1
|
Inglis EC, Rasica L, Iannetta D, Sales KM, Keir DA, MacInnis MJ, Murias JM. Exercise training-induced speeding of V ˙ O 2 kinetics is not intensity domain-specific or correlated with indices of exercise performance. Eur J Appl Physiol 2024:10.1007/s00421-024-05674-1. [PMID: 39636436 DOI: 10.1007/s00421-024-05674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE This study examined the effect of 3 and 6 weeks of intensity domain-based exercise training onV ˙ O 2 kinetics changes and their relationship with indices of performance. METHODS Eighty-four young healthy participants (42 M, 42 F) were randomly assigned to six groups (14 participants each, age and sex-matched) consisting of: continuous cycling in the (1) moderate (MOD)-, (2) lower heavy (HVY1)-, and (3) upper heavy-intensity (HVY2)- domain; interval cycling in the (4) severe-intensity domain (i.e., high-intensity interval training (HIIT), or (5) extreme-intensity domain (i.e., sprint-interval training (SIT)); or (6) control (CON). Training participants completed two three-week phases of three supervised sessions per week, with physiological evaluations performed at PRE, MID and POST intervention. All training protocols, except SIT, were work-matched. RESULTS There was a significant time effect for the time constant ( τ V ˙ O 2 ) between PRE (31.6 ± 10.4 s) and MID (22.6 ± 6.9 s) (p < 0.05) and PRE and POST (21.8 ± 6.3 s) (p < 0.05), but no difference between MID and POST (p > 0.05) and no group or interaction effects (p > 0.05). There were no PRE to POST differences for CON (p < 0.05) in any variables. Despite significant increases in maximalV ˙ O 2 (V ˙ O 2max ), estimated lactate threshold (θLT), maximal metabolic steady state (MMSS), and peak power output (PPO) for the intervention groups (p < 0.05), there were no significant correlations from PRE to MID or MID to POST between Δ τ V ˙ O 2 and Δ V ˙ O 2max (r = - 0.221, r = 0.119), ΔPPO (r = - 0.112, r = - 0.017), ΔθLT (r = 0.083, r = 0.142) and ΔMMSS (r = - 0.213, r = 0.049)(p > 0.05). CONCLUSION This study demonstrated that (i) the rapid speeding ofV ˙ O 2 kinetics was not intensity-dependent; and (ii) changes in indices of performance were not significantly correlated with Δ τ V ˙ O 2 .
Collapse
Affiliation(s)
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Kate M Sales
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Daniel A Keir
- School of Kinesiology, Western University, London, ON, Canada
| | | | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
McDermott A, Nevin A, Gildea N, Rocha J, O'Shea D, Egaña M. Muscle deoxygenation during ramp incremental cycle exercise in older adults with type 2 diabetes. Eur J Appl Physiol 2024; 124:561-571. [PMID: 37638974 PMCID: PMC10858067 DOI: 10.1007/s00421-023-05297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To explore profiles of fractional O2 extraction (using near-infrared spectroscopy) during ramp incremental cycling in older individuals with type 2 diabetes (T2D). METHODS Twelve individuals with T2D (mean ± SD, age: 63 ± 3 years) and 12 healthy controls (mean age: 65 ± 3 years) completed a ramp cycling exercise. Rates of muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, Δ[HHb + Mb]) profiles of the vastus lateralis muscle were normalised to 100% of the response, plotted against absolute (W) and relative (%peak) power output (PO) and fitted with a double linear regression model. RESULTS Peak oxygen uptake (V̇O2peak) was significantly (P < 0.01) reduced in T2D (23.0 ± 4.2 ml.kg-1.min-1) compared with controls (28.3 ± 5.3 ml.kg-1.min-1). The slope of the first linear segment of the model was greater (median (interquartile range)) in T2D (1.06 (1.50)) than controls (0.79 (1.06)) when Δ%[HHb + Mb] was plotted as a function of PO. In addition, the onset of the second linear segment of the Δ%[HHb + Mb]/PO model occurred at a lower exercise intensity in T2D (101 ± 35 W) than controls (140 ± 34 W) and it displayed a near-plateau response in both groups. When the relationship of the Δ%[HHb + Mb] profile was expressed as a function of %PO no differences were observed in any parameters of the double linear model. CONCLUSIONS These findings suggest that older individuals with uncomplicated T2D demonstrate greater fractional oxygen extraction for a given absolute PO compared with older controls. Thus, the reductions in V̇O2peak in older people with T2D are likely influenced by impairments in microvascular O2 delivery.
