1
|
Alfaro E, Casitas R, Díaz-García E, García-Tovar S, Galera R, Torres-Vargas M, Fernández-Velilla M, López-Fernández C, Añón JM, Quintana-Díaz M, García-Río F, Cubillos-Zapata C. TGF-β1 overexpression in severe COVID-19 survivors and its implications for early-phase fibrotic abnormalities and long-term functional impairment. Front Immunol 2024; 15:1401015. [PMID: 39281687 PMCID: PMC11393737 DOI: 10.3389/fimmu.2024.1401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction In post-COVID survivors, transforming growth factor-beta-1 (TGF-β1) might mediate fibroblast activation, resulting in persistent fibrosis. Methods In this study, 82 survivors of COVID-19-associated ARDS were examined at 6- and 24-months post-ICU discharge. At 6-months, quantitative CT analysis of lung attenuation was performed and active TGF-β1 was measured in blood and exhaled breath condensate (EBC). Results At 6-months of ICU-discharge, patients with reduced DmCO/alveolar volume ratio exhibited higher plasma and EBC levels of active TGF-β1. Plasma TGF-β1 levels were elevated in dyspneic survivors and directly related to the high-attenuation lung volume. In vitro, plasma and EBC from survivors induced profibrotic changes in human primary fibroblasts in a TGF-β receptor-dependent manner. Finally, at 6-months, plasma and EBC active TGF-β1 levels discriminated patients who, 24-months post-ICU-discharge, developed gas exchange impairment. Discussion TGF-β1 pathway plays a pivotal role in the early-phase fibrotic abnormalities in COVID-19-induced ARDS survivors, with significant implications for long-term functional impairment.
Collapse
Affiliation(s)
- Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Raquel Casitas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - María Torres-Vargas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - José M. Añón
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
| | - Manuel Quintana-Díaz
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
2
|
Huntley CC, Patel K, Bil Bushra SES, Mobeen F, Armitage MN, Pye A, Knight CB, Mostafa A, Kershaw M, Mughal AZ, McKemey E, Turner AM, Burge PS, Walters GI. Pulmonary function test and computed tomography features during follow-up after SARS, MERS and COVID-19: a systematic review and meta-analysis. ERJ Open Res 2022; 8:00056-2022. [PMID: 35642193 PMCID: PMC9035766 DOI: 10.1183/23120541.00056-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 01/09/2023] Open
Abstract
Background The COVID-19 pandemic follows severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronavirus epidemics. Some survivors of COVID-19 infection experience persistent respiratory symptoms, yet their cause and natural history remain unclear. Follow-up after SARS and MERS may provide a model for predicting the long-term pulmonary consequences of COVID-19. Methods This systematic review and meta-analysis aims to describe and compare the longitudinal pulmonary function test (PFT) and computed tomography (CT) features of patients recovering from SARS, MERS and COVID-19. Meta-analysis of PFT parameters (DerSimonian and Laird random-effects model) and proportion of CT features (Freeman-Tukey transformation random-effects model) were performed. Findings Persistent reduction in the diffusing capacity for carbon monoxide following SARS and COVID-19 infection is seen at 6 months follow-up, and 12 months after MERS. Other PFT parameters recover in this time. 6 months after SARS and COVID-19, ground-glass opacity, linear opacities and reticulation persist in over 30% of patients; honeycombing and traction dilatation are reported less often. Severe/critical COVID-19 infection leads to greater CT and PFT abnormality compared to mild/moderate infection. Interpretation Persistent diffusion defects suggestive of parenchymal lung injury occur after SARS, MERS and COVID-19 infection, but improve over time. After COVID-19 infection, CT features are suggestive of persistent parenchymal lung injury, in keeping with a post-COVID-19 interstitial lung syndrome. It is yet to be determined if this is a regressive or progressive disease.
Collapse
Affiliation(s)
- Christopher C. Huntley
- Occupational and Interstitial Lung Disease Services, University Hospitals Birmingham (UHB) NHS Foundation Trust, Birmingham, UK,Institute of Applied Health Research, University of Birmingham, Birmingham, UK,Corresponding author: Christopher C. Huntley ()
| | - Ketan Patel
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK,UHB NHS Foundation Trust, Birmingham, UK
| | | | | | | | - Anita Pye
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | - Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK,UHB NHS Foundation Trust, Birmingham, UK
| | - P. Sherwood Burge
- Occupational and Interstitial Lung Disease Services, University Hospitals Birmingham (UHB) NHS Foundation Trust, Birmingham, UK
| | - Gareth I. Walters
- Occupational and Interstitial Lung Disease Services, University Hospitals Birmingham (UHB) NHS Foundation Trust, Birmingham, UK,Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Cameli P, Bargagli E, Bergantini L, d’Alessandro M, Giugno B, Gentili F, Sestini P. Alveolar Nitric Oxide as a Biomarker of COVID-19 Lung Sequelae: A Pivotal Study. Antioxidants (Basel) 2021; 10:antiox10091350. [PMID: 34572982 PMCID: PMC8471694 DOI: 10.3390/antiox10091350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Since SARS-CoV-2 emerged in 2019, strict monitoring of post-COVID-19 patients in order to ensure the early detection of sequelae and/or chronic organ damage that could been associated with the infection has been essential. Potential involvement of the NO pathway in the development of post-COVID-19 lung fibrotic alterations is feasible, since the majority of respiratory cells can produce NO, and fractional exhaled NO (FeNO) represents a biomarker of airway inflammation. The aim of this study was to investigate the potential utility of multiple-flow FeNO parameters in a post-COVID-19 population and to compare it with other indicators of lung damage proposed in the literature. We enrolled 20 patients hospitalized for COVID-19, who underwent clinical, respiratory functional (including PFTs and FeNO) and radiological follow-up after discharge. Compared with age- and sex-matched healthy controls, post-COVID-19 patients showed significantly higher FeNO 350 mL/s and CaNO levels. Moreover, among the parameters included in the follow-up, CaNO showed the best accuracy in indicating predominant fibrotic changes and GGO at CT scan. To our knowledge, this preliminary study has investigated for the first time multiple-flow FeNO parameters in a post-COVID-19 population. The evidence of increased CaNO values may imply the persistence of alveolar and bronchiolar inflammation and/or a mild impairment of the alveolar-capillary membrane in these patients.
Collapse
Affiliation(s)
- Paolo Cameli
- Respiratory Diseases Unit, Department of Medical Sciences, Siena University Hospital, 53100 Siena, Italy; (E.B.); (L.B.); (M.d.); (B.G.); (P.S.)
- Correspondence:
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical Sciences, Siena University Hospital, 53100 Siena, Italy; (E.B.); (L.B.); (M.d.); (B.G.); (P.S.)
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medical Sciences, Siena University Hospital, 53100 Siena, Italy; (E.B.); (L.B.); (M.d.); (B.G.); (P.S.)
| | - Miriana d’Alessandro
- Respiratory Diseases Unit, Department of Medical Sciences, Siena University Hospital, 53100 Siena, Italy; (E.B.); (L.B.); (M.d.); (B.G.); (P.S.)
| | - Bruna Giugno
- Respiratory Diseases Unit, Department of Medical Sciences, Siena University Hospital, 53100 Siena, Italy; (E.B.); (L.B.); (M.d.); (B.G.); (P.S.)
| | - Francesco Gentili
- Unit of Diagnostic Imaging, University Hospital Santa Maria alle Scotte, 53100 Siena, Italy;
| | - Piersante Sestini
- Respiratory Diseases Unit, Department of Medical Sciences, Siena University Hospital, 53100 Siena, Italy; (E.B.); (L.B.); (M.d.); (B.G.); (P.S.)
