interestingly, although MSNA burst frequency did not change at 30% or 60% of PPO in either group, at 60% Δburst incidence was attenuated in CMS+ (P = 0.028; d = 1.4). These findings indicate that in Andeans with polycythemia, light intensity exercise elicited similar cardiovascular and autonomic responses compared with CMS-. Furthermore, convective oxygen delivery is maintained during moderate-intensity exercise despite higher peripheral resistance. In addition, the elevated peripheral resistance during exercise was not mediated by greater sympathetic neural outflow, thus other neural and/or nonneural factors are perhaps involved.NEW & NOTEWORTHY During submaximal exercise, convective oxygen transport is maintained in Andeans suffering from polycythemia. Light intensity exercise elicited similar cardiovascular and autonomic responses compared with healthy Andeans. However, during moderate-intensity exercise, we observed a blunted reduction in total peripheral resistance, which cannot be ascribed to an exaggerated increase in muscle sympathetic nerve activity, indicating possible contributions from other neural and/or nonneural mechanisms.
Collapse
Affiliation(s)
- Alexander B Hansen
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Sachin B Amin
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstätter
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hendrik Mugele
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simpson
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, University of Loma Linda, Loma Linda, California
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | - Justin S Lawley
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Ogoh S, Saito S, Watanabe H, Katayama K. Cerebral blood velocity and arterial pressure at the onset of exercise: potential influence of the cardiopulmonary baroreflex. Clin Auton Res 2022; 32:143-146. [PMID: 35129712 DOI: 10.1007/s10286-022-00855-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan.
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, UK.
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan
| | - Keisho Katayama
- Physical Fitness, and Sports, Graduate School of Medicine, Research Center of Health, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Katayama K, Dominelli PB, Foster GE, Kipp S, Leahy MG, Ishida K, Sheel AW. Respiratory modulation of sympathetic vasomotor outflow during graded leg cycling. J Appl Physiol (1985) 2021; 131:858-867. [PMID: 34197231 DOI: 10.1152/japplphysiol.00118.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory modulation of sympathetic vasomotor outflow to skeletal muscles (muscle sympathetic nerve activity; MSNA) occurs in resting humans. Specifically, MSNA is highest at end-expiration and lowest at end-inspiration during quiet, resting breathing. We tested the hypothesis that within-breath modulation of MSNA would be amplified during graded leg cycling. Thirteen (n = 3 females) healthy young (age: 25.2 ± 4.7 yr) individuals completed all testing. MSNA (right median nerve) was measured at rest (baseline) and during semirecumbent cycle exercise at 40%, 60%, and 80% of maximal workload (Wmax). MSNA burst frequency (BF) was 20.0 ± 4.0 bursts/min at baseline and was not different during exercise at 40%Wmax (21.3 ± 3.7 bursts/min; P = 0.292). Thereafter, MSNA BF increased significantly compared with baseline (60%Wmax: 31.6 ± 5.8 bursts/min; P < 0.001, 80%Wmax: 44.7 ± 5.3 bursts/min; P < 0.001). At baseline and all exercise intensities, MSNA BF was lowest at end-inspiration and greatest at mid-to-end expiration. The within-breath change in MSNA BF (ΔMSNA BF; end-expiration minus end-inspiration) gradually increased from baseline to 60%Wmax leg cycling, but no further increase appeared at 80%Wmax exercise. Our results indicate that within-breath modulation of MSNA is amplified from baseline to moderate intensity during dynamic exercise in young healthy individuals, and that no further potentiation occurs at higher exercise intensities. Our findings provide an important extension of our understanding of respiratory influences on sympathetic vasomotor control.NEW & NOTEWORTHY Within-breath modulation of sympathetic vasomotor outflow to skeletal muscle (muscle sympathetic nerve activity; MSNA) occurs in spontaneously breathing humans at rest. It is unknown if respiratory modulation persists during dynamic whole body exercise. We found that MSNA burst frequency was lowest at end-inspiration and highest at mid-to-end expiration during rest and graded leg cycling. Respiratory modulation of sympathetic vasomotor outflow remains intact and is amplified during dynamic whole body exercise.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Paolo B Dominelli
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Andrew William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond) 2021; 135:651-669. [DOI: 10.1042/cs20201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Abstract
The sympathetic nervous system coordinates the cardiovascular response to exercise. This regulation is impaired in both experimental and human heart failure with reduced ejection fraction (HFrEF), resulting in a state of sympathoexcitation which limits exercise capacity and contributes to adverse outcome. Exercise training can moderate sympathetic excess at rest. Recording sympathetic nerve firing during exercise is more challenging. Hence, data acquired during exercise are scant and results vary according to exercise modality. In this review we will: (1) describe sympathetic activity during various exercise modes in both experimental and human HFrEF and consider factors which influence these responses; and (2) summarise the effect of exercise training on sympathetic outflow both at rest and during exercise in both animal models and human HFrEF. We will particularly highlight studies in humans which report direct measurements of efferent sympathetic nerve traffic using intraneural recordings. Future research is required to clarify the neural afferent mechanisms which contribute to efferent sympathetic activation during exercise in HFrEF, how this may be altered by exercise training, and the impact of such attenuation on cardiac and renal function.
Collapse
|