Collapse
Affiliation(s)
- Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Aaron Nevin
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | | | - Donal O'Shea
- Endocrinology, St Columcille's and St Vincent's Hospitals, Dublin, Ireland
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
3
|
Piras A, Raffi M. A Narrative Literature Review on the Role of Exercise Training in Managing Type 1 and Type 2 Diabetes Mellitus. Healthcare (Basel) 2023; 11:2947. [PMID: 37998439 PMCID: PMC10671220 DOI: 10.3390/healthcare11222947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia associated with impaired carbohydrate, lipid, and protein metabolism, with concomitant absence of insulin secretion or reduced sensitivity to its metabolic effects. Patients with diabetes mellitus have a 30% more risk of developing heart failure and cardiovascular disease compared to healthy people. Heart and cardiovascular problems are the first cause of death worldwide and the main complications which lead to high healthcare costs. Such complications can be delayed or avoided by taking prescribed medications in conjunction with a healthy lifestyle (i.e., diet and physical activity). The American College of Sports Medicine and the American Diabetes Association recommend that diabetic people reduce total sedentary time by incorporating physical activity into their weekly routine. This narrative literature review aims to summarize and present the main guidelines, pre-exercise cardiovascular screening recommendations, and considerations for patients with diabetes and comorbidities who are planning to participate in physical activity programs.
Collapse
Affiliation(s)
- Alessandro Piras
- Department of Life Quality Studies, University of Bologna, 40126 Bologna, Italy
| | - Milena Raffi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Dellinger JR, Figueroa A, Gonzales JU. Reactive hyperemia half-time response is associated with skeletal muscle oxygen saturation changes during cycling exercise. Microvasc Res 2023:104569. [PMID: 37302468 DOI: 10.1016/j.mvr.2023.104569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
We investigated the relationship between muscle microvascular responses during reactive hyperemia as assessed using near-infrared spectroscopy (NIRS) with changes in skeletal muscle oxygen saturation during exercise. Thirty young untrained adults (M/W: 20/10; 23 ± 5 years) completed a maximal cycling exercise test to determine exercise intensities performed on a subsequent visit separated by seven days. At the second visit, post-occlusive reactive hyperemia was measured as changes in NIRS-derived tissue saturation index (TSI) at the left vastus lateralis muscle. Variables of interest included desaturation magnitude, resaturation rate, resaturation half-time, and hyperemic area under the curve. Afterwards, two 4-minute bouts of moderate intensity cycling followed by one bout of severe intensity cycling to fatigue took place while TSI was measured at the vastus lateralis muscle. TSI was averaged across the last 60-s of each moderate intensity bout then averaged together for analysis, and at 60-s into severe exercise. The change in TSI (∆TSI) during exercise is expressed relative to a 20 W cycling baseline. On average, the ΔTSI was -3.4 ± 2.4 % and -7.2 ± 2.8 % during moderate and severe intensity cycling, respectively. Resaturation half-time was correlated with the ΔTSI during moderate (r = -0.42, P = 0.01) and severe (r = -0.53, P = 0.002) intensity exercise. No other reactive hyperemia variable was found to correlate with ΔTSI. These results indicate that resaturation half-time during reactive hyperemia represents a resting muscle microvascular measure that associates with the degree of skeletal muscle desaturation during exercise in young adults.
Collapse
Affiliation(s)
- Jacob R Dellinger
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States of America
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States of America
| | - Joaquin U Gonzales
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States of America.
| |
Collapse
|
5
|
Kourek C, Karatzanos E, Raidou V, Papazachou O, Philippou A, Nanas S, Dimopoulos S. Effectiveness of high intensity interval training on cardiorespiratory fitness and endothelial function in type 2 diabetes: A systematic review. World J Cardiol 2023; 15:184-199. [PMID: 37124974 PMCID: PMC10130888 DOI: 10.4330/wjc.v15.i4.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic syndrome characterized by insulin resistance and hyperglycemia that may lead to endothelial dysfunction, reduced functional capacity and exercise intolerance. Regular aerobic exercise has been promoted as the most beneficial non-pharmacological treatment of cardiovascular diseases. High intensity interval training (HIIT) seems to be superior than moderate-intensity continuous training (MICT) in cardiovascular diseases by improving brachial artery flow-mediated dilation (FMD) and cardiorespiratory fitness to a greater extent. However, the beneficial effects of HIIT in patients with T2DM still remain under investigation and number of studies is limited.
AIM To evaluate the effectiveness of high intensity interval training on cardiorespiratory fitness and endothelial function in patients with T2DM.
METHODS We performed a search on PubMed, PEDro and CINAHL databases, selecting papers published between December 2012 and December 2022 and identified published randomized controlled trials (RCTs) in the English language that included community or outpatient exercise training programs in patients with T2DM. RCTs were assessed for methodological rigor and risk of bias via the Physiotherapy Evidence Database (PEDro). The primary outcome was peak VO2 and the secondary outcome was endothelial function assessed either by FMD or other indices of microcirculation.
RESULTS Twelve studies were included in our systematic review. The 12 RCTs resulted in 661 participants in total. HIIT was performed in 310 patients (46.8%), MICT to 271 and the rest 80 belonged to the control group. Peak VO2 increased in 10 out of 12 studies after HIIT. Ten studies compared HIIT with other exercise regimens (MICT or strength endurance) and 4 of them demonstrated additional beneficial effects of HIIT over MICT or other exercise regimens. Moreover, 4 studies explored the effects of HIIT on endothelial function and FMD in T2DM patients. In 2 of them, HIIT further improved endothelial function compared to MICT and/or the control group while in the rest 2 studies no differences between HIIT and MICT were observed.
CONCLUSION Regular aerobic exercise training has beneficial effects on cardiorespiratory fitness and endothelial function in T2DM patients. HIIT may be superior by improving these parameters to a greater extent than MICT.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
- Department of Cardiology, 417 Army Share Fund Hospital of Athens, Athens 11521, Greece
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
| | - Vasiliki Raidou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, National and Kapodistrian University of Athens, Athens 10676, Greece
| | - Ourania Papazachou
- Department of Cardiology, "Helena Venizelou" Hospital, Athens 10676, Greece
| | - Anastassios Philippou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, Athens 10676, Greece
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| |
Collapse
|
6
|
Liu Y, Xia Y, Yue T, Li F, Zhou A, Zhou X, Yao Y, Zhang Y, Wang Y. Adaptations to 4 weeks of high-intensity interval training in healthy adults with different training backgrounds. Eur J Appl Physiol 2023; 123:1283-1297. [PMID: 36795131 DOI: 10.1007/s00421-023-05152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE This study investigated the physical fitness and oxygen uptake kinetics ([Formula: see text]) along with the exercise-onset O2 delivery (heart rate kinetics, τHR; changes in normalized deoxyhemoglobin/[Formula: see text] ratio, Δ[HHb]/[Formula: see text]) adaptations of individuals with different physical activity (PA) backgrounds responding to 4 weeks of