1
|
Shelley SP, James RS, Eustace SJ, Eyre ELJ, Tallis J. High-fat diet effects on contractile performance of isolated mouse soleus and extensor digitorum longus when supplemented with high dose vitamin D. Exp Physiol 2024; 109:283-301. [PMID: 37983200 PMCID: PMC10988740 DOI: 10.1113/ep091493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Evidence suggests vitamin D3 (VD) supplementation can reduce accumulation of adipose tissue and inflammation and promote myogenesis in obese individuals, and thus could mitigate obesity-induced reductions in skeletal muscle (SkM) contractility. However, this is yet to be directly investigated. This study, using the work-loop technique, examined effects of VD (cholecalciferol) supplementation on isolated SkM contractility. Female mice (n = 37) consumed standard low-fat diet (SLD) or high-fat diet (HFD), with or without VD (20,000 IU/kg-1 ) for 12 weeks. Soleus and EDL (n = 8-10 per muscle per group) were isolated and absolute and normalized (to muscle size and body mass) isometric force and power output (PO) were measured, and fatigue resistance determined. Absolute and normalized isometric force and PO of soleus were unaffected by diet (P > 0.087). However, PO normalized to body mass was reduced in HFD groups (P < 0.001). Isometric force of extensor digitorum longus (EDL) was unaffected by diet (P > 0.588). HFD reduced EDL isometric stress (P = 0.048) and absolute and normalized PO (P < 0.031), but there was no effect of VD (P > 0.493). Cumulative work during fatiguing contractions was lower in HFD groups (P < 0.043), but rate of fatigue was unaffected (P > 0.060). This study uniquely demonstrated that high-dose VD had limited effects on SkM contractility and did not offset demonstrated adverse effects of HFD. However, small and moderate effect sizes suggest improvement in EDL muscle performance and animal morphology in HFD VD groups. Given effect sizes observed, coupled with proposed inverted U-shaped dose-effect curve, future investigations are needed to determine dose/duration specific responses to VD, which may culminate in improved function of HFD SkM.
Collapse
Affiliation(s)
- Sharn P. Shelley
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| | - Rob S. James
- Faculty of Life SciencesUniversity of BradfordBradfordUK
| | | | | | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| |
Collapse
|
2
|
Campolina-Silva G, Andrade ACDSP, Couto M, Bittencourt-Silva PG, Queiroz-Junior CM, Lacerda LDSB, Chaves IDM, de Oliveira LC, Marim FM, Oliveira CA, da Silva GSF, Teixeira MM, Costa VV. Dietary Vitamin D Mitigates Coronavirus-Induced Lung Inflammation and Damage in Mice. Viruses 2023; 15:2434. [PMID: 38140675 PMCID: PMC10748145 DOI: 10.3390/v15122434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 (β-CoV) betacoronavirus has posed a significant threat to global health. Despite the availability of vaccines, the virus continues to spread, and there is a need for alternative strategies to alleviate its impact. Vitamin D, a secosteroid hormone best known for its role in bone health, exhibits immunomodulatory effects in certain viral infections. Here, we have shown that bioactive vitamin D (calcitriol) limits in vitro replication of SARS-CoV-2 and murine coronaviruses MHV-3 and MHV-A59. Comparative studies involving wild-type mice intranasally infected with MHV-3, a model for studying β-CoV respiratory infections, confirmed the protective effect of vitamin D in vivo. Accordingly, mice fed a standard diet rapidly succumbed to MHV-3 infection, whereas those on a vitamin D-rich diet (10,000 IU of Vitamin D3/kg) displayed increased resistance to acute respiratory damage and systemic complications. Consistent with these findings, the vitamin D-supplemented group exhibited lower viral titers in their lungs and reduced levels of TNF, IL-6, IL-1β, and IFN-γ, alongside an enhanced type I interferon response. Altogether, our findings suggest vitamin D supplementation ameliorates β-CoV-triggered respiratory illness and systemic complications in mice, likely via modulation of the host's immune response to the virus.
Collapse
Affiliation(s)
- Gabriel Campolina-Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
- CHU de Québec Research Center (CHUL), Université Laval, Quebec, QC G1V 4G2, Canada
| | - Ana Cláudia dos Santos Pereira Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
- CHU de Québec Research Center (CHUL), Université Laval, Quebec, QC G1V 4G2, Canada
| | - Manoela Couto
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Paloma G. Bittencourt-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil (G.S.F.d.S.)
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Larisse de Souza B. Lacerda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Leonardo C. de Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| | - Fernanda Martins Marim
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil
| | - Cleida A. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
| | - Glauber S. F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil (G.S.F.d.S.)
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (A.C.d.S.P.A.); (L.d.S.B.L.); (I.d.M.C.); (C.A.O.)
