1
|
Zhang C, Wang S, Lau J, Roden AC, Matteson EL, Sun J, Luo F, Tschumperlin DJ, Vassallo R. IL-23 amplifies the epithelial-mesenchymal transition of mechanically conditioned alveolar epithelial cells in rheumatoid arthritis-associated interstitial lung disease through mTOR/S6 signaling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1006-L1022. [PMID: 34585990 DOI: 10.1152/ajplung.00292.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) creates an environment facilitating fibrosis following alveolar epithelial cell injury. IL-23 has important roles in chronic autoimmune conditions like rheumatoid arthritis (RA), but its role in the interstitial lung disease that affects patients with RA is unclear. This study aimed to determine the profibrogenic role of IL-23 on somatic alveolar type I (ATI) epithelial cells. Primary ATI cells were isolated from rats and cultured on plastic dishes for 1-3 wk. After prolonged culture (≥14 days) on rigid culture dishes, primary ATI cells gradually acquired a mesenchymal phenotype, identified by decreased expression of caveolin-1, and reorganization of F-actin cytoskeleton, indicating the initiation of EMT by matrix stiffness. To determine how IL-23 promotes EMT in vitro, transitioning ATI cells, cultured on a stiff substrate for ≥14 days were stimulated with IL-23. The EMT phenotype was significantly enhanced by IL-23, which upregulated α-smooth muscle actin (α-SMA), collagen I/III protein, and decreased caveolin-1. Furthermore, IL-23 significantly promoted cell invasion, as well as apoptotic resistance on transitioning ATI cells. Mechanistically, IL-23-induced EMT was mammalian target of rapamycin/ribosomal protein S6 (mTOR/S6) signaling dependent and reversible by rapamycin. Transcriptional sequencing analysis of human lung fibrosis biopsy tissue revealed key roles for IL-23 in rheumatoid arthritis-associated interstitial lung disease (RA-ILD). This result was further validated by significantly upregulated IL-23 expression at the mRNA level in RA-ILD lung sections. Notably, transitioning ATI epithelial cells were abundantly detected in RA-ILD tissue. Taken together, these data support a role for IL-23 in the pathogenesis of RA lung fibrosis by promoting EMT in alveolar epithelial cells through mTOR/S6 signaling.
Collapse
Affiliation(s)
- Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica Lau
- Pulmonary and Critical Care Medicine, The Vancouver Clinic, Vancouver, Washington
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Eric L Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Daniel J Tschumperlin
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
2
|
Kim HT, Yin W, Jin YJ, Panza P, Gunawan F, Grohmann B, Buettner C, Sokol AM, Preussner J, Guenther S, Kostin S, Ruppert C, Bhagwat AM, Ma X, Graumann J, Looso M, Guenther A, Adelstein RS, Offermanns S, Stainier DYR. Myh10 deficiency leads to defective extracellular matrix remodeling and pulmonary disease. Nat Commun 2018; 9:4600. [PMID: 30389913 PMCID: PMC6214918 DOI: 10.1038/s41467-018-06833-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/25/2018] [Indexed: 01/18/2023] Open
Abstract
Impaired alveolar formation and maintenance are features of many pulmonary diseases that are associated with significant morbidity and mortality. In a forward genetic screen for modulators of mouse lung development, we identified the non-muscle myosin II heavy chain gene, Myh10. Myh10 mutant pups exhibit cyanosis and respiratory distress, and die shortly after birth from differentiation defects in alveolar epithelium and mesenchyme. From omics analyses and follow up studies, we find decreased Thrombospondin expression accompanied with increased matrix metalloproteinase activity in both mutant lungs and cultured mutant fibroblasts, as well as disrupted extracellular matrix (ECM) remodeling. Loss of Myh10 specifically in mesenchymal cells results in ECM deposition defects and alveolar simplification. Notably, MYH10 expression is downregulated in the lung of emphysema patients. Altogether, our findings reveal critical roles for Myh10 in alveologenesis at least in part via the regulation of ECM remodeling, which may contribute to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Hyun-Taek Kim
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Wenguang Yin
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Paolo Panza
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Beate Grohmann
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Carmen Buettner
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Anna M Sokol
- Scientific Service Group of Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Jens Preussner
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Sawa Kostin
- Scientific Service Group of Morphometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Clemens Ruppert
- Biobank, University of Giessen & Marburg Lung Center (UGLMC), Giessen, 35392, Germany
| | - Aditya M Bhagwat
- Bioinformatics Core, Weill Cornell Medicine - Qatar, Doha, PO 24144, Qatar
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Johannes Graumann
- Scientific Service Group of Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, 60323, Germany
| | - Mario Looso
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Andreas Guenther
- Biobank, University of Giessen & Marburg Lung Center (UGLMC), Giessen, 35392, Germany
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, 60323, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, 60323, Germany.
| |
Collapse
|
3
|
Higuita-Castro N, Mihai C, Hansford DJ, Ghadiali SN. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. J Appl Physiol (1985) 2014; 117:1231-42. [PMID: 25213636 DOI: 10.1152/japplphysiol.00752.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation.
Collapse
Affiliation(s)
| | - Cosmin Mihai
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio
| | - Derek J Hansford
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Biomedical Engineering Department, The Ohio State University, Columbus, Ohio; Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|