1
|
Wang Y, Xu Y, Zhao T, Ma YJ, Qin W, Hu WL. PEI/MMNs@LNA-542 nanoparticles alleviate ICU-acquired weakness through targeted autophagy inhibition and mitochondrial protection. Open Life Sci 2024; 19:20220952. [PMID: 39290495 PMCID: PMC11406224 DOI: 10.1515/biol-2022-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Intensive care unit-acquired weakness (ICU-AW) is prevalent in critical care, with limited treatment options. Certain microRNAs, like miR-542, are highly expressed in ICU-AW patients. This study investigates the regulatory role and mechanisms of miR-542 in ICU-AW and explores the clinical potential of miR-542 inhibitors. ICU-AW models were established in C57BL/6 mice through cecal ligation and puncture (CLP) and in mouse C2C12 myoblasts through TNF-α treatment. In vivo experiments demonstrated decreased muscle strength, muscle fiber atrophy, widened intercellular spaces, and increased miR-542-3p/5p expression in ICU-AW mice model. In vitro experiments indicated suppressed ATG5, ATG7 and LC3II/I, elevated MDA and ROS levels, decreased SOD levels, and reduced MMP in the model group. Similar to animal experiments, the expression of miR-542-3p/5p was upregulated. Gel electrophoresis explored the binding of polyethyleneimine/mesoporous silica nanoparticles (PEI/MMNs) to locked nucleic acid (LNA) miR-542 inhibitor (LNA-542). PEI/MMNs@LNA-542 with positive charge (3.03 ± 0.363 mV) and narrow size (206.94 ± 6.19 nm) were characterized. Immunofluorescence indicated significant internalization with no apparent cytotoxicity. Biological activity, examined through intraperitoneal injection, showed that PEI/MMNs@LNA-542 alleviated muscle strength decline, restored fiber damage, and recovered mitochondrial injury in mice. In conclusion, PEI/MMNs nanoparticles effectively delivered LNA-542, targeting ATG5 to inhibit autophagy and alleviate mitochondrial damage, thereby improving ICU-AW.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tun Zhao
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Jun Ma
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Qin
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
2
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Li D, Yue Y, Feng X, Lv W, Fan Y, Sha P, Zhao T, Lin Y, Xiong X, Li J, Xiong Y. MicroRNA-542-3p targets Pten to inhibit the myoblasts proliferation but suppresses myogenic differentiation independent of targeted Pten. BMC Genomics 2024; 25:325. [PMID: 38561670 PMCID: PMC10983626 DOI: 10.1186/s12864-024-10260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined. METHODS Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor. RT-qPCR, EdU staining, immunofluorescence staining, cell counting kit 8 (CCK-8), and Western blot were used to evaluate the proliferation and myogenic differentiation caused by miR-542-3p. The dual luciferase reporter analysis and rescued experiment of the target gene were used to reveal the molecular mechanism. RESULTS The data shows overexpression of miR-542-3p downregulation of mRNA and protein levels of proliferation marker genes, reduction of EdU+ cells, and cellular vitality. Additionally, knocking it down promoted the aforementioned phenotypes. For differentiation, the miR-542-3p gain-of-function reduced both mRNA and protein levels of myogenic genes, including MYOG, MYOD1, et al. Furthermore, immunofluorescence staining immunized by MYHC antibody showed that the myotube number, fluorescence intensity, differentiation index, and myotube fusion index all decreased in the miR-542-3p mimic group, compared with the control group. Conversely, these phenotypes exhibited an increased trend in the miR-542-3p inhibitor group. Mechanistically, phosphatase and tensin homolog (Pten) was identified as the bona fide target gene of miR-542-3p by dual luciferase reporter gene assay, si-Pten combined with miR-542-3p inhibitor treatments totally rescued the promotion of proliferation by loss-function of miR-542-3p. CONCLUSIONS This study indicates that miR-542-3p inhibits the proliferation and differentiation of myoblast and Pten is a dependent target gene of miR-542-3p in myoblast proliferation, but not in differentiation.