| |
Collapse
|
4
|
Núñez-Fernández M, Ramos-Hernández C, García-Río F, Torres-Durán M, Nodar-Germiñas A, Tilve-Gómez A, Rodríguez-Fernández P, Valverde-Pérez D, Ruano-Raviña A, Fernández-Villar A. Alterations in Respiratory Function Test Three Months after Hospitalisation for COVID-19 Pneumonia: Value of Determining Nitric Oxide Diffusion. J Clin Med 2021; 10:jcm10102119. [PMID: 34068867 PMCID: PMC8153552 DOI: 10.3390/jcm10102119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Three to four months after hospitalisation for COVID-19 pneumonia, the most frequently described alteration in respiratory function tests (RFTs) is decreased carbon monoxide transfer capacity (DLCO). Methods: This is a prospective cohort study that included patients hospitalised because of SARS-CoV-2 pneumonia, three months after their discharge. A clinical evaluation, analytical parameters, chest X-ray, six-minute walk test, spirometry and DLCO–DLNO analysis were performed. Demographic variables, comorbidities, and variables related to the severity of the admission were recorded. Results: Two hundred patients completed the study; 59.5% men, age 62 years, 15.5% admitted to the intensive care unit. The most frequent functional alteration, in 27% of patients, was in the DLCO–DLNO combination. This alteration was associated with age, male sex, degree of dyspnoea, poorer perception of health, and limited ability for physical effort. These patients also presented higher levels of D-Dimer and more residual radiological alterations. In 42% of the patients with diffusion alterations, only reduced DLNO was presented, along with lower D-Dimer levels and less capillary volume involvement. The severity of the process was associated with the reduction in DLCO–DLNO. Conclusions: The most sensitive RFT for the detection of the sequelae of COVID-19 pneumonia was the combined measurement of DLCO–DLNO and this factor was related to patient health status and their capacity for physical exertion. In 40% of these cases, there was only a reduction in DLNO, a finding that may indicate less pulmonary vascular involvement.
Collapse
Affiliation(s)
- Marta Núñez-Fernández
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
| | - Cristina Ramos-Hernández
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
| | - Francisco García-Río
- Service of Pneumology La Paz-IdiPAZ University Hospital, 28046 Madrid, Spain;
- CIBER Respiratory Diseases (CIBERES), 28046 Madrid, Spain
- Department of Medicine, University Autónoma de Madrid, 28046 Madrid, Spain
| | - María Torres-Durán
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
| | - Andrés Nodar-Germiñas
- Infectious Diseases Unit, Service of Internal Medicine, University Hospital Complex of Vigo, 36213 Vigo, Spain;
| | - Amara Tilve-Gómez
- Service of Radiodiagnosis, University Hospital Complex of Vigo, 36213 Vigo, Spain; (A.T.-G.); (P.R.-F.)
| | - Paula Rodríguez-Fernández
- Service of Radiodiagnosis, University Hospital Complex of Vigo, 36213 Vigo, Spain; (A.T.-G.); (P.R.-F.)
| | - Diana Valverde-Pérez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
| | - Alberto Ruano-Raviña
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, 15704 Santiago de Compostela, Spain;
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 15704 Santiago de Compostela, Spain
| | - Alberto Fernández-Villar
- Service of Pneumology, University Hospital Complex of Vigo, NeumoVigo I+i. Institute of Health Research South Galicia (IISGS), 36213 Vigo, Spain; (M.N.-F.); (C.R.-H.); (M.T.-D.)
- Correspondence:
| |
Collapse
|
5
|
Barisione G, Brusasco V. Lung diffusing capacity for nitric oxide and carbon monoxide following mild-to-severe COVID-19. Physiol Rep 2021; 9:e14748. [PMID: 33625799 PMCID: PMC7903940 DOI: 10.14814/phy2.14748] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
A decreased lung diffusing capacity for carbon monoxide (DLCO ) has been reported in a variable proportion of subjects over the first 3 months of recovery from severe coronavirus disease 2019 (COVID-19). In this study, we investigated whether measurement of lung diffusing capacity for nitric oxide (DLNO ) offers additional insights on the presence and mechanisms of gas transport abnormalities. In 94 subjects, recovering from mild-to-severe COVID-19 pneumonia, we measured DLNO and DLCO between 10 and 266 days after each patient was tested negative for severe acute respiratory syndrome coronavirus 2. In 38 subjects, a chest computed tomography (CT) was available for semiquantitative analysis at six axial levels and automatic quantitative analysis of entire lungs. DLNO was abnormal in 57% of subjects, independent of time of lung function testing and severity of COVID-19, whereas standard DLCO was reduced in only 20% and mostly within the first 3 months. These differences were not associated with changes of simultaneous DLNO /DLCO ratio, while DLCO /VA and DLNO /VA were within normal range or slightly decreased. DLCO but not DLNO positively correlated with recovery time and DLCO was within the normal range in about 90% of cases after 3 months, while DLNO was reduced in more than half of subjects. Both DLNO and DLCO inversely correlated with persisting CT ground glass opacities and mean lung attenuation, but these were more frequently associated with DLNO than DLCO decrease. These data show that an impairment of DLNO exceeding standard DLCO may be present during the recovery from COVID-19, possibly due to loss of alveolar units with alveolar membrane damage, but relatively preserved capillary volume. Alterations of gas transport may be present even in subjects who had mild COVID-19 pneumonia and no or minimal persisting CT abnormalities. TRIAL REGISTRY: ClinicalTrials.gov PRS: No.: NCT04610554 Unique Protocol ID: SARS-CoV-2_DLNO 2020.
