1
|
Burma JS, Neill MG, Fletcher EKS, Dennett BE, Johnson NE, Javra R, Griffiths JK, Smirl JD. Examining the upper frequency limit of dynamic cerebral autoregulation: Considerations across the cardiac cycle during eucapnia. Exp Physiol 2024. [PMID: 39382938 DOI: 10.1113/ep091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/21/2024] [Indexed: 10/10/2024]
Abstract
There are differences within the literature regarding the upper frequency cut-off point of the dynamic cerebral autoregulation (CA) high-pass filter. The projection pursuit regression approach has demonstrated that the upper frequency limit is ∼0.07 Hz, whereas another approach [transfer function analysis (TFA) phase approaching zero] indicated a theoretical upper frequency limit for the high-pass filter of 0.24 Hz. We investigated how these limits accurately represent the CA upper frequency limit, in addition to extending earlier findings with respect to biological sexes and across the cardiac cycle. Sixteen participants (nine females and seven males) performed repeated squat-stand manoeuvres at frequencies of 0.05, 0.10, 0.15, 0.20 and 0.25 Hz, with insonation of the middle and posterior cerebral arteries. Linear regression modelling with adjustment for sex and order of squat completion was used to compared TFA gain and phase with 0.25 Hz (above the theoretical limit of CA). The upper frequency limit of CA with TFA gain was within the range of 0.05-0.10 Hz, whereas TFA phase was within the range of 0.20-0.25 Hz, and consistent between vessels, between sexes and across the cardiac cycle. Females displayed greater middle cerebral artery gain compared with males (all P < 0.047), and no phase differences were present (all P > 0.072). Although sex-specific differences were present for specific TFA metrics at a given frequency, the upper frequency limit of autoregulation was similar between cerebral conduit vessels, cardiac cycle phase and biological sex. Future work is warranted to determine whether an upper frequency limit exists with respect to hysteresis analyses.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth K S Fletcher
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Brooke E Dennett
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Raelyn Javra
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - James K Griffiths
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Labrecque L, Roy MA, Soleimani Dehnavi S, Taghizadeh M, Smirl JD, Brassard P. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure. J Cereb Blood Flow Metab 2024; 44:1827-1839. [PMID: 38613236 PMCID: PMC11494849 DOI: 10.1177/0271678x241247633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration. Therefore, examining the cerebral pressure-flow directional sensitivity during an OLBNP-induced cyclic physiological stress is crucial. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to mean arterial pressure (MAP) to compute ratios adjusted for time intervals (ΔMCAvT/ΔMAPT) with respect to the minimum-to-maximum MCAv and MAP, for each OLBNP transition (0 to -90 Torr), during 0.05 Hz and 0.10 Hz OLBNP. We then compared averaged ΔMCAvT/ΔMAPT during OLBNP-induced MAP increases (INC) (ΔMCAvT/Δ MAP T INC ) and decreases (DEC) (ΔMCAvT/Δ MAP T DEC ). Nineteen healthy participants [9 females; 30 ± 6 years] were included. There were no differences in ΔMCAvT/ΔMAPT between INC and DEC at 0.05 Hz. ΔMCAvT/Δ MAP T INC (1.06 ± 0.35 vs. 1.33 ± 0.60 cm⋅s-1/mmHg; p = 0.0076) was lower than ΔMCAvT/Δ MAP T DEC at 0.10 Hz. These results support OLBNP as a model to evaluate the directional sensitivity of the cerebral pressure-flow relationship.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Shahrzad Soleimani Dehnavi
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Mahmoudreza Taghizadeh
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
3
|
Kostoglou K, Bello-Robles F, Brassard P, Chacon M, Claassen JAHR, Czosnyka M, Elting JW, Hu K, Labrecque L, Liu J, Marmarelis VZ, Payne SJ, Shin DC, Simpson D, Smirl J, Panerai RB, Mitsis GD. Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet). J Cereb Blood Flow Metab 2024; 44:1480-1514. [PMID: 38688529 PMCID: PMC11418733 DOI: 10.1177/0271678x241249276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Felipe Bello-Robles
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Max Chacon
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Jurgen AHR Claassen
- Department of Geriatrics, Radboud University Medical Center, Research Institute for Medical Innovation and Donders Institute, Nijmegen, The Netherlands
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Jan-Willem Elting