high-intensity interval training (HIIT), and the possible effects of skeletal muscle mass (SMM) on training-induced adaptations. METHODS Twenty subjects (10 high-PA level, HIIT-H; 10 moderate-PA level, HIIT-M) engaged in 4 weeks of treadmill HIIT. Ramp-incremental (RI) test and step-transitions to moderate-intensity exercise were performed. Cardiorespiratory fitness, body composition, muscle oxygenation status, VO2 and HR kinetics were assessed at baseline and post-training. RESULTS HIIT improved fitness status for HIIT-H ([Formula: see text], + 0.26 ± 0.07 L/min; SMM, + 0.66 ± 0.70 kg; body fat, - 1.52 ± 1.93 kg; [Formula: see text], - 7.11 ± 1.05 s, p < 0.05) and HIIT-M ([Formula: see text], 0.24 ± 0.07 L/min, SMM, + 0.58 ± 0.61 kg; body fat, - 1.64 ± 1.37 kg; [Formula: see text], - 5.48 ± 1.05 s, p < 0.05) except for visceral fat area (p = 0.293) without between-group differences (p > 0.05). Oxygenated and deoxygenated hemoglobin amplitude during the RI test increased for both groups (p < 0.05) except for total hemoglobin (p = 0.179). The Δ[HHb]/[Formula: see text] overshoot was attenuated for both groups (p < 0.05) but only eliminated in HIIT-H (1.05 ± 0.14 to 0.92 ± 0.11), and no change was observed in τHR (p = 0.144). Linear mixed-effect models presented positive effects of SMM on absolute [Formula: see text] (p < 0.001) and ΔHHb (p = 0.034). CONCLUSION Four weeks of HIIT promoted positive adaptations in physical fitness and [Formula: see text] kinetics, with the peripheral adaptations attributing to the observed improvements. The training effects are similar between groups suggesting that HIIT is effective for reaching higher physical fitness levels.
Collapse
Affiliation(s)
- Yujie Liu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yuncan Xia
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Tian Yue
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Fengya Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Aiyi Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xiaoxiao Zhou
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yibing Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yihong Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
7
|
Rocha J, Gildea N, O’Shea D, Green S, Egaña M. Priming exercise accelerates oxygen uptake kinetics during high-intensity cycle exercise in middle-aged individuals with type 2 diabetes. Front Physiol 2022; 13:1006993. [PMID: 36505082 PMCID: PMC9727537 DOI: 10.3389/fphys.2022.1006993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Background: The primary phase time constant of pulmonary oxygen uptake kinetics (V · O 2 τ p) during submaximal efforts is longer in middle-aged people with type 2 diabetes (T2D), partly due to limitations in oxygen supply to active muscles. This study examined if a high-intensity "priming" exercise (PE) would speedV · O 2 τ p during a subsequent high-intensity cycling exercise in T2D due to enhanced oxygen delivery. Methods: Eleven (4 women) middle-aged individuals with type 2 diabetes and 11 (4 women) non-diabetic controls completed four separate cycling bouts each starting at an 'unloaded' baseline of 10 W and transitioning to a high-intensity constant-load. Two of the four cycling bouts were preceded by priming exercise. The dynamics of pulmonaryV · O 2 and muscle deoxygenation (i.e. deoxygenated haemoglobin and myoglobin concentration [HHb + Mb]), were calculated from breath-by-breath and near-infrared spectroscopy data at the vastus lateralis, respectively. Results: At baselineV · O 2 τ p, was slower (p < 0.001) in the type 2 diabetes group (48 ± 6 s) compared to the control group (34 ± 2 s) but priming exercise significantly reducedV · O 2 τ p (p < 0.001) in type 2 diabetes (32 ± 6 s) so that post priming exercise it was not different compared with controls (34 ± 3 s). Priming exercise reduced the amplitude of theV · O 2 slow component (As) in both groups (type 2 diabetes: 0.26 ± 0.11 to 0.16 ± 0.07 L/min; control: 0.33 ± 0.13 to 0.25 ± 0.14 L/min, p < 0.001), while [HHb + Mb] kinetics remained unchanged. Conclusion: These results suggest that in middle-aged men and women with T2D, PE speedsV · O 2 τ p likely by a better matching of O2 delivery to utilisation and reduces theV · O 2 As during a subsequent high-intensity exercise.