Collapse
Grants
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 31902154 the National Natural Sciences Foundation of China
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23NSFSC1804 the Natural Science Foundation of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. 23ZDYF3118 the Key Research and Development Program of Sichuan Province
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. XM2023004 the Southwest Minzu University Double World-Class Project
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
- No. 2023NYXXS130 the Fundamental Research Funds for the Central Universities, Southwest Minzu University
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yongqi Yue
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Xinxin Feng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- Chongxin County Animal Husbandry and Veterinary Center, Pingliang, 744200, China
| | - Weibing Lv
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yilin Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Peiran Sha
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Te Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, 610041, China.
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Lin S, Liu C, Sun J, Guan Y. RNA-Sequencing and Bioinformatics Analysis of Exosomal Long Noncoding RNAs Revealed a Novel ceRNA Network in Stable COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1995-2007. [PMID: 37720876 PMCID: PMC10503524 DOI: 10.2147/copd.s414901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Exosomes are able to exchange their bioactive RNA cargo to recipient cells. In COPD, exosomes can be controlled and engineered for its use as targeted diagnostic and therapeutic tool. Our study explored novel lncRNAs and mRNAs in plasma exosomes that could be involved in the pathogenesis of COPD. Methods High-throughput sequencing was conducted to detect the alterations in the expression of exosomal lncRNAs and mRNAs. Gene ontology (GO) functional analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to determine the significant functions and pathways associated with differentially expressed (DE) lncRNAs. The mRNA expression profile dataset, GSE76925, and microRNA expression profile dataset, GSE70080, were obtained from the GEO database. Venn diagrams were used to find common DE mRNAs between my mRNAs dataset and GSE76925. These common DEGs were subjected to PPI analyses to identify Hub genes. Subsequently, Venn diagrams were used to identify common genes between the target genes of DE-miRNAs and Hub genes as well as DE-miRNAs and my lncRNAs dataset. Finally, a lncRNA-miRNA-mRNA co-expression network was constructed by prediction using proprietary software. The lncRNA and mRNA expressions were then validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results We identified 1578 differentially regulated lncRNAs and 3071 differentially regulated mRNAs. GO and KEGG pathway analyses suggested that the DE lncRNAs are involved in the pathogenesis of COPD. A lncRNA-miRNA-mRNA meshwork was established to predict the potential interactions among these RNAs. RP3-329A5.8 and MRPS11 expression was then subjected to qRT-PCR for validation. Correlations between MRPS11 and clinic-pathological features were explored. Conclusion Our study provided a set of lncRNAs and mRNAs that may be involved in the pathogenesis of COPD, thereby highlighting the need for further research on both diagnostic biomarkers and molecular mechanisms.
Collapse
Affiliation(s)
- Shan Lin
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Caihong Liu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Jingting Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yinghui Guan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
5
|
Taylor AS, Tinning H, Ovchinnikov V, Edge J, Smith W, Pullinger AL, Sutton RA, Constantinides B, Wang D, Forbes K, Forde N, O'Connell MJ. A burst of genomic innovation at the origin of placental mammals mediated embryo implantation. Commun Biol 2023; 6:459. [PMID: 37100852 PMCID: PMC10133327 DOI: 10.1038/s42003-023-04809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
The origin of embryo implantation in mammals ~148 million years ago was a dramatic shift in reproductive strategy, yet the molecular changes that established mammal implantation are largely unknown. Although progesterone receptor signalling predates the origin of mammals and is highly conserved in, and critical for, successful mammal pregnancy, it alone cannot explain the origin and subsequent diversity of implantation strategies throughout the placental mammal radiation. MiRNAs are known to be flexible and dynamic regulators with a well-established role in the pathophysiology of mammal placenta. We propose that a dynamic core microRNA (miRNA) network originated early in placental mammal evolution, responds to conserved mammal pregnancy cues (e.g. progesterone), and facilitates species-specific responses. Here we identify 13 miRNA gene families that arose at the origin of placental mammals and were subsequently retained in all descendent lineages. The expression of these miRNAs in response to early pregnancy molecules is regulated in a species-specific manner in endometrial epithelia of species with extreme implantation strategies (i.e. bovine and human). Furthermore, this set of miRNAs preferentially target proteins under positive selective pressure on the ancestral eutherian lineage. Discovery of this core embryo implantation toolkit and specifically adapted proteins helps explain the origin and evolution of implantation in mammals.
Collapse
Affiliation(s)
- Alysha S Taylor
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Vladimir Ovchinnikov
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jessica Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - William Smith
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Fertility, Leeds Teaching Hospitals NHS Trust, York Road, Seacroft, Leeds, LS14 6UH, UK
| | - Anna L Pullinger
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth A Sutton
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Bede Constantinides
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Modernising Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Karen Forbes
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
6
|
Shrestha A, Dani M, Kemp P, Fertleman M. Acute Sarcopenia after Elective and Emergency Surgery. Aging Dis 2022; 13:1759-1769. [PMID: 36465176 PMCID: PMC9662269 DOI: 10.14336/ad.2022.0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 04/12/2024] Open
Abstract
Sarcopenia is an increasingly recognised condition of loss of muscle mass and function. The European Working Group on Sarcopenia in Older People 2 (EWSOP2) updated their definition in 2018, emphasising the importance of low muscle strength in diagnosis. Acute sarcopenia has been arbitrarily defined as sarcopenia lasting less than 6 months. This review highlights the pathophysiology involved in muscle wasting following surgery, focussing on hormonal factors, inflammation, microRNAs, and oxidative stress. Biomarkers such as GDF-15, IGF-1 and various microRNAs may predict post-surgical muscle loss. The impact of existing sarcopenia on various types of surgery and incident muscle wasting following surgery is also described. The gaps in research found include the need for longitudinal studies looking in changes in muscle strength and quantity following surgery. Further work is needed to examine if biomarkers are replicated in other surgery to consolidate existing theories on the pathophysiology of muscle wasting.
Collapse
Affiliation(s)
- Alvin Shrestha
- Cutrale Perioperative and Ageing group, Imperial College London, London SW7 2BX, United Kingdom
| | - Melanie Dani
- Cutrale Perioperative and Ageing group, Imperial College London, London SW7 2BX, United Kingdom
| | - Paul Kemp
- National Lung and Health Institute, Imperial College London, London SW7 2BX, United Kingdom
| | - Michael Fertleman
- Cutrale Perioperative and Ageing group, Imperial College London, London SW7 2BX, United Kingdom
| |
Collapse
|
7
|
Peñailillo L, Valladares-Ide D, Jannas-Velas S, Flores-Opazo M, Jalón M, Mendoza L, Nuñez I, Diaz-Patiño O. Effects of eccentric, concentric and eccentric/concentric training on muscle function and mass, functional performance, cardiometabolic health, quality of life and molecular adaptations of skeletal muscle in COPD patients: a multicentre randomised trial. BMC Pulm Med 2022; 22:278. [PMID: 35854255 PMCID: PMC9297587 DOI: 10.1186/s12890-022-02061-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is the third cause of death worldwide. COPD is characterised by dyspnoea, limited exercise tolerance, and muscle dysfunction. Muscle dysfunction has been linked to dysregulation between muscle protein synthesis, myogenesis and degradation mechanisms. Conventional concentric cycling has been shown to improve several clinical outcomes and reduce muscle wasting in COPD patients. Eccentric cycling is a less explored exercise modality that allows higher training workloads imposing lower cardio-metabolic demand during exercise, which has shown to induce greater muscle mass and strength gains after training. Interestingly, the combination of eccentric and concentric cycling training has scarcely been explored. The molecular adaptations of skeletal muscle after exercise interventions in COPD have shown equivocal results. The mechanisms of muscle wasting in COPD and whether it can be reversed by exercise training are unclear. Therefore, this study aims two-fold: (1) to compare the effects of 12 weeks of eccentric (ECC), concentric (CONC), and combined eccentric/concentric (ECC/CONC) cycling training on muscle mass and function, cardiometabolic health, physical activity levels and quality of life in severe COPD patients; and (2) to examine the molecular adaptations regulating muscle growth after training, and whether they occur similarly in specific muscle fibres (i.e., I, IIa and IIx). Methods Study 1 will compare the effects of 12 weeks of CONC, ECC, versus ECC/CONC training on muscle mass and function, cardiometabolic health, levels of physical activity and quality of life of severe COPD patients using a multicentre randomised trial. Study 2 will investigate the effects of these training modalities on the molecular adaptations regulating muscle protein synthesis, myogenesis and muscle degradation in a subgroup of patients from Study 1. Changes in muscle fibres morphology, protein content, genes, and microRNA expression involved in skeletal muscle growth will be analysed in specific fibre-type pools. Discussion We aim to demonstrate that a combination of eccentric and concentric exercise could maximise the improvements in clinical outcomes and may be ideal for COPD patients. We also expect to unravel the molecular mechanisms underpinning muscle mass regulation after training in severe COPD patients. Trial Registry: Deutshches Register Klinischer Studien; Trial registration: DRKS00027331; Date of registration: 12 January 2022. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027331.