Collapse
Affiliation(s)
- Giovanni Barisione
- Struttura Semplice Fisiopatologia Respiratoria, Clinica Malattie Respiratorie e Allergologia, Dipartimento di Medicina Interna e Specialità Mediche, Università di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Vito Brusasco
- Centro Polifunzionale di Scienze Motorie, Dipartimento di Medicina Sperimentale, Università di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
6
|
Barisione G, Garlaschi A, Occhipinti M, Baroffio M, Pistolesi M, Brusasco V. Value of lung diffusing capacity for nitric oxide in systemic sclerosis. Physiol Rep 2020; 7:e14149. [PMID: 31264386 PMCID: PMC6603284 DOI: 10.14814/phy2.14149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Abstract
A decreased lung diffusing capacity for carbon monoxide (DLCO ) in systemic sclerosis (SSc) is considered to reflect losses of alveolar membrane diffusive conductance for CO (DMCO ), due to interstitial lung disease, and/or pulmonary capillary blood volume (VC ), due to vasculopathy. However, standard DLCO does not allow separate DMCO from VC . Lung diffusing capacity for nitric oxide (DLNO ) is considered to be more sensitive to decrement of alveolar membrane diffusive conductance than DLCO . Standard DLCO and DLNO were compared in 96 SSc subjects with or without lung restriction. Data showed that DLNO was reduced in 22% of subjects with normal lung volumes and DLCO , whereas DLCO was normal in 30% of those with decreased DLNO . In 30 subjects with available computed tomography of the chest, both DLCO and DLNO were negatively correlated with the extent of pulmonary fibrosis. However, DLNO but not DLCO was always reduced in subjects with ≥ 5% fibrosis, and also decreased in some subjects with < 5% fibrosis. DMCO and VC partitioning and Doppler ultrasound-determined systolic pulmonary artery pressure could not explain individual differences in DLCO and DLNO . DLNO may be of clinical value in SSc because it is more sensitive to DMCO loss than standard DLCO , even in nonrestricted subjects without fibrosis, whereas DLCO partitioning into its subcomponents does not provide information on whether diffusion limitation is primarily due to vascular or interstitial lung disease in individual subjects. Moreover, decreased DLCO in the absence of lung restriction does not allow to suspect pulmonary arterial hypertension without fibrosis.