Collapse
Affiliation(s)
- Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Donal O’Shea
- Endocrinology, St Columcille’s and St Vincent’s Hospitals, Dublin, Ireland
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, AU-NSW, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Tuesta M, Yáñez-Sepúlveda R, Verdugo-Marchese H, Mateluna C, Alvear-Ordenes I. Near-Infrared Spectroscopy Used to Assess Physiological Muscle Adaptations in Exercise Clinical Trials: A Systematic Review. BIOLOGY 2022; 11:biology11071073. [PMID: 36101451 PMCID: PMC9312707 DOI: 10.3390/biology11071073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary In recent years, physical exercise has been used as a therapeutic strategy in various clinical conditions, with pleiotropic benefits. Near-infrared spectroscopy (NIRS) has been positioned as a tool to analyze effects on muscle oxygenation, also allowing knowledge of adaptations on microvascular levels and muscle metabolism in subjects with central and peripheral vascular alterations, as well as cardiovascular, metabolic, and/or musculoskeletal diseases. This knowledge can help to guide therapeutic exercise specialists in decision making regarding the prescription and follow up of physical exercise as a therapeutic tool in the observation of acute or chronic adaptations to improve efficiency in the treatment and recovery of these patients. This review presents an overview of the effects of exercise clinical trials on muscle oxygenation in different pathologies and the technical characteristics related to the equipment used. Abstract Using muscle oxygenation to evaluate the therapeutic effects of physical exercise in pathologies through near-infrared spectroscopy (NIRS) is of great interest. The aim of this review was to highlight the use of muscle oxygenation in exercise interventions in clinical trials and to present the technological characteristics related to the equipment used in these studies. PubMed, WOS, and Scopus databases were reviewed up to December 2021. Scientific articles that evaluated muscle oxygenation after exercise interventions in the sick adult population were selected. The PEDro scale was used to analyze the risk of bias (internal validity). The results were presented grouped in tables considering the risk of bias scores, characteristics of the devices, and the effects of exercise on muscle oxygenation. All the stages were carried out using preferred reporting items for systematic reviews and meta-analyses (PRISMA). The search strategy yielded 820 clinical studies, of which 18 met the eligibility criteria. This review detailed the characteristics of 11 NIRS devices used in clinical trials that used physical exercise as an intervention. The use of this technology made it possible to observe changes in muscle oxygenation/deoxygenation parameters such as tissue saturation, oxyhemoglobin, total hemoglobin, and deoxyhemoglobin in clinical trials of patients with chronic disease. It was concluded that NIRS is a non-invasive method that can be used in clinical studies to detect the effects of physical exercise training on muscle oxygenation, hemodynamics, and metabolism. It will be necessary to unify criteria such as the measurement site, frequency, wavelength, and variables for analysis. This will make it possible to compare different models of exercise/training in terms of time, intensity, frequency, and type to obtain more precise conclusions about their benefits for patients.