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (L.C.d.O.); (M.M.T.)
| |
Collapse
|
3
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
4
|
Fogarty MJ, Brandenburg JE, Zhan WZ, Sieck GC. Diaphragm Muscle Function in a Mouse Model of Early Onset Spasticity. J Appl Physiol (1985) 2022; 133:60-68. [DOI: 10.1152/japplphysiol.00157.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spasticity is a common symptom in many developmental motor disorders, including spastic cerebral palsy (sCP). In sCP, respiratory dysfunction is a major contributor to morbidity and mortality, yet it is unknown how spasticity influences respiratory physiology or diaphragm muscle (DIAm) function. To investigate the influence of spasticity on DIAm function, we assessed in vivo transdiaphragmatic pressure (Pdi - measured using intra-esophageal and intragastric pressure catheters under conditions of eupnea, hypoxia/hypercapnia and occlusion) including maximum Pdi (Pdimax via bilateral phrenic nerve stimulation), ex vivo DIAm specific force and fatigue (using muscle strips stimulated with platinum plate electrodes) and type-specific characteristics of DIAm fiber cross-sections (using immunoreactivity against myosin heavy chain slow and 2A) in spa and wildtype mice. Spa mice show reduced Pdimax, reduced DIAm specific force, altered fatigability and atrophy of type IIx/IIb fibers. These findings suggest marked DIAm dysfunction may underlie the respiratory phenotype of sCP.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Joline E. Brandenburg
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C. Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Fogarty MJ, Losbanos LL, Craig TA, Reynolds CJ, Brown AD, Kumar R, Sieck GC. Muscle-specific deletion of the vitamin D receptor in mice is associated with diaphragm muscle weakness. J Appl Physiol (1985) 2021; 131:95-106. [PMID: 34013750 PMCID: PMC8325609 DOI: 10.1152/japplphysiol.00194.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases or conditions where diaphragm muscle (DIAm) function is impaired, including chronic obstructive pulmonary disease, cachexia, asthma, and aging, are associated with an increased risk of pulmonary symptoms, longer duration of hospitalizations, and increasing requirements for mechanical ventilation. Vitamin D deficiency is associated with proximal muscle weakness that resolves following therapy with vitamin D3. Skeletal muscle expresses the vitamin D receptor (VDR), which responds to the active form of vitamin D, 1,25-dihydroxyvitamin D3 by altering gene expression in target cells. In knockout mice without skeletal muscle VDRs, there is marked atrophy of muscle fibers and a change in skeletal muscle biochemistry. We used a tamoxifen-inducible skeletal muscle Cre recombinase in Vdrfl/fl mice (Vdrfl/fl actin.iCre+) to assess the role of muscle-specific VDR signaling on DIAm-specific force, fatigability, and fiber type-dependent morphology. Vdrfl/fl actin.iCre+ mice treated with vehicle and Vdrfl/fl mice treated with tamoxifen served as controls. Seven days following the final treatment, mice were euthanized, the DIAm was removed, and isometric force and fatigue were assessed in DIAm strips using direct muscle stimulation. The proportion and cross-sectional areas of DIAm fiber types were evaluated by immunolabeling with myosin heavy chain antibodies differentiating type I, IIa and IIx, and/or IIb fibers. We show that in mice with skeletal muscle-specific VDR deletion, maximum specific force and residual force following fatigue are impaired, along with a selective atrophy of type IIx and/or IIb fibers. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.NEW & NOTEWORTHY Vitamin D deficiency and vitamin D receptor (VDR) polymorphisms are associated with adverse pulmonary and diaphragm muscle (DIAm)-associated respiratory outcomes. We used a skeletal muscle-specific tamoxifen-inducible VDR knockout to investigate DIAm dysfunction following reduced VDR signaling. Marked DIAm weakness and atrophy of type IIx and/or IIb fibers are present in muscle-specific tamoxifen-induced VDR knockout mice compared with controls. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Louis L Losbanos
- Division of Nephrology & Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Theodore A Craig
- Division of Nephrology & Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carmen J Reynolds
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Alyssa D Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- Division of Nephrology & Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Vitamin D Supplementation and Impact on Skeletal Muscle Function in Cell and Animal Models and an Aging Population: What Do We Know So Far? Nutrients 2021; 13:nu13041110. [PMID: 33800650 PMCID: PMC8066691 DOI: 10.3390/nu13041110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with impairment in skeletal muscle mass and contractile function, predisposing to fat mass gain, insulin resistance and diabetes. The impact of Vitamin D (VitD) supplementation on skeletal muscle mass and function in older adults is still controversial. The aim of this review was to summarize data from randomized clinical trials, animal dietary intervention and cell studies in order to clarify current knowledge on the effects of VitD on skeletal muscle as reported for these three types of experiments. A structured research of the literature in Medline via PubMed was conducted and a total of 43 articles were analysed (cells n = 18, animals n = 13 and humans n = 13). The results as described by these key studies demonstrate, overall, at cell and animal levels, that VitD treatments had positive effects on the development of muscle fibres in cells in culture, skeletal muscle force and hypertrophy. Vitamin D supplementation appears to regulate not only lipid and mitochondrial muscle metabolism but also to have a direct effect on glucose metabolism and insulin driven signalling. However, considering the human perspective, results revealed a predominance of null effects of the vitamin on muscle in the ageing population, but experimental design may have influenced the study outcome in humans. Well-designed long duration double-blinded trials, standardised VitD dosing regimen, larger sample sized studies and standardised measurements may be helpful tools to accurately determine results and compare to those observed in cells and animal dietary intervention models.