- Department of Neurology and Clinical Neurophysiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Vasilis Z Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Dae Cheol Shin
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Jonathan Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation, Glenfield Hospital, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Burma JS, Roy MA, Kennedy CM, Labrecque L, Brassard P, Smirl JD. A systematic review, meta-analysis and meta-regression amalgamating the driven approaches used to quantify dynamic cerebral autoregulation. J Cereb Blood Flow Metab 2024; 44:1271-1297. [PMID: 38635887 PMCID: PMC11342731 DOI: 10.1177/0271678x241235878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024]
Abstract
Numerous driven techniques have been utilized to assess dynamic cerebral autoregulation (dCA) in healthy and clinical populations. The current review aimed to amalgamate this literature and provide recommendations to create greater standardization for future research. The PubMed database was searched with inclusion criteria consisting of original research articles using driven dCA assessments in humans. Risk of bias were completed using Scottish Intercollegiate Guidelines Network and Methodological Index for Non-Randomized Studies. Meta-analyses were conducted for coherence, phase, and gain metrics at 0.05 and 0.10 Hz using deep-breathing, oscillatory lower body negative pressure (OLBNP), sit-to-stand maneuvers, and squat-stand maneuvers. A total of 113 studies were included, with 40 of these incorporating clinical populations. A total of 4126 participants were identified, with younger adults (18-40 years) being the most studied population. The most common techniques were squat-stands (n = 43), deep-breathing (n = 25), OLBNP (n = 20), and sit-to-stands (n = 16). Pooled coherence point estimates were: OLBNP 0.70 (95%CI:0.59-0.82), sit-to-stands 0.87 (95%CI:0.79-0.95), and squat-stands 0.98 (95%CI:0.98-0.99) at 0.05 Hz; and deep-breathing 0.90 (95%CI:0.81-0.99); OLBNP 0.67 (95%CI:0.44-0.90); and squat-stands 0.99 (95%CI:0.99-0.99) at 0.10 Hz. This review summarizes clinical findings, discusses the pros/cons of the 11 unique driven techniques included, and provides recommendations for future investigations into the unique physiological intricacies of dCA.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Rivera-Rivera LA, Roberts GS, Peret A, Langhough RE, Jonaitis EM, Du L, Field A, Eisenmenger L, Johnson SC, Johnson KM. Unraveling diurnal and technical variability in cerebral hemodynamics from neurovascular 4D-Flow MRI. J Cereb Blood Flow Metab 2024; 44:1362-1375. [PMID: 38340787 PMCID: PMC11342721 DOI: 10.1177/0271678x241232190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024]
Abstract
Neurovascular 4D-Flow MRI enables non-invasive evaluation of cerebral hemodynamics including measures of cerebral blood flow (CBF), vessel pulsatility index (PI), and cerebral pulse wave velocity (PWV). 4D-Flow measures have been linked to various neurovascular disorders including small vessel disease and Alzheimer's disease; however, physiological and technical sources of variability are not well established. Here, we characterized sources of diurnal physiological and technical variability in cerebral hemodynamics using 4D-Flow in a retrospective study of cognitively unimpaired older adults (N = 750) and a prospective study of younger adults (N = 10). Younger participants underwent repeated MRI sessions at 7am, 4 pm, and 10 pm. In the older cohort, having an MRI earlier on the day was significantly associated with higher CBF and lower PI. In prospective experiments, time of day significantly explained variability in CBF and PI; however, not in PWV. Test-retest experiments showed high CBF intra-session repeatability (repeatability coefficient (RPC) =7.2%), compared to lower diurnal repeatability (RPC = 40%). PI and PWV displayed similar intra-session and diurnal variability (PI intra-session RPC = 22%, RPC = 24% 7am vs 4 pm; PWV intra-session RPC = 17%, RPC = 21% 7am vs 4 pm). Overall, CBF measures showed low technical variability, supporting diurnal variability is from physiology. PI and PWV showed higher technical variability but less diurnal variability.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony Peret
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca E Langhough
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lianlian Du
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aaron Field
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
6
|
Whitaker AA, Aaron SE, Chertoff M, Brassard P, Buchanan J, Nguyen K, Vidoni ED, Waghmare S, Eickmeyer SM, Montgomery RN, Billinger SA. Lower dynamic cerebral autoregulation following acute bout of low-volume high-intensity interval exercise in chronic stroke compared to healthy adults. J Appl Physiol (1985) 2024; 136:707-720. [PMID: 38357728 PMCID: PMC11286270 DOI: 10.1152/japplphysiol.00635.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Fluctuating arterial blood pressure during high-intensity interval exercise (HIIE) may challenge dynamic cerebral autoregulation (dCA), specifically after stroke after an injury to the cerebrovasculature. We hypothesized that dCA would be attenuated at rest and during a sit-to-stand transition immediately after and 30 min after HIIE in individuals poststroke compared with age- and sex-matched control subjects (CON). HIIE switched every minute between 70% and 10% estimated maximal watts for 10 min. Mean arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) were recorded. dCA was quantified during spontaneous fluctuations in MAP and MCAv via transfer function analysis. For sit-to-stand, time delay before an increase in cerebrovascular conductance index (CVCi = MCAv/MAP), rate of regulation, and % change in MCAv and MAP were measured. Twenty-two individuals poststroke (age 60 ± 12 yr, 31 ± 16 mo) and twenty-four CON (age 60 ± 13 yr) completed the study. Very low frequency (VLF) gain (P = 0.02, η2 = 0.18) and normalized gain (P = 0.01, η2 = 0.43) had a group × time interaction, with CON improving after HIIE whereas individuals poststroke did not. Individuals poststroke had lower VLF phase (P = 0.03, η2 = 0.22) after HIIE compared with CON. We found no differences in the sit-to-stand measurement of dCA. Our study showed lower dCA during spontaneous fluctuations in MCAv and MAP following HIIE in individuals poststroke compared with CON, whereas the sit-to-stand response was maintained.NEW & NOTEWORTHY This study provides novel insights into poststroke dynamic cerebral autoregulation (dCA) following an acute bout of high-intensity interval exercise (HIIE). In people after stroke, dCA appears attenuated during spontaneous fluctuations in mean arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) following HIIE. However, the dCA response during a single sit-to-stand transition after HIIE showed no significant difference from controls. These findings suggest that HIIE may temporarily challenge dCA after exercise in individuals with stroke.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Stacey E Aaron
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Mark Chertoff
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jake Buchanan
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Katherine Nguyen
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, United States
| | - Saniya Waghmare
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sarah M Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, United States
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
7
|
Webb AJ, Klerman EB, Mandeville ET. Circadian and Diurnal Regulation of Cerebral Blood Flow. Circ Res 2024; 134:695-710. [PMID: 38484025 PMCID: PMC10942227 DOI: 10.1161/circresaha.123.323049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Circadian and diurnal variation in cerebral blood flow directly contributes to the diurnal variation in the risk of stroke, either through factors that trigger stroke or due to impaired compensatory mechanisms. Cerebral blood flow results from the integration of systemic hemodynamics, including heart rate, cardiac output, and blood pressure, with cerebrovascular regulatory mechanisms, including cerebrovascular reactivity, autoregulation, and neurovascular coupling. We review the evidence for the circadian and diurnal variation in each of these mechanisms and their integration, from the detailed evidence for mechanisms underlying the nocturnal nadir and morning surge in blood pressure to identifying limited available evidence for circadian and diurnal variation in cerebrovascular compensatory mechanisms. We, thus, identify key systemic hemodynamic factors related to the diurnal variation in the risk of stroke but particularly identify the need for further research focused on cerebrovascular regulatory mechanisms.
Collapse
Affiliation(s)
- Alastair J.S. Webb
- Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
| | - Elizabeth B. Klerman
- Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, United Kingdom (A.J.S.W.)
- Department of Neurology, Massachusetts General Hospital, Boston (E.B.K.)
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (E.B.K.)
- Division of Sleep Medicine, Harvard Medical School, Boston, MA (E.B.K.)
| | - Emiri T. Mandeville
- Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.T.M.)
| |
Collapse
|
8
|
Kim JS, Han JW, Oh DJ, Suh SW, Kwon MJ, Park J, Jo S, Kim JH, Kim KW. Effects of sleep quality on diurnal variation of brain volume in older adults: A retrospective cross-sectional study. Neuroimage 2024; 288:120533. [PMID: 38340880 DOI: 10.1016/j.neuroimage.2024.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
AIM Brain volume is influenced by several factors that can change throughout the day. In addition, most of these factors are influenced by sleep quality. This study investigated diurnal variation in brain volume and its relation to overnight sleep quality. METHODS We enrolled 1,003 healthy Koreans without any psychiatric disorders aged 60 years or older. We assessed sleep quality and average wake time using the Pittsburgh Sleep Quality Index, and divided sleep quality into good, moderate, and poor groups. We estimated the whole and regional brain volumes from three-dimensional T1-weighted brain MRI scans. We divided the interval between average wake-up time and MRI acquisition time (INT) into tertile groups: short (INT1), medium (INT2), and long (INT3). RESULTS Whole and regional brain volumes showed no significance with respect to INT. However, the `interaction between INT and sleep quality showed significance for whole brain, cerebral gray matter, and cerebrospinal fluid volumes (p < .05). The INT2 group showed significantly lower volumes of whole brain, whole gray matter, cerebral gray matter, cortical gray matter, subcortical gray matter, and cerebrospinal fluid than the INT1 and INT3 groups only in the individuals with good sleep quality. CONCLUSION Human brain volume changes significantly within a day associated with overnight sleep in the individuals with good sleep quality.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
| | - Dae Jong Oh
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul Korea
| | - Seung Wan Suh
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min Jeong Kwon
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Jieun Park
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Sungman Jo
- Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea; Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Panerai RB, Davies A, Clough RH, Beishon LC, Robinson TG, Minhas JS. The effect of hypercapnia on the directional sensitivity of dynamic cerebral autoregulation and the influence of age and sex. J Cereb Blood Flow Metab 2024; 44:272-283. [PMID: 37747437 PMCID: PMC10993882 DOI: 10.1177/0271678x231203475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
The cerebral circulation responds differently to increases in mean arterial pressure (MAP), compared to reductions in MAP. We tested the hypothesis that this directional sensitivity is reduced by hypercapnia. Retrospective analysis of 104 healthy subjects (46 male (44%), age range 19-74 years), with five minute recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), non-invasive MAP (Finometer) and end-tidal CO2 (capnography) at rest, during both poikilocapnia and hypercapnia (5% CO2 breathing in air) produced MCAv step responses allowing estimation of the classical Autoregulation Index (ARIORIG), and corresponding values for both positive (ARI+D) and negative (ARI-D) changes in MAP. Hypercapnia led to marked reductions in ARIORIG, ARI+D and ARI-D (p < 0.0001, all cases). Females had a lower value of ARIORIG compared to males (p = 0.030) at poikilocapnia (4.44 ± 1.74 vs 4.74 ± 1.48) and hypercapnia (2.44 ± 1.93 vs 3.33 ± 1.61). The strength of directional sensitivity (ARI+D-ARI-D) was not influenced by hypercapnia (p = 0.46), sex (p = 0.76) or age (p = 0.61). During poikilocapnia, ARI+D decreased with age in females (p = 0.027), but not in males. Directional sensitivity was not affected by hypercapnia, suggesting that its origins are more likely to be inherent to the mechanics of vascular smooth muscle than to myogenic pathways.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Aaron Davies
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
10
|
Burma JS, Griffiths JK, Smirl JD. Validity and reliability of deriving the autoregulatory plateau through projection pursuit regression from driven methods. Physiol Rep 2024; 12:e15919. [PMID: 38262711 PMCID: PMC10805621 DOI: 10.14814/phy2.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
To compare the construct validity and between-day reliability of projection pursuit regression (PPR) from oscillatory lower body negative pressure (OLBNP) and squat-stand maneuvers (SSMs). Nineteen participants completed 5 min of OLBNP and SSMs at driven frequencies of 0.05 and 0.10 Hz across two visits. Autoregulatory plateaus were derived at both point-estimates and across the cardiac cycle. Between-day reliability was assessed with intraclass correlation coefficients (ICCs), Bland-Altman plots with 95% limits of agreement (LOA), coefficient of variation (CoV), and smallest real differences. Construct validity between OLBNP-SSMs were quantified with Bland-Altman plots and Cohen's d. The expected autoregulatory curve with positive rising and negative falling slopes were present in only ~23% of the data. The between-day reliability for the ICCs were poor-to-good with the CoV estimates ranging from ~50% to 70%. The 95% LOA were very wide with an average spread of ~450% for OLBNP and ~350% for SSMs. Plateaus were larger from SSMs compared to OLBNPs (moderate-to-large effect sizes). The cerebral pressure-flow relationship is a complex regulatory process, and the "black-box" nature of this system can make it challenging to quantify. The current data reveals PPR analysis does not always elicit a clear-cut central plateau with distinctive rising/falling slopes.
Collapse
Affiliation(s)
- Joel S. Burma
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
| | - James K. Griffiths
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Lab, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
11
|
Brassard P, Roy MA, Burma JS, Labrecque L, Smirl JD. Quantification of dynamic cerebral autoregulation: welcome to the jungle! Clin Auton Res 2023; 33:791-810. [PMID: 37758907 DOI: 10.1007/s10286-023-00986-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms. METHODS In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions. RESULTS Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled. CONCLUSION The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Collapse
Affiliation(s)
- Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada.
