1
|
Horii M, Bumrungkit C, Yanaka N, Hawke TJ, Rebalka IA, Kumrungsee T. Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice. Am J Physiol Cell Physiol 2025; 328:C967-C985. [PMID: 39907750 DOI: 10.1152/ajpcell.00963.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Though γ-aminobutyric acid (GABA) serves as the primary inhibitory neurotransmitter in the brain, its numerous biological activities in the periphery, including anti-inflammatory and antidiabetic functions, have been documented. In addition, GABA may be a mediator underlying effects of ketone bodies/ketogenic diets on muscle regeneration. Here, we investigated the effects of GABA on muscle regeneration in type 1 diabetes mouse models. Akita and wild-type (WT) mice were treated with GABA in drinking water for 6 wk, followed by cardiotoxin (CTX)-induced muscle injury. At 5 days postinjury, GABA treatment exhibited no effects on regenerating myofiber size in both WT and Akita mice. Unexpectedly, regenerating GABA-treated Akita muscles exhibited significantly increased embryonic myosin heavy chain (eMHC) expression and higher intramuscular macrophage content, suggesting delays in muscle regeneration and in elevated macrophage infiltration in diabetic muscles. Next, we determined if GABA treatment delayed the inflammatory process during muscle regeneration. Providing GABA in the drinking water during the peak inflammatory period (days 0-5 postinjury) resulted in a significantly greater amount of small regenerating myofibers and higher expressions of TNFα and eMHC in regenerating streptozotocin (STZ)-diabetic muscles, indicating delays in inflammation process and muscle regeneration in diabetes. Plasma GABA levels were found higher in GABA-treated STZ mice than in WT mice and negatively correlