1
|
Pourmanaf H, Nikoukheslat S, Sari-Sarraf V, Amirsasan R, Vakili J, Mills DE. The acute effects of endurance exercise on epithelial integrity of the airways in athletes and non-athletes: A systematic review and meta-analysis. Respir Med 2023; 220:107457. [PMID: 37951313 DOI: 10.1016/j.rmed.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
INTRODUCTION Acute endurance exercise may induce airway epithelium injury. However, the response of epithelial integrity markers of the airways including club cell secretory protein (CC16) and surfactant protein D (SP-D) to endurance exercise have not been systematically reviewed. Therefore, the aim of this systematic review and meta-analysis was to assess the acute effects of endurance exercise on markers of epithelial integrity of the airways (CC16, SP-D and the CC16/SP-D ratio) in athletes and non-athletes. METHODS A systematic search was performed utilizing PubMed/Medline, EMBASE, Web of Science, and hand searching bibliographies of retrieved articles through to September 2022. Based on the inclusion criteria, articles with available data about the acute effects of endurance exercise on serum or plasma concentrations of CC16, SP-D and CC16/SP-D ratio in athletes and non-athletes were included. Quality assessment of studies and statistical analysis were conducted via Review Manager 5.4 software. RESULTS The search resulted in 908 publications. Finally, thirteen articles were included in the review. Acute endurance exercise resulted in an increase in CC16 (P = 0.0006, n = 13) and CC16/SP-D ratio (P = 0.005, n = 2) whereas SP-D (P = 0.47, n = 3) did not change significantly. Subgroup analysis revealed that the type (P = 0.003), but not the duration of exercise (P = 0.77) or the environmental temperature (P = 0.06) affected the CC16 response to endurance exercise. CONCLUSIONS Acute endurance exercise increases CC16 and the CC16/SP-D ratio, as markers of epithelial integrity, but not SP-D in athletes and non-athletes.
Collapse
Affiliation(s)
- Hadi Pourmanaf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Nikoukheslat
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Vahid Sari-Sarraf
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Ramin Amirsasan
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Javad Vakili
- Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Dean E Mills
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Respiratory and Exercise Physiology Research Group, School of Health and Medical Sciences, University of Southern Queensland, Ipswich, Queensland, Australia; Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Queensland, Australia.
| |
Collapse
|
2
|
Gowers W, Evans G, Carré J, Ashman M, Jackson A, Hopker J, Dickinson J. Eucapnic voluntary hyperpnea challenge can support management of exercise‐induced bronchoconstriction in elite swimmers. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- William Gowers
- School of Sport and Exercise Sciences University of Kent Chatham UK
| | | | | | | | | | - James Hopker
- School of Sport and Exercise Sciences University of Kent Chatham UK
| | - John Dickinson
- School of Sport and Exercise Sciences University of Kent Chatham UK
| |
Collapse
|
3
|
Rodriguez Bauza DE, Silveyra P. Sex Differences in Exercise-Induced Bronchoconstriction in Athletes: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197270. [PMID: 33027929 PMCID: PMC7579110 DOI: 10.3390/ijerph17197270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. It is estimated that about 90% of patients with underlying asthma (a sexually dimorphic disease) experience EIB; however, sex differences in EIB have not been studied extensively. With the goal of better understanding the prevalence of EIB in males and females, and because atopy has been reported to occur at higher rates in athletes, in this study, we investigated sex differences in EIB and atopy in athletes. A systematic literature review identified 60 studies evaluating EIB and/or atopy in post-pubertal adult athletes (n = 7501). Collectively, these studies reported: (1) a 23% prevalence of EIB in athletes; (2) a higher prevalence of atopy in male vs. female athletes; (3) a higher prevalence of atopy in athletes with EIB; (4) a significantly higher rate of atopic EIB in male vs. female athletes. Our analysis indicates that the physiological changes that occur during exercise may differentially affect male and female athletes, and suggest an interaction between male sex, exercise, and atopic status in the course of EIB. Understanding these sex differences is important to provide personalized management plans to athletes with underlying asthma and/or atopy.
Collapse
Affiliation(s)
| | - Patricia Silveyra
- Biobehavioral Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27713, USA
- Correspondence:
| |
Collapse
|
4
|
Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes? Sports Med 2017; 46:1083-93. [PMID: 27007599 PMCID: PMC4963444 DOI: 10.1007/s40279-016-0491-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In athletes, a secure diagnos
is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the ‘gold standard’. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a ‘gold standard’ test for EIB.
Collapse
|
5
|
Weiler JM, Brannan JD, Randolph CC, Hallstrand TS, Parsons J, Silvers W, Storms W, Zeiger J, Bernstein DI, Blessing-Moore J, Greenhawt M, Khan D, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Schuller DE, Tilles SA, Wallace D. Exercise-induced bronchoconstriction update-2016. J Allergy Clin Immunol 2016; 138:1292-1295.e36. [PMID: 27665489 DOI: 10.1016/j.jaci.2016.05.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/26/2022]
Abstract
The first practice parameter on exercise-induced bronchoconstriction (EIB) was published in 2010. This updated practice parameter was prepared 5 years later. In the ensuing years, there has been increased understanding of the pathogenesis of EIB and improved diagnosis of this disorder by using objective testing. At the time of this publication, observations included the following: dry powder mannitol for inhalation as a bronchial provocation test is FDA approved however not currently available in the United States; if baseline pulmonary function test results are normal to near normal (before and after bronchodilator) in a person with suspected EIB, then further testing should be performed by using standardized exercise challenge or eucapnic voluntary hyperpnea (EVH); and the efficacy of nonpharmaceutical interventions (omega-3 fatty acids) has been challenged. The workgroup preparing this practice parameter updated contemporary practice guidelines based on a current systematic literature review. The group obtained supplementary literature and consensus expert opinions when the published literature was insufficient. A search of the medical literature on PubMed was conducted, and search terms included pathogenesis, diagnosis, differential diagnosis, and therapy (both pharmaceutical and nonpharmaceutical) of exercise-induced bronchoconstriction or exercise-induced asthma (which is no longer a preferred term); asthma; and exercise and asthma. References assessed as relevant to the topic were evaluated to search for additional relevant references. Published clinical studies were appraised by category of evidence and used to document the strength of the recommendation. The parameter was then evaluated by Joint Task Force reviewers and then by reviewers assigned by the parent organizations, as well as the general membership. Based on this process, the parameter can be characterized as an evidence- and consensus-based document.
Collapse
|
6
|
Simpson AJ, Romer LM, Kippelen P. Self-reported Symptoms after Induced and Inhibited Bronchoconstriction in Athletes. Med Sci Sports Exerc 2016; 47:2005-13. [PMID: 25710876 PMCID: PMC5131679 DOI: 10.1249/mss.0000000000000646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose A change in the perception of respiratory symptoms after treatment with inhaled beta2 agonists is often used to aid diagnosis of exercise-induced bronchoconstriction (EIB). Our aim was to test the association between subjective ratings of respiratory symptoms and changes in airway caliber after induced and inhibited bronchoconstriction in athletes with EIB. Methods Eighty-five athletes with diagnosed or suspected EIB performed a eucapnic voluntary hyperpnea (EVH) challenge with dry air. Of the 45 athletes with hyperpnea-induced bronchoconstriction [i.e., post-EVH fall in forced expiratory volume in 1 s (FEV1) ≥10%, EVH−], 36 were randomized in a double-blind, placebo-controlled, crossover study. Terbutaline (0.5 mg) or placebo was administered by inhalation 15 min before EVH. Spirometry (for FEV1) was performed before and after EVH, and respiratory symptoms were recorded 15 min after EVH on visual analog scales. Results Terbutaline inhibited bronchoconstriction (i.e., maximal fall in FEV1 <10% after EVH) in 83% of the EVH-positive athletes, with an average degree of bronchoprotection of 53% (95% confidence interval [CI], 45% to 62%). Terbutaline reduced group mean symptom scores (P < 0.01), but the degree of bronchoprotection did not correlate with individual differences in symptom scores between terbutaline and placebo. Of the 29 athletes who had less than 10% FEV1 fall after EVH in the terbutaline condition, almost half (48%) rated at least one respiratory symptom higher under terbutaline, and more than one quarter (28%) had a higher total symptom score under terbutaline. Conclusion Self-reports of respiratory symptoms in conditions of induced and inhibited bronchoconstriction do not correlate with changes in airway caliber in athletes with EIB. Therefore, subjective ratings of respiratory symptoms after treatment with inhaled beta2 agonists should not be used as the sole diagnostic tool for EIB in athletes.