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Whitaker AA, Vidoni ED, Montgomery RN, Carter K, Struckle K, Billinger SA. Force sensor reduced measurement error compared with verbal command during sit-to-stand assessment of cerebral autoregulation. Physiol Rep 2023; 11:e15750. [PMID: 37308311 PMCID: PMC10260377 DOI: 10.14814/phy2.15750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
Current methods estimate the time delay (TD) before the onset of dynamic cerebral autoregulation (dCA) from verbal command to stand. A force sensor used during a sit-to-stand dCA measure provides an objective moment an individual stands (arise-and-off, AO). We hypothesized that the detection of AO would improve the accuracy of TD compared with estimation. We measured middle cerebral artery blood velocity (MCAv) and mean arterial pressure (MAP) for 60 s sitting followed by 2-min standing, three times separated by 20 min. TD was calculated as the time from: (1) verbal command and (2) AO, until an increase in cerebrovascular conductance index (CVCi = MCAv/MAP). Sixty-five participants were enrolled: young adults (n = 25), older adults (n = 20), and individuals post-stroke (n = 20). The TD calculated from AO (x ¯ $$ \overline{x} $$ = 2.98 ± 1.64 s) was shorter than TD estimated from verbal command (x ¯ $$ \overline{x} $$ = 3.35 ± 1.72 s, η2 = 0.49, p < 0.001), improving measurement error by ~17%. TD measurement error was not related to age or stroke. Therefore, the force sensor provided an objective method to improve the calculation of TD compared with current methods. Our data support using a force sensor during sit-to-stand dCA measures in adults across the lifespan and post-stroke.
Collapse
Affiliation(s)
- Alicen A. Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic TrainingUniversity of Kansas Medical CenterKansas CityKansasUSA
- Department of Physical Medicine and RehabilitationMedical College of WisconsinMilwaukeeWisconsinUSA
- Cardiovascular CenterMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Eric D. Vidoni
- University of Kansas Alzheimer's Disease Research CenterFairwayKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Robert N. Montgomery
- Department of Biostatistics & Data ScienceUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Kailee Carter
- Department of Physical Therapy, Rehabilitation Science, and Athletic TrainingUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Katelyn Struckle
- Department of Physical Therapy, Rehabilitation Science, and Athletic TrainingUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Sandra A. Billinger
- University of Kansas Alzheimer's Disease Research CenterFairwayKansasUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKansasUSA
- Department of Physical Medicine and RehabilitationUniversity of Kansas Medical CenterKansas CityKansasUSA
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
13
|
Panerai RB, Barnes SC, Batterham AP, Robinson TG, Haunton VJ. Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest. J Cereb Blood Flow Metab 2023; 43:552-564. [PMID: 36420777 PMCID: PMC10063834 DOI: 10.1177/0271678x221142527] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Directional sensitivity, the more efficient response of cerebral autoregulation to increases, compared to decreases, in mean arterial pressure (MAP), has been demonstrated with repeated squat-stand maneuvers (SSM). In 43 healthy subjects (26 male, 23.1 ± 4.2 years old), five min. recordings of cerebral blood velocity (bilateral Doppler ultrasound), MAP (Finometer), end-tidal CO2 (capnograph), and heart rate (ECG) were obtained during sitting (SIT), standing (STA) and SSM. A new analytical procedure, based on autoregressive-moving average models, allowed distinct estimates of the autoregulation index (ARI) by separating the MAP signal into its positive (MAP+D) and negative (MAP-D) derivatives. ARI+D was higher than ARI-D (p < 0.0001), SIT: 5.61 ± 1.58 vs 4.31 ± 2.16; STA: 5.70 ± 1.24 vs 4.63 ± 1.92; SSM: 4.70 ± 1.11 vs 3.31 ± 1.53, but the difference ARI+D-ARI-D was not influenced by the condition. A bootstrap procedure determined the critical number of subjects needed to identify a significant difference between ARI+D and ARI-D, corresponding to 24, 37 and 38 subjects, respectively, for SSM, STA and SIT. Further investigations are needed on the influences of sex, aging and other phenotypical characteristics on the phenomenon of directional sensitivity of dynamic autoregulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Sam C Barnes
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Angus P Batterham
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
14
|
Panerai RB, Brassard P, Burma JS, Castro P, Claassen JA, van Lieshout JJ, Liu J, Lucas SJ, Minhas JS, Mitsis GD, Nogueira RC, Ogoh S, Payne SJ, Rickards CA, Robertson AD, Rodrigues GD, Smirl JD, Simpson DM. Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update. J Cereb Blood Flow Metab 2023; 43:3-25. [PMID: 35962478 PMCID: PMC9875346 DOI: 10.1177/0271678x221119760] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, and Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jurgen Ahr Claassen
