1
|
Su H, Li M, Li N, Zhang Y, He Y, Zhang Z, Zhang Y, Gao Q, Xu Z, Tang J. Endothelin-1 potentiated constriction in preeclampsia placental veins: Role of ETAR/ETBR/CaV1.2/CALD1. Placenta 2024; 158:165-174. [PMID: 39476475 DOI: 10.1016/j.placenta.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Placenta plays a vital role in preeclampsia. The present study investigated the role of endothelin-1 (ET-1) and its receptors in preeclampsia placenta. METHOD Placenta samples were collected from normal and preeclampsia pregnancies, with one single fetus. Placental chorionic plate vessel tone was measured with DMT using vasoactive agents with or without antagonists. Role of L-type voltage-dependent calcium channels (CaV1.2) in single smooth muscle cell was detected using whole-cell patch clamp. PCR, Western blot, and ELISA was used to detect molecule expressions. Placental vessel explants and human umbilical vein smooth muscle cell (HUVSMC) were exposed to ET-1 treatment with or without antagonists. Human umbilical vein endothelial cell (HUVEC) and pregnant sheep was exposed to hypoxic condition, simulating preeclampsia. RESULTS ET-1 and IRL1620 mediated stronger contractions in preeclampsia placental veins, despite unchanged ETAR and decreased ETBR expression. Comparing with control, there was higher ET-1 in umbilical plasma, maternal plasma, and placental vessels from preeclampsia. In utero hypoxia increased plasma ET-1 in fetal lambs and ewes. Hypoxia promoted ET-1 production in HUVEC. Role and expression of CaV1.2 was decreased in preeclampsia placental vessels, while high-molecular-weight caldesmon (CALD1), the marker of contractile phenotype of smooth muscle cells, was significantly increased. ET-1 treatment increased CALD1 in placental explants and in HUVSMC via ETAR/ETBR. CONCLUSION The present study firstly demonstrated ET-1 induced greater contraction in preeclampsia placental chorionic plate veins via ETAR/ETBR, instead of via weaker CaV1.2. In utero hypoxia promoted plasma ET-1 in fetal lambs and ewe, similar to that in preeclampsia. ET-1, binding with ETAR/ETBR increased CALD1, which was associated with stronger contraction in preeclampsia. The data provided important information in preeclampsia onset.
Collapse
Affiliation(s)
- Hongyu Su
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, China
| | - Na Li
- Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Yingying Zhang
- Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Yun He
- Department of Gynecology and Obstetrics, Taixing People's Hospital, China
| | - Ze Zhang
- Department of Gynecology and Obstetrics, Taixing People's Hospital, China
| | - Yumeng Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China; Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Jiaqi Tang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China.
| |
Collapse
|
2
|
Thompson LP, Aguan K, Zhou H. Chronic Hypoxia Inhibits Contraction of Fetal Arteries by Increased Endothelium-Derived Nitric Oxide and Prostaglandin Synthesis. ACTA ACUST UNITED AC 2016; 11:511-20. [PMID: 15582495 DOI: 10.1016/j.jsgi.2004.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Chronic hypoxia causes redistribution of fetal cardiac output by mechanisms poorly understood. We tested the hypothesis that chronic hypoxia alters vascular reactivity of arteries from near-term fetal guinea pigs. METHODS Pregnant guinea pigs (50 days, term = 65 days) were exposed to either normoxia (room air) or hypoxia (12% O2) for 14 days. Carotid artery ring segments from anesthetized fetuses were mounted onto myographs for measurement of force. Contractile responses to cumulative addition of prostaglandin F2alpha (PGF2alpha, 10(-9) M to 10(-5) M), U46619, a thromboxane mimetic (10(-12) M to 12(-6) M), and KCl (10 to 120 mM) were measured in the presence and absence of INDO (INDO, 10(-5) M) alone and INDO plus nitro-L-arginine (LNA, 10(-4) M), or INDO plus N6-iminoethyl-L-lysine (LNIL, 5 x 10(-5) M, a selective iNOS inhibitor), and measured in endothelium-intact and denuded arteries. Nitric oxide synthase (NOS) activity was measured in isolated arteries by 14C-L-arginine to 14C-L-citrulline conversion. RESULTS Hypoxia decreased contractile responses to both PGF2alpha and U46619 under control conditions. Maximal contraction to both agonists was increased in hypoxemic arteries after INDO alone and INDO + LNA compared to normoxic controls. Endothelium-denudation abolished the differences between the groups. KCl contraction was unaffected by hypoxia. LNIL potentiated maximal PGF(2alpha) contraction but was similar between groups. Hypoxia increased (P < .05) total and Ca(2+)-dependent NOS activities by 1.7- and 2.1-fold, respectively, but had no effect on Ca(2+)-independent activity. CONCLUSION Chronic hypoxia alters vascular reactivity of fetal carotid arteries by increasing the contribution of both vasodilator prostaglandins and nitric oxide and suggests that changes in local vascular mechanisms may be altered by chronic hypoxia.