Collapse
Affiliation(s)
- Giovanni Barisione
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Alessandro Garlaschi
- Dipartimento della Diagnostica per Immagini e Radioterapia, Ospedale Policlinico San Martino - IRCCS, Genova, Italy
| | - Mariaelena Occhipinti
- Dipartimento di Medicina Sperimentale e Clinica, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Michele Baroffio
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Massimo Pistolesi
- Dipartimento di Medicina Sperimentale e Clinica, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Vito Brusasco
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| |
Collapse
|
7
|
D R Borland C, B Hughes JM. Lung Diffusing Capacities (D L ) for Nitric Oxide (NO) and Carbon Monoxide (CO): The Evolving Story. Compr Physiol 2019; 10:73-97. [PMID: 31853952 DOI: 10.1002/cphy.c190001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitric oxide and carbon monoxide diffusing capacities (DLNO and DLCO ) obey Fick's First Law of Diffusion and the basic principles of chemical kinetic theory. NO gas transfer is dominated by membrane diffusion (DM ), whereas CO transfer is limited by diffusion plus chemical reaction within the red cell. Marie Krogh, who pioneered the single-breath measurement of DLCO in 1915, believed that the combination of CO with red cell hemoglobin (Hb) was instantaneous. Roughton and colleagues subsequently showed, in vitro, that the reaction rate was finite, and prolonged in the presence of high P O 2 . Roughton and Forster (R-F) proposed that the resistance to transfer (1/DL ) was the sum of the membrane resistance (1/DM ) and (1/θVc), the red cell resistance (θ being the CO or NO conductance for blood uptake and Vc the capillary volume). From this R-F equation, DM for CO and Vc can be solved with simultaneous NO and CO inhalation. At near maximum exercise, DMCO and Vc for normal subjects were 88% and 79%, respectively, of morphometric values. The validity of these calculations depends on the values chosen for θ for CO and NO, and on the diffusivity of NO versus CO. Recent mathematical modeling suggests that θ for NO is "effectively" infinite because NO reacts only with Hb in the outer 0.1 μM of the red cell. An "infinite θNO " recalculation reduced DMCO to 53% and increased Vc to 95% of morphometric values. © 2020 American Physiological Society. Compr Physiol 10:73-97, 2020.
Collapse
Affiliation(s)
| | - J Mike B Hughes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
8
|
Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev 2018; 27:27/147/170062. [PMID: 29367408 PMCID: PMC9489199 DOI: 10.1183/16000617.0062-2017] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
The clinical expression of idiopathic pulmonary fibrosis (IPF) is directly related to multiple alterations in lung function. These alterations derive from a complex disease process affecting all compartments of the lower respiratory system, from the conducting airways to the lung vasculature. In this article we review the profound alterations in lung mechanics (reduced lung compliance and lung volumes), pulmonary gas exchange (reduced diffusing capacity, increased dead space ventilation, chronic arterial hypoxaemia) and airway physiology (increased cough reflex and increased airway volume), as well as pulmonary haemodynamics related to IPF. The relative contribution of these alterations to exertional limitation and dyspnoea in IPF is discussed. Physiological impairment in IPF is complex and involves all compartments of the respiratory systemhttp://ow.ly/gyao30hdHUb
Collapse
|
9
|
Can the measurement of pulmonary diffusing capacity for nitric oxide replace the measurement of pulmonary diffusing capacity for carbon monoxide? Respir Physiol Neurobiol 2017; 241:9-16. [DOI: 10.1016/j.resp.2016.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
|
10
|
Hughes J, Dinh-Xuan A. The DL NO /DL CO ratio: Physiological significance and clinical implications. Respir Physiol Neurobiol 2017; 241:17-22. [DOI: 10.1016/j.resp.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
11
|
Giraud X, Le-Dong NN, Hogben K, Martinot JB. The measurement of DLNO and DLCO: A manufacturer's perspective. Respir Physiol Neurobiol 2017; 241:36-44. [PMID: 28214604 DOI: 10.1016/j.resp.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 02/01/2023]
Abstract
The simultaneous measurement of the lung transfer factor for carbon monoxide (DLCO) and nitric oxide (DLNO) is now available as a powerful method for studying the alveolar-capillary gas exchange. However, application of the DLNO-CO technique in daily settings is still limited by some technical drawbacks. This paper provides a manufacturer's overview of the measuring principles, technical challenges and current available solutions for implementing the DLNO-CO measurement in to a marketed device. This includes the recent developments in technology for NO sensors, latest findings on NO uptake and new statistical methods.
Collapse
Affiliation(s)
- X Giraud
- Medisoft-MGCD, Sorinnes, Belgium
| | - N N Le-Dong
- RespiSom Private Research Medical Center, Namur, Belgium.
| | - K Hogben
- Medisoft-MGCD, Sorinnes, Belgium
| | - J B Martinot
- CHU-UCL Namur, Place Louise Godin 15, 5000, Namur, Belgium
| |
Collapse
|