- Department of Geriatric Medicine and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Johannes J van Lieshout
- Department of Internal Medicine, Amsterdam, UMC, The Netherlands and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
| | - Samuel Je Lucas
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, Québec, QC, Canada
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Andrew D Robertson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel D Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jonathan D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | | |
Collapse
|
15
|
Labrecque L, Smirl JD, Tzeng YC, Brassard P. Point/counterpoint: We should take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. J Cereb Blood Flow Metab 2022; 42:2351-2353. [PMID: 35619230 PMCID: PMC9670010 DOI: 10.1177/0271678x221104868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests asymmetrical responses of cerebral blood flow during large transient changes in mean arterial pressure. Specifically, the augmentation in cerebral blood flow is attenuated when mean arterial pressure acutely increases, compared with declines in cerebral blood flow when mean arterial pressure acutely decreases. However, common analytical tools to quantify dynamic cerebral autoregulation assume autoregulatory responses to be symmetric, which does not seem to be the case. Herein, we provide the rationale supporting the notion we need to consider the directional sensitivity of large and transient mean arterial pressure changes when characterizing dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Yu-Chieh Tzeng
- Department of Surgery & Anesthesia, University of Otago, Wellington School of Medicine & Health Sciences, Wellington, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
16
|
Kostoglou K, Simpson DM, Payne SJ. Point/counterpoint: We should not take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. J Cereb Blood Flow Metab 2022; 42:2354-2356. [PMID: 36113047 PMCID: PMC9670004 DOI: 10.1177/0271678x221123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past years, a wide range of studies have provided evidence of asymmetry in the response of static and dynamic cerebral autoregulation (CA) during increasing and decreasing pressure challenges. The main message is that CA is stronger during transient increases of arterial blood pressure rather than decreases. Here we do not argue against the presence of CA asymmetry but we seek to raise questions regarding the measurement of the effect and whether this effect needs to be taken into account, especially in clinical settings.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - David M Simpson
- ISVR, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
17
|
Smirl JD, Peacock D, Burma JS, Wright AD, Bouliane KJ, Dierijck J, van Donkelaar P. Repetitive bout of controlled soccer heading does not alter heart rate variability metrics: A preliminary investigation. Front Neurol 2022; 13:980938. [PMID: 36504654 PMCID: PMC9732532 DOI: 10.3389/fneur.2022.980938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives There is elevated unease regarding how repetitive head impacts, such as those associated with soccer heading, contribute to alterations in brain function. This study examined the extent heart rate variability (HRV) and cardiac baroreceptor sensitivity (BRS) metrics are altered immediately following an acute bout of soccer heading. Methods Seven male elite soccer players (24.1 ± 1.5 years) completed 40 successful soccer headers in 20-min. The headers were performed under controlled circumstances using a soccer ball launcher located 25 meters away and using an initial ball velocity of 77.5 ± 3.7 km/h (heading condition). An accelerometer (xPatch) on the right mastoid process quantified linear/rotational head accelerations. Participants also completed sham (body contact) and control (non-contact) sessions. A three-lead ECG and finger photoplethysmography characterized short-term spontaneous HRV/cardiac BRS, before and after each condition. The SCAT3 indexed symptom scores pre-post exposures to all three conditions. Results During the heading condition, cumulative linear and rotational accelerations experienced were 1,574 ± 97.9 g and 313,761 ± 23,966 rad/s2, respectively. Heart rate trended toward an increase from pre- to post-heading (p = 0.063), however HRV metrics in the time-domain (ps > 0.260) and frequency-domain (ps > 0.327) as well as cardiac BRS (ps > 0.144) were not significantly changed following all three conditions. Following the heading condition, SCAT3 symptom severity increased (p = 0.030) with a trend for symptom score augmentation (p = 0.078) compared to control and sham. Conclusion Whereas, symptoms as measured by the SCAT3 were induced following an acute bout of controlled soccer heading, these preliminary findings indicate they were not accompanied by alterations to autonomic function. Ultimately, this demonstrates further research is needed to understand the physiological underpinnings of alterations in brain function occurring immediately after a bout of soccer heading and how these may, over time, contribute to long-term neurological impairments.