Collapse
Affiliation(s)
- Luis Peñailillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 700 Fernández Concha, Las Condes, 7591538, Santiago, Chile.
| | - Denisse Valladares-Ide
- Long Active Life Laboratory, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Sebastián Jannas-Velas
- Long Active Life Laboratory, Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | | | | | - Laura Mendoza
- Respiratory Unit, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ingrid Nuñez
- Department of Pulmonary Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile.,Department of Critical Care, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Orlando Diaz-Patiño
- Department of Pulmonary Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile.,Department of Critical Care, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Mitochondrial Ribosome Dysfunction in Human Alveolar Type II Cells in Emphysema. Biomedicines 2022; 10:biomedicines10071497. [PMID: 35884802 PMCID: PMC9313339 DOI: 10.3390/biomedicines10071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary emphysema is characterized by airspace enlargement and the destruction of alveoli. Alveolar type II (ATII) cells are very abundant in mitochondria. OXPHOS complexes are composed of proteins encoded by the mitochondrial and nuclear genomes. Mitochondrial 12S and 16S rRNAs are required to assemble the small and large subunits of the mitoribosome, respectively. We aimed to determine the mechanism of mitoribosome dysfunction in ATII cells in emphysema. ATII cells were isolated from control nonsmokers and smokers, and emphysema patients. Mitochondrial transcription and translation were analyzed. We also determined the miRNA expression. Decreases in ND1 and UQCRC2 expression levels were found in ATII cells in emphysema. Moreover, nuclear NDUFS1 and SDHB levels increased, and mitochondrial transcribed ND1 protein expression decreased. These results suggest an impairment of the nuclear and mitochondrial stoichiometry in this disease. We also detected low levels of the mitoribosome structural protein MRPL48 in ATII cells in emphysema. Decreased 16S rRNA expression and increased 12S rRNA levels were observed. Moreover, we analyzed miR4485-3p levels in this disease. Our results suggest a negative feedback loop between miR-4485-3p and 16S rRNA. The obtained results provide molecular mechanisms of mitoribosome dysfunction in ATII cells in emphysema.
Collapse
|
9
|
Liu P, Wang Y, Zhang N, Zhao X, Li R, Wang Y, Chen C, Wang D, Zhang X, Chen L, Zhao D. Comprehensive identification of RNA transcripts and construction of RNA network in chronic obstructive pulmonary disease. Respir Res 2022; 23:154. [PMID: 35690768 PMCID: PMC9188256 DOI: 10.1186/s12931-022-02069-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is one of the world’s leading causes of death and a major chronic disease, highly prevalent in the aging population exposed to tobacco smoke and airborne pollutants, which calls for early and useful biomolecular predictors. Roles of noncoding RNAs in COPD have been proposed, however, not many studies have systematically investigated the crosstalk among various transcripts in this context. The construction of RNA functional networks such as lncRNA-mRNA, and circRNA-miRNA-mRNA interaction networks could therefore facilitate our understanding of RNA interactions in COPD. Here, we identified the expression of RNA transcripts in RNA sequencing from COPD patients, and the potential RNA networks were further constructed. Methods All fresh peripheral blood samples of three patients with COPD and three non-COPD patients were collected and examined for mRNA, miRNA, lncRNA, and circRNA expression followed by qRT-PCR validation. We also examined mRNA expression to enrich relevant biological pathways. lncRNA-mRNA coexpression network and circRNA-miRNA-mRNA network in COPD were constructed. Results In this study, we have comprehensively identified and analyzed the differentially expressed mRNAs, lncRNAs, miRNAs, and circRNAs in peripheral blood of COPD patients with high-throughput RNA sequencing. 