Collapse
Affiliation(s)
- Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
3
|
Hubbell MC, Semotiuk AJ, Thorpe RB, Adeoye OO, Butler SM, Williams JM, Khorram O, Pearce WJ. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries. Am J Physiol Cell Physiol 2012; 303:C1090-103. [PMID: 22992677 DOI: 10.1152/ajpcell.00408.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic hypoxia increases vascular endothelial growth factor (VEGF) and thereby promotes angiogenesis. The present study explores the hypothesis that hypoxic increases in VEGF also remodel artery wall structure and contractility through phenotypic transformation of smooth muscle. Pregnant and nonpregnant ewes were maintained at sea level (normoxia) or 3,820 m (hypoxia) for the final 110 days of gestation. Common carotid arteries harvested from term fetal lambs and nonpregnant adults were denuded of endothelium and studied in vitro. Stretch-dependent contractile stresses were 32 and 77% of normoxic values in hypoxic fetal and adult arteries. Hypoxic hypocontractility was coupled with increased abundance of nonmuscle myosin heavy chain (NM-MHC) in fetal (+37%) and adult (+119%) arteries. Conversely, hypoxia decreased smooth muscle MHC (SM-MHC) abundance by 40% in fetal arteries but increased it 123% in adult arteries. Hypoxia decreased colocalization of NM-MHC with smooth muscle α-actin (SM-αA) in fetal arteries and decreased colocalization of SM-MHC with SM-αA in adult arteries. Organ culture with physiological concentrations (3 ng/ml) of VEGF-A(165) similarly depressed stretch-dependent stresses to 37 and 49% of control fetal and adult values. The VEGF receptor antagonist vatalanib ablated VEGF's effects in adult but not fetal arteries, suggesting age-dependent VEGF receptor signaling. VEGF replicated hypoxic decreases in colocalization of NM-MHC with SM-αA in fetal arteries and decreases in colocalization of SM-MHC with SM-αA in adult arteries. These results suggest that hypoxic increases in VEGF not only promote angiogenesis but may also help mediate hypoxic arterial remodeling through age-dependent changes in smooth muscle phenotype and contractility.
Collapse
Affiliation(s)
- Margaret C Hubbell
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University Schoolof Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sharifpoor S, Simmons CA, Labow RS, Paul Santerre J. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials 2011; 32:4816-29. [PMID: 21463894 DOI: 10.1016/j.biomaterials.2011.03.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 10/18/2022]
Abstract
There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyurethane constructs. The expression of smooth muscle α-actin, calponin and smooth muscle myosin heavy chain and the absence of Ki-67+ cells in both static and CMS cultures, throughout the 4 weeks, suggest that hCASMCs retained their contractile character on these biomaterials. The study highlights the importance of implementing physiologically-relevant biomechanical stimuli in the development of synthetic elastomeric tissue engineering scaffolds.