Collapse
Affiliation(s)
- Jonathan David Smirl
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada,*Correspondence: Jonathan David Smirl
| | - Dakota Peacock
- Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
| | - Joel Stephen Burma
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,Sport Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada,Human Performance Laboratory, University of Calgary, Calgary, AB, Canada,Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Alexander D. Wright
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,Southern Medical Program, University of British Columbia, Kelowna, BC, Canada,University of British Columbia, Vancouver, BC, Canada,Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin J. Bouliane
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| | - Jill Dierijck
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Paul van Donkelaar
- Concussion Research Lab, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
18
|
Abbariki F, Roy M, Labrecque L, Drapeau A, Imhoff S, Smirl JD, Brassard P. Influence of high-intensity interval training to exhaustion on the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men. Physiol Rep 2022; 10:e15384. [PMID: 35822439 PMCID: PMC9277516 DOI: 10.14814/phy2.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023] Open
Abstract
We previously reported subtle dynamic cerebral autoregulation (dCA) alterations following 6 weeks of high-intensity interval training (HIIT) to exhaustion using transfer function analysis (TFA) on forced mean arterial pressure (MAP) oscillations in young endurance-trained men. However, accumulating evidence suggests the cerebrovasculature better buffers cerebral blood flow changes when MAP acutely increases compared to when MAP acutely decreases. Whether HIIT affects the directional sensitivity of the cerebral pressure-flow relationship in these athletes is unknown. In 18 endurance-trained men (age: 27 ± 6 years, VO2 max: 55.5 ± 4.7 ml·kg-1 ·min-1 ), we evaluated the impact of 6 weeks of HIIT to exhaustion on dCA directionality using induced MAP oscillations during 5-min 0.05 and 0.10 Hz repeated squat-stands. We calculated time-adjusted changes in middle cerebral artery mean blood velocity (MCAv) per change in MAP (ΔMCAvT /ΔMAPT ) for each squat transition. Then, we compared averaged ΔMCAvT /ΔMAPT during MAP increases and decreases. Before HIIT, ΔMCAvT /ΔMAPT was comparable between MAP increases and decreases during 0.05 Hz repeated squat-stands (p = 0.518). During 0.10 Hz repeated squat-stands, ΔMCAvT /ΔMAPT was lower during MAP increases versus decreases (0.87 ± 0.17 vs. 0.99 ± 0.23 cm·s-1 ·mmHg-1 , p = 0.030). Following HIIT, ΔMCAvT /ΔMAPT was superior during MAP increases over decreases during 0.05 Hz repeated squat-stands (0.97 ± 0.38 vs. 0.77 ± 0.35 cm·s-1 ·mmHg-1 , p = 0.002). During 0.10 Hz repeated squat-stands, dCA directional sensitivity disappeared (p = 0.359). These results suggest the potential for HIIT to influence the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men.
Collapse
Affiliation(s)
- Faezeh Abbariki
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Marc‐Antoine Roy
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Sarah Imhoff
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
- Concussion Research Laboratory, Faculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| |
Collapse
|
19
|
Marshall RA, Luchkanych AMS, Morton JS, Boyes NG, Zhai A, Marciniuk DD, Mei Y, Allison EY, Shoemaker JK, Al-Khazraji BK, Allen MD, Tomczak CR, Olver TD. Cerebral haemodynamics during arrhythmia in health, ischaemic heart disease and heart failure with reduced ejection fraction, and in a preclinical swine model. J Physiol 2022; 600:2311-2325. [PMID: 35389526 DOI: 10.1113/jp283112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Ventricular arrhythmias are associated with neurological impairment and could represent a source of cerebral hypoperfusion. In the present study, data from healthy individuals (n = 11), patients with ischaemic heart disease (IHD; ejection fraction >40%; n = 9) and patients with heart failure with reduced ejection fraction (HFrEF; EF = 31 (5)%, n = 11), as well as data from swine surgeries, where spontaneous ventricular arrhythmias were observed during cerebrovascular examination (transcranial Doppler ultrasound in humans and laser Doppler in swine) were analysed retrospectively to investigate the effect of arrhythmia on cerebral microvascular haemodynamics. A subset of participants also completed the Montreal Cognitive Assessment (MoCA). Middle cerebral artery mean blood velocity (MCAVmean ) decreased during premature ventricular contraction (PVC) in all groups, and data from swine indicate PVCs reduced cerebral microvascular perfusion. Overall MCAVmean was decreased in the HFrEF vs. control group. Further, %∆MCAVmean /%∆mean arterial pressure during the PVC was greater in the HFrEF vs. control group and was correlated with decreased MoCA scores. Subanalysis of HFrEF data revealed that during bigeminy MCAVmean decreased owing to reductions during irregular beats only. During non-sustained ventricular tachycardia, MCAVmean decreased but recovered above baseline upon return to sinus rhythm. Also, haemodynamic