282 mRNAs, 146 lncRNAs, 85 miRNAs, and 81 circRNAs were differentially expressed. GSEA analysis showed that these differentially expressed RNAs correlate with several critical biological processes such as “ncRNA metabolic process”, “ncRNA processing”, “ribosome biogenesis”, “rRNAs metabolic process”, “tRNA metabolic process” and “tRNA processing”, which might be participating in the progression of COPD. RT-qPCR with more clinical COPD samples was used for the validation of some differentially expressed RNAs, and the results were in high accordance with the RNA sequencing. Given the putative regulatory function of lncRNAs and circRNAs, we have constructed the co-expression network between lncRNA and mRNA. To demonstrate the potential interactions between circRNAs and miRNAs, we have also constructed a competing endogenous RNA (ceRNA) network of differential expression circRNA-miRNA-mRNA in COPD. Conclusions In this study, we have identified and analyzed the differentially expressed mRNAs, lncRNAs, miRNAs, and circRNAs, providing a systematic view of the differentially expressed RNA in the context of COPD. We have also constructed the lncRNA-mRNA co-expression network, and for the first time constructed the circRNA-miRNA-mRNA in COPD. This study reveals the RNA involvement and potential regulatory roles in COPD, and further uncovers the interactions among those RNAs, which will assist the pathological investigations of COPD and shed light on therapeutic targets exploration for COPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02069-8.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
| | - Yucong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ningning Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
| | - Xiaomin Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
| | - Renming Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
| | - Chen Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
| | - Dandan Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China
| | - Xiaoming Zhang
- School of Basic Medicine, Anhui Medical University, Hefei, 230601, China
| | - Liang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China.
| |
Collapse
|
10
|
Karim L, Kosmider B, Bahmed K. Mitochondrial ribosomal stress in lung diseases. Am J Physiol Lung Cell Mol Physiol 2021; 322:L507-L517. [PMID: 34873929 DOI: 10.1152/ajplung.00078.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are involved in a variety of critical cellular functions, and their impairment drives cell injury. The mitochondrial ribosome (mitoribosome) is responsible for the protein synthesis of mitochondrial DNA encoded genes. These proteins are involved in oxidative phosphorylation, respiration, and ATP production required in the cell. Mitoribosome components originate from both mitochondrial and nuclear genomes. Their dysfunction can be caused by impaired mitochondrial protein synthesis or mitoribosome misassembly, leading to a decline in mitochondrial translation. This decrease can trigger mitochondrial ribosomal stress and contribute to pulmonary cell injury, death, and diseases. This review focuses on the contribution of the impaired mitoribosome structural components and function to respiratory disease pathophysiology. We present recent findings in the fields of lung cancer, chronic obstructive pulmonary disease, interstitial lung disease, and asthma. We also include reports on the mitoribosome dysfunction in pulmonary hypertension, high altitude pulmonary edema, bacterial and viral infections. Studies of the mitoribosome alterations in respiratory diseases can lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Loukmane Karim
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Biomedical Education and Data Science, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Dong W, Wang S, Qian W, Li S, Wang P. Cedrol alleviates the apoptosis and inflammatory response of IL-1β-treated chondrocytes by promoting miR-542-5p expression. In Vitro Cell Dev Biol Anim 2021; 57:962-972. [PMID: 34893958 DOI: 10.1007/s11626-021-00620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
Cedrol has been shown to exert anti-tumor, anti-inflammatory, and anti-oxidative effects, but its role in osteoarthritis (OA) is unclear. This study aimed to explore the effect of cedrol in OA. Chondrocytes were isolated from newborn rats and cultured in Dulbecco's modified Eagle's medium (DMEM). Then, Alcian blue staining was used to identify the chondrocytes. IL-1β and cedrol were used to treat chondrocytes. Cell viability and apoptosis were measured by MTT and flow cytometry assays, respectively. The expressions of miR-542-5p, miR-26b-5p, miR-572, miR-138-5p, miR-328-3p, miR-1254, Bcl-2, Bax, iNOS, COX-2, and MMP-13 were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blot. NO and PGE2 levels were detected by ELISA. All the cells extracted from the newborn rats were dyed blue, indicating that the cells were chondrocytes. IL-1β could reduce the viability and promote apoptosis and inflammatory response of chondrocytes, while cedrol could reverse the effect of IL-1β. In addition, cedrol could significantly increase the expression of miR-542-5p in IL-1β-treated chondrocytes. Moreover, miR-542-5p inhibitor could partly reverse the effect of cedrol in the apoptosis and inflammation response of chondrocytes. Cedrol alleviated IL-1β-induced apoptosis and inflammatory response of chondrocytes by promoting miR-542-5p expression.