Collapse
|
7
|
Pleiotropic actions of Vitamin D in composite musculoskeletal trauma. Injury 2020; 51:2099-2109. [PMID: 32624209 DOI: 10.1016/j.injury.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
Abstract
Composite tissue injuries are the result of high energy impacts caused by motor vehicle accidents, gunshot wounds or blasts. These are highly traumatic injuries characterized by wide-spread, penetrating wounds affecting the entire musculoskeletal system, and are generally defined by frank volumetric muscle loss with concomitant segmental bone defects. At the tissue level, the breadth of damage to multiple tissue systems, and potential for infection from penetration, have been shown to lead to an exaggerated, often chronic inflammatory response with subsequent dysregulation of normal musculoskeletal healing mechanisms. Aside from the direct effects of inflammation on myogenesis and osteogenesis, frank muscle loss has been shown to directly impair fracture union and ultimately contribute to failed wound regeneration. Care for these injuries requires extensive surgical intervention and acute care strategies. However, often these interventions do not adequately mitigate inflammation or promote proper musculoskeletal injury repair and force amputation of the limb. Therefore, identification of factors that can promote tissue regeneration and mitigate inflammation could be key to restoring wound healing after composite tissue injury. One such factor that may directly affect both inflammation and tissue regeneration in response to these multi-tissue injuries may be Vitamin D. Beyond traditional roles, the pleiotropic and localized actions of Vitamin D are increasingly being recognized in most aspects of wound healing in complex tissue injuries - e.g., regulation of inflammation, myogenesis, fracture callus mineralization and remodeling. Conversely, pre-existing Vitamin D deficiency leads to musculoskeletal dysfunction, increased fracture risk or fracture non-unions, decreased strength/function and reduced capacity to heal wounds through increased inflammation. This Vitamin D deficient state requires acute supplementation in order to quickly restore circulating levels to an optimal level, thereby facilitating a robust wound healing response. Herein, the purpose of this review is to address the roles and critical functions of Vitamin D throughout the wound healing process. Findings from this review suggest that careful monitoring and/or supplementation of Vitamin D may be critical for wound regeneration in composite tissue injuries.
Collapse
|
8
|
Abstract
Vitamin D receptor expression and associated function have been reported in various muscle models, including C2C12, L6 cell lines and primary human skeletal muscle cells. It is believed that 1,25-hydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, has a direct regulatory role in skeletal muscle function, where it participates in myogenesis, cell proliferation, differentiation, regulation of protein synthesis and mitochondrial metabolism through activation of various cellular signalling cascades, including the mitogen-activated protein kinase pathway(s). It has also been suggested that 1,25(OH)2D3 and its associated receptor have genomic targets, resulting in regulation of gene expression, as well as non-genomic functions that can alter cellular behaviour through binding and modification of targets not directly associated with transcriptional regulation. The molecular mechanisms of vitamin D signalling, however, have not been fully clarified. Vitamin D inadequacy or deficiency is associated with muscle fibre atrophy, increased risk of chronic musculoskeletal pain, sarcopenia and associated falls, and may also decrease RMR. The main purpose of the present review is to describe the molecular role of vitamin D in skeletal muscle tissue function and metabolism, specifically in relation to proliferation, differentiation and protein synthesis processes. In addition, the present review also includes discussion of possible genomic and non-genomic pathways of vitamin D action.
Collapse
|
9
|
Cholecalciferol in ethanol-preferring rats muscle fibers increases the number and area of type II fibers. Acta Histochem 2018; 120:789-796. [PMID: 30224245 DOI: 10.1016/j.acthis.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/21/2022]
Abstract
The chronic use of ethanol causes neuropathy and atrophy of type II fibers and promotes vitamin D decrease. This study evaluated cholecalciferol effects on the deep fibular nerve and extensor digitorum longus (EDL) muscle using an UChB ethanol-preferring rats model. Blood analyses were carried out to measure levels of 25-hydroxycholecalciferol (25(OH)D), calcium (Ca2+), Phosphorus (P), and parathyroid hormone (PTH). It was used EDL muscle to evaluate oxidative stress. The deep fibular nerve and EDL muscle were used for morphologic and morphometric assessment. 25(OH)D plasma levels were higher in the supplemented group and no alterations were observed in other parameters including the oxidative stress evaluation. The G ratio remained constant which indicates nervous conduction normality. Cholecalciferol supplementation promoted an increase in the number and area of type II fibers and a decrease in the area of type I fibers. In the studied model, there was neither alcoholic myopathy nor neuropathy. The EDL muscle glycolytic patterns in the high-drinker UChB rats may be associated with the differential effects of cholecalciferol on metabolism and protein synthesis in skeletal muscle.
Collapse
|