Collapse
Affiliation(s)
- Soroor Sharifpoor
- University of Toronto, Institute of Biomaterials and Biomedical Engineering, Faculty of Dentistry, 124 Edward Street, Toronto, Ontario, Canada M5G1G6
| | | | | | | |
Collapse
|
5
|
Ray JB, Arab S, Deng Y, Liu P, Penn L, Courtman DW, Ward ME. Oxygen regulation of arterial smooth muscle cell proliferation and survival. Am J Physiol Heart Circ Physiol 2007; 294:H839-52. [PMID: 18055518 DOI: 10.1152/ajpheart.00587.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine if hypoxia elicits different proliferative and apoptotic responses in systemic arterial smooth muscle cells incubated under conditions that do or do not result in cellular ATP depletion and whether these effects are relevant to vascular remodeling in vivo. Gene expression profiling was used to identify potential regulatory pathways. In human aortic smooth muscle cells (HASMCs) incubated at 3% O(2), proliferation and progression through the G1/S interphase are enhanced. Incubation at 1% O(2) reduced proliferation, delayed G1/S transition, increased apoptotic cell death, and is associated with mitochondrial membrane depolarization and reduced cellular ATP levels. In aorta and mesenteric artery from rats exposed to hypoxia (10% O(2), 48 h), both proliferation and apoptosis are increased, as are medial nuclear density and smooth muscle cell content. Although nuclear levels of hypoxia-inducible factor 1-alpha (HIF-1alpha) are increased to a similar extent in HASMCs incubated at 1 and 3% O(2), expression of tumor protein p53, its transcriptional target p21, as well as their regulatory factors and downstream effectors, are differentially affected under these two conditions, suggesting that the bidirectional effects of hypoxia are mediated by this pathway. We conclude that hypoxia induces a state of enhanced cell turnover through increased rates of both smooth muscle cell proliferation and death. This confers the ability to remodel the vasculature in response to changing tissue metabolic needs while avoiding the accumulation of mutations that may lead to malignant transformation or the formation of abnormal vascular structures.
Collapse
Affiliation(s)
- Julie Basu Ray
- Institute of Medical Science, University of Toronto, St. Michael's Hospital, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
He JZ, Quan A, Xu Y, Teoh H, Wang G, Fish JE, Steer BM, Itohara S, Marsden PA, Davidge ST, Ward ME. Induction of matrix metalloproteinase-2 enhances systemic arterial contraction after hypoxia. Am J Physiol Heart Circ Physiol 2006; 292:H684-93. [PMID: 16980344 DOI: 10.1152/ajpheart.00538.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was carried out to determine the role of increased vascular matrix metalloproteinase-2 (MMP-2) expression in the changes in systemic arterial contraction after prolonged hypoxia. Rats and mice were exposed to hypoxia (10% and 8% O(2), respectively) or normoxia (21% O(2)) for 16 h, 48 h, or 7 days. Aortae and mesenteric arteries were either mounted in organ bath myographs or frozen in liquid nitrogen. MMP-2 inhibition with cyclic CTTHWGFTLC (CTT) reduced contraction to phenylephrine (PE) in aortae and mesenteric arteries from rats exposed to hypoxia for 7 days but not in vessels from normoxic rats. Similarly, CTT reduced contraction to Big endothelin-1 (Big ET-1) in aortae from rats exposed to hypoxia for 7 days. Responses to PE were reduced in hypoxic MMP-2(-/-) mice compared with MMP-2(+/+) mice. Increased contraction to Big ET-1 after hypoxia was observed in MMP-2(+/+) mice but not in MMP-2(-/-) mice. Rat aortic MMP-2 and membrane type 1 (MT1)-MMP protein levels and MMP activity were increased after 7 days of hypoxia. Rat aortic MMP-2 and MT1-MMP mRNA levels were increased in the deep medial vascular smooth muscle. We conclude that hypoxic induction of MMP-2 expression potentiates contraction in systemic conduit and resistance arteries. This may preserve the capacity to regulate the systemic circulation in the transition between the alterations in vascular tone and structural remodeling that occurs during prolonged hypoxic epochs.
Collapse
Affiliation(s)
- Jeff Z He
- Dept. of Critical Care, Rm. 4-015, St. Michael's Hospital, 30 Bond St., Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Govindaraju V, Teoh H, Hamid Q, Cernacek P, Ward ME. Interaction between endothelial heme oxygenase-2 and endothelin-1 in altered aortic reactivity after hypoxia in rats. Am J Physiol Heart Circ Physiol 2004; 288:H962-70. [PMID: 15486027 DOI: 10.1152/ajpheart.01218.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether increased expression of heme oxygenase (HO) contributes to impairment of aortic contractile responses after hypoxia through effects on reactivity to endothelin-1 (ET-1). Thoracic aortas from normoxic rats and rats exposed to hypoxia (10% O2) for 16 or 48 h were mounted in organ bath myographs for contractile studies, fixed in paraformaldehyde, or frozen in liquid nitrogen for protein extraction. In rings from normoxic rats, the HO inhibitor tin protoporphyrin IX (SnPP IX, 10 microM) did not alter the response to phenylephrine or ET-1. In rings from rats exposed to 16-h hypoxia, maximum tension generated in response to these agonists was higher in endothelium-intact but not -denuded rings in the presence of SnPP IX. In rings from rats exposed to 48-h hypoxia SnPP IX increased contraction in endothelium-intact but not -denuded rings. In endothelium-intact aortic rings from rats exposed to 16-h hypoxia incubated with endothelin A receptor-specific antagonist BQ-123 (10(-7) M), SnPP IX did not alter phenylephrine-induced contraction. Aortic ET-1 protein levels, measured by radioimmunoassay, were increased in rats exposed to hypoxia for 16 and 48 h. Western blotting showed that HO-1 and HO-2 protein were increased after 16 h of hypoxia and returned to near-control levels after 48 h. Increase in HO-1 protein was detected in endothelium-intact and -denuded rings. Removal of endothelium abolished the increase in HO-2 immunoreactivity. Immunohistochemistry localized expression of HO-1 protein to vascular smooth muscle, whereas HO-2 was only detected in endothelium. HO-2 is expressed by aortic endothelial cells early during hypoxic exposure and impairs ET-1-mediated potentiation of contraction to alpha-adrenoceptor stimulation.
Collapse
|
8
|
Teoh H, Zacour M, Wener AD, Gunaratnam L, Ward ME. Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia. Am J Physiol Heart Circ Physiol 2003; 284:H1182-9. [PMID: 12595284 DOI: 10.1152/ajpheart.00680.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that increased myofibrillar type 1 protein phosphatase (PP1) catalytic activity contributes to impaired aortic smooth muscle contraction after hypoxia. Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased phenylephrine- and KCl-induced contraction to a greater extent in aortic rings from rats exposed to hypoxia (10% O(2)) for 48 h than in rings from normoxic animals. PP1 inhibition also restored the level of phosphorylation of the 20-kDa myosin light chain (LC(20)) during maximal phenylephrine-induced contraction to that observed in the normoxic control group. Myofibrillar PP1 activity was greater in aortas from rats exposed to hypoxia than in normoxic rats (P < 0.05). Levels of the protein myosin phosphatase-targeting subunit 1 (MYPT1) that mediates myofibrillar localization of PP1 activity were increased in aortas from hypoxic rats (193 +/- 28% of the normoxic control value, P < 0.05) and in human aortic smooth muscle cells after hypoxic (1% O(2)) incubation (182 +/- 18% of the normoxic control value, P < 0.05). Aortic levels of myosin light chain kinase were similar in normoxic and hypoxic groups. In conclusion, after hypoxia, increased MYPT1 protein and myofibrillar PP1 activity impair aortic vasoreactivity through enhanced dephosphorylation of LC(20).
Collapse
Affiliation(s)
- Hwee Teoh
- Terrence Donnelly Laboratories, Division of Respirology and Department of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1W8
| | | | | | | | | |
Collapse
|