Collapse
Affiliation(s)
- Wangchao Dong
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine, Nanjing, China
| | - Shanshan Wang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine, Nanjing, China
| | - Suming Li
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Qinhuai District, 155 Hanzhong Road, Nanjing, 210000, Jiangsu Province, China.
| |
Collapse
|
12
|
Chen R, Lei S, Jiang T, She Y, Shi H. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs. Front Cell Dev Biol 2020; 8:577010. [PMID: 33043011 PMCID: PMC7523183 DOI: 10.3389/fcell.2020.577010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is a common complication of cachexia, characterized by progressive bodyweight loss and decreased muscle strength, and it significantly increases the risks of morbidity and mortality in the population with atrophy. Numerous complications associated with decreased muscle function can activate catabolism, reduce anabolism, and impair muscle regeneration, leading to muscle wasting. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), types of non-coding RNAs, are important for regulation of skeletal muscle development. Few studies have specifically identified the roles of miRNAs and lncRNAs in cellular or animal models of muscular atrophy during cachexia, and the pathogenesis of skeletal muscle wasting in cachexia is not entirely understood. To develop potential approaches to improve skeletal muscle mass, strength, and function, a more comprehensive understanding of the known key pathophysiological processes leading to muscular atrophy is needed. In this review, we summarize the known miRNAs, lncRNAs, and corresponding signaling pathways involved in regulating skeletal muscle atrophy in cachexia and other diseases. A comprehensive understanding of the functions and mechanisms of miRNAs and lncRNAs during skeletal muscle wasting in cachexia and other diseases will, therefore, promote therapeutic treatments for muscle atrophy.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
13
|
Kemp PR, Paul R, Hinken AC, Neil D, Russell A, Griffiths MJ. Metabolic profiling shows pre-existing mitochondrial dysfunction contributes to muscle loss in a model of ICU-acquired weakness. J Cachexia Sarcopenia Muscle 2020; 11:1321-1335. [PMID: 32677363 PMCID: PMC7567140 DOI: 10.1002/jcsm.12597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Surgery can lead to significant muscle loss, which increases recovery time and associates with increased mortality. Muscle loss is not uniform, with some patients losing significant muscle mass and others losing relatively little, and is likely to be accompanied by marked changes in circulating metabolites and proteins. Determining these changes may help understand the variability and identify novel therapeutic approaches or markers of muscle wasting. METHODS To determine the association between muscle loss and circulating metabolites, we studied 20 male patients (median age, 70.5, interquartile range, 62.5-75) undergoing aortic surgery. Muscle mass was determined before and 7 days after surgery and blood samples were taken before surgery, and 1, 3, and 7 days after surgery. The circulating metabolome and proteome were determined using commercial services (Metabolon and SomaLogic). RESULTS Ten patients lost more than 10% of the cross-sectional area of the rectus femoris (RFCSA ) and were defined as wasting. Metabolomic analysis showed that 557 circulating metabolites were altered following surgery (q < 0.05) in the whole cohort and 104 differed between wasting and non-wasting patients (q < 0.05). Weighted genome co-expression network analysis, identified clusters of metabolites, both before and after surgery, that associated with muscle mass and function (r = -0.72, p = 6 × 10-4 with RFCSA on Day 0, P = 3 × 10-4 with RFCSA on Day 7 and r = -0.73, P = 5 × 10-4 with hand-grip strength on Day 7). These clusters were mainly composed of acyl carnitines and dicarboxylates indicating that pre-existing mitochondrial dysfunction contributes to muscle loss following surgery. Surgery elevated cortisol to the same extent in wasting and non-wasting patients, but the cortisol:cortisone ratio was higher in the wasting patients (Day 3 P = 0.043 and Day 7 P = 0.016). Wasting patients also showed a greater increase in circulating nucleotides 3 days after surgery. Comparison of the metabolome with inflammatory markers identified by SOMAscan® showed that pre-surgical mitochondrial dysfunction was associated with growth differentiation factor 15 (GDF-15) (r = 0.79, P = 2 × 10-4 ) and that GDF-15, interleukin (IL)-8), C-C motif chemokine 23 (CCL-23), and IL-15 receptor subunit alpha (IL-15RA) contributed to metabolic changes in response to surgery. CONCLUSIONS We show that pre-existing mitochondrial dysfunction and reduced cortisol inactivation contribute to muscle loss following surgery. The data also implicate GDF-15 and IL-15RA in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Paul R Kemp