Collapse
Affiliation(s)
- Marcelo Tuesta
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
- Laboratory of Sport Sciences, Centro de Medicina Deportiva Sports MD, Viña del Mar 2521156, Chile;
| | - Rodrigo Yáñez-Sepúlveda
- Applied Physiology Laboratory (FISAP), Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain;
- School of Education, Pedagogy in Physical Education, Universidad Viña del Mar, Viña del Mar 2572007, Chile
| | | | - Cristián Mateluna
- Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2530388, Chile;
| | - Ildefonso Alvear-Ordenes
- Applied Physiology Laboratory (FISAP), Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain;
- Correspondence:
| |
Collapse
|
9
|
Gildea N, McDermott A, Rocha J, Crognale D, Nevin A, O'Shea D, Green S, Egaña M. Low-volume HIIT and MICT speed V̇O 2 kinetics during high-intensity "work-to-work" cycling with a similar time-course in type 2 diabetes. J Appl Physiol (1985) 2022; 133:273-287. [PMID: 35678744 DOI: 10.1152/japplphysiol.00148.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the rates of adjustment in oxygen uptake (V̇O2) and muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, [HHb+Mb]) during the on-transition to high-intensity cycling initiated from an elevated baseline (work-to-work) before training and at weeks 3, 6, 9 and 12 of low-volume high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) in type 2 diabetes (T2D). Participants were randomly assigned to MICT (n=11, 50 min of moderate-intensity cycling), HIIT (n =8, 10x1 min of high-intensity cycling separated by 1-min of light cycling) or non-exercising control (n=9) groups. Exercising groups trained 3 times per week. Participants completed two work-to-work transitions at each time point consisting of sequential step increments to moderate- and high-intensity work-rates. [HHb+Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The pretraining time constant of the primary phase of V̇O2 (V̇O2τp) and the amplitude of the V̇O2 slow component (V̇O2As) of the high-intensity w-to-w bout decreased (P<0.05) by a similar magnitude at wk 3 of training in both MICT (from, 56±9 to 43±6s, and from 0.17±0.07 to 0.09±0.05 L.min-1, respectively) and HIIT (from, 56±8 to 42±6s, and from 0.18±0.05 to 0.09±0.08 L.min-1, respectively) with no further changes thereafter. No changes were reported in controls. The parameter estimates of Δ[HHb+Mb] remained unchanged in all groups. MICT and HIIT elicited comparable improvements in V̇O2 kinetics without changes in muscle deoxygenation kinetics during high-intensity exercise initiated from an elevated baseline in T2D despite training volume and time commitment being ~50% lower in the HIIT group.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Adam McDermott
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Domenico Crognale
- Institute for Sport and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland
| | - Aaron Nevin
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Green S, Kiely C, O'Connor E, Gildea N, O'Shea D, Egaña M. Differential effects of sex on adaptive responses of skeletal muscle vasodilation to exercise training in type 2 diabetes. J Diabetes Complications 2022; 36:108098. [PMID: 34887186 DOI: 10.1016/j.jdiacomp.2021.108098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
AIMS We tested the hypotheses that exercise training improves the peak and dynamic responses of leg vascular conductance (LVC) in males and females with type 2 diabetes (T2DM). METHODS Forty-one males and females with T2DM were assigned to two training groups and two control groups. Twelve weeks of aerobic/resistance training was performed three times per week, 60-90 min per session. Responses of calf muscle blood flow and systemic arterial pressure during incremental and constant-load (30% maximal voluntary contraction) intermittent plantar-flexion protocols in the supine position were recorded. RESULTS Training significantly increased peak LVC in males (4.86 ± 1.88 to 6.06 ± 2.06 ml·min-1·mm Hg-1) and females (3.91 ± 1.13 to 5.40 ± 1.38 ml·min-1·mm Hg-1) with no changes in control groups. For dynamic responses, training significantly increased the amplitude of the fast growth phase of LVC (1.81 ± 1.12 to 2.68 ± 1.01 ml·min-1·mm Hg-1) and decreased the time constant of the slow growth phase (43.6 ± 46.4 s to 16.1 14.0 s) in females, but no improvements were observed in control females or in any of the two male groups. CONCLUSIONS These data suggest that training increases the peak vasodilatory response in males and females, whereas the speed of the dynamic response of vasodilation is improved in females but not males.
Collapse
Affiliation(s)
- Simon Green
- School of Health Sciences, Western Sydney University, Sydney, Australia; School of Medicine, Western Sydney University, Sydney, Australia
| | - Catherine Kiely
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
| | - Eamonn O'Connor
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
| | - Norita Gildea
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland; Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Mikel Egaña
- School of Medicine, Department of Physiology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|