Collapse
Affiliation(s)
- Andrew J Simpson
- Centre for Sports Medicine and Human Performance, Department of Life Sciences, Brunel University London, UNITED KINGDOM
| | | | | |
Collapse
|
7
|
Simpson AJ, Bood JR, Anderson SD, Romer LM, Dahlén B, Dahlén SE, Kippelen P. A standard, single dose of inhaled terbutaline attenuates hyperpnea-induced bronchoconstriction and mast cell activation in athletes. J Appl Physiol (1985) 2016; 120:1011-7. [PMID: 26846550 PMCID: PMC4894945 DOI: 10.1152/japplphysiol.00700.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
This study provides the first in vivo evidence for a mast cell stabilizing effect of the short-acting inhaled β2-adrenoceptor agonist terbutaline, when administered prophylactically at a clinically recommended dose (0.5 mg) before bronchial provocation with dry air. Our data therefore support the proposal that β2-adrenoceptor agonist-mediated mast cell stabilization is a major contributor to bronchoprotection in individuals with exercise-induced bronchoconstriction. Release of bronchoactive mediators from mast cells during exercise hyperpnea is a key factor in the pathophysiology of exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effect of a standard, single dose of an inhaled β2-adrenoceptor agonist on mast cell activation in response to dry air hyperpnea in athletes with EIB. Twenty-seven athletes with EIB completed a randomized, double-blind, placebo-controlled, crossover study. Terbutaline (0.5 mg) or placebo was inhaled 15 min prior to 8 min of eucapnic voluntary hyperpnea (EVH) with dry air. Pre- and postbronchial challenge, urine samples were analyzed by enzyme immunoassay for 11β-prostaglandin F2α (11β-PGF2α). The maximum fall in forced expiratory volume in 1 s of 14 (12–20)% (median and interquartile range) following placebo was attenuated to 7 (5–9)% with the administration of terbutaline (P < 0.001). EVH caused a significant increase in 11β-PGF2α from 41 (27–57) ng/mmol creatinine at baseline to 58 (43–72) ng/mmol creatinine at its peak post-EVH following placebo (P = 0.002). The rise in 11β-PGF2α was inhibited with administration of terbutaline: 39 (28–44) ng/mmol creatinine at baseline vs. 40 (33–58) ng/mmol creatinine at its peak post-EVH (P = 0.118). These data provide novel in vivo evidence of mast cell stabilization following inhalation of a standard dose of terbutaline prior to bronchial provocation with EVH in athletes with EIB.
Collapse
Affiliation(s)
- A J Simpson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, United Kingdom
| | - J R Bood
- Unit for Experimental Asthma Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit for Clinical Asthma Research, Department of Internal Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; and
| | - S D Anderson
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - L M Romer
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, United Kingdom
| | - B Dahlén
- Unit for Clinical Asthma Research, Department of Internal Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; and
| | - S-E Dahlén
- Unit for Experimental Asthma Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; and
| | - P Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, United Kingdom;
| |
Collapse
|