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| | - Richard Paul
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK.,Department of Intensive Care, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Aaron C Hinken
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA
| | - David Neil
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA
| | - Alan Russell
- Muscle Metabolism Discovery Performance Unit, GlaxoSmithKline, Inc, Collegeville, PA, USA.,Edgewise Therapeutics, Boulder, CO, USA
| | - Mark J Griffiths
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
14
|
Pavitt MJ, Tanner RJ, Lewis A, Buttery S, Mehta B, Jefford H, Curtis KJ, Banya WAS, Husain S, Satkunam K, Shrikrishna D, Man W, Polkey MI, Hopkinson NS. Oral nitrate supplementation to enhance pulmonary rehabilitation in COPD: ON-EPIC a multicentre, double-blind, placebo-controlled, randomised parallel group study. Thorax 2020; 75:547-555. [PMID: 32376732 DOI: 10.1136/thoraxjnl-2019-214278] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Dietary nitrate supplementation has been proposed as a strategy to improve exercise performance, both in healthy individuals and in people with COPD. We aimed to assess whether it could enhance the effect of pulmonary rehabilitation (PR) in COPD. METHODS This double-blind, placebo-controlled, parallel group, randomised controlled study performed at four UK centres, enrolled adults with Global Initiative for Chronic Obstructive Lung Disease grade II-IV COPD and Medical Research Council dyspnoea score 3-5 or functional limitation to undertake a twice weekly 8-week PR programme. They were randomly assigned (1:1) to either 140 mL of nitrate-rich beetroot juice (BRJ) (12.9 mmol nitrate), or placebo nitrate-deplete BRJ, consumed 3 hours prior to undertaking each PR session. Allocation used computer-generated block randomisation. MEASUREMENTS The primary outcome was change in incremental shuttle walk test (ISWT) distance. Secondary outcomes included quality of life, physical activity level, endothelial function via flow-mediated dilatation, fat-free mass index and blood pressure parameters. RESULTS 165 participants were recruited, 78 randomised to nitrate-rich BRJ and 87 randomised to placebo. Exercise capacity increased more with active treatment (n=57) than placebo (n=65); median (IQR) change in ISWT distance +60 m (10, 85) vs +30 m (0, 70), estimated treatment effect 30 m (95% CI 10 to 40); p=0.027. Active treatment also impacted on systolic blood pressure: treatment group -5.0 mm Hg (-5.0, -3.0) versus control +6.0 mm Hg (-1.0, 15.5), estimated treatment effect -7 mm Hg (95% CI 7 to -20) (p<0.0005). No significant serious adverse events or side effects were reported. CONCLUSIONS Dietary nitrate supplementation appears to be a well-tolerated and effective strategy to augment the benefits of PR in COPD. TRIAL REGISTRATION NUMBER ISRCTN27860457.
Collapse
Affiliation(s)
- Matthew J Pavitt
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Rebecca Jayne Tanner
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Adam Lewis
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Sara Buttery
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Bhavin Mehta
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Helen Jefford
- Greenwich Adult Community Health Service, Oxleas NHS Foundation Trust, Dartford, Kent, UK
| | - Katrina J Curtis
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Winston A S Banya
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Syed Husain
- Respiratory Medicine, Maidstone and Tunbridge Wells NHS Trust, Maidstone, Kent, UK
| | - Karnan Satkunam
- Greenwich Adult Community Health Service, Oxleas NHS Foundation Trust, Dartford, Kent, UK
| | - Dinesh Shrikrishna
- Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, Somerset, UK
| | - William Man
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Michael I Polkey
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Nicholas S Hopkinson
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| |
Collapse
|