perturbations during and following the PVC were greater in the brachial artery vs. the MCA. Therefore, ventricular arrhythmias decreased indices of cerebral perfusion irrespective of IHD or HFrEF. The relative magnitude of arrhythmia-induced haemodynamic perturbations appears to be population specific and arrhythmia type and organ dependent. The cumulative burden of arrhythmia-induced deficits may exacerbate existing cerebral hypoperfusion in HFrEF and contribute to neurological abnormalities in this population. KEY POINTS: Irregular heartbeats are often considered benign in isolation, but individuals who experience them frequently have a higher prevalence of cerebrovascular and/or cognitive associated disorders. How irregular heartbeats affect blood pressure and cerebral haemodynamics in healthy and cardiovascular disease patients, those with and without reduced ejection fraction, remains unknown. Here it was found that in the absence of symptoms associated with irregular heartbeats, such as dizziness or hypotension, single, multiple non-sustained and sustained irregular heartbeats influence cerebral haemodynamics in a population-specific, arrhythmia-type and organ-dependent manner. Relative deficits in the index of cerebral blood flow normalized to relative deficits in blood pressure were greatest in patients with heart failure with reduced ejection and inversely related with cognitive performance. Chronic arrhythmias may exacerbate existing cerebral hypoperfusion in heart failure with reduced ejection fraction, thereby providing a mechanistic link between otherwise benign irregular heartbeats and cognitive dysfunction, independent of embolism.
Collapse
Affiliation(s)
- Rory A Marshall
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Adam M S Luchkanych
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jude S Morton
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexander Zhai
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darcy D Marciniuk
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yixue Mei
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Elric Y Allison
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | | | - Baraa K Al-Khazraji
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
Roy MA, Labrecque L, Perry BG, Korad S, Smirl JD, Brassard P. Directional sensitivity of the cerebral pressure-flow relationship in young healthy individuals trained in endurance and resistance exercise. Exp Physiol 2022; 107:299-311. [PMID: 35213765 DOI: 10.1113/ep090159] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does habitual exercise modality affect the directionality of the cerebral pressure-flow relationship? What is the main finding and its importance? These data suggest the hysteresis-like pattern of dynamic cerebral autoregulation appears present in long-term sedentary and endurance-trained individuals, but absent in resistance-trained individuals. This is the first study to expand knowledge on the directional sensitivity of the cerebral pressure-flow relationship to trained populations. ABSTRACT Evidence suggests the cerebrovasculature may be more efficient at dampening cerebral blood flow (CBF) variations when mean arterial pressure (MAP) transiently increases, compared to when it decreases. Despite divergent MAP and CBF responses to acute endurance and resistance training, the long-term impact of habitual exercise modality on the directionality of dynamic cerebral autoregulation (dCA) is currently unknown. Thirty-six young healthy participants [sedentary (n = 12), endurance-trained (n = 12) and resistance-trained (n = 12)] undertook a 5-min repeated squat-stand protocol at two forced MAP oscillation frequencies (0.05 Hz and 0.10 Hz). Middle cerebral artery mean blood velocity (MCAv) and MAP were continuously monitored. We calculated absolute (ΔMCAvT /ΔMAPT ) and relative (%MCAvT /%MAPT ) changes in MCAv and MAP with respect to the transition time intervals of both variables to compute a time-adjusted ratio in each MAP direction, averaged over the 5-min repeated squat-stand protocols. At 0.10 Hz repeated squat-stands, ΔMCAvT /ΔMAPT and %MCAvT /%MAPT were lower when MAP increased compared with when MAP decreased for sedentary (ΔMCAvT /ΔMAPT : p = 0.032; %MCAvT /%MAPT : p = 0.040) and endurance-trained individuals (ΔMCAvT /ΔMAPT : p = 0.012; %MCAvT /%MAPT : p = 0.007), but not in the resistance-trained (ΔMCAvT /ΔMAPT : p = 0.512; %MCAvT /%MAPT : p = 0.666). At 0.05 Hz repeated squat-stands, time-adjusted ratios were similar for all groups (all p>0.605). These findings suggest exercise training modality does influence the directionality of the cerebral pressure-flow relationship and support the presence of a hysteresis-like pattern during 0.10 Hz repeated squat-stands in sedentary and endurance-trained participants, but not in resistance-trained individuals. In future studies, assessment of elite endurance and resistance training habits may further elucidate modality-dependent discrepancies on directional dCA measurements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Wellington, New Zealand
| | - Stephanie Korad
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Wellington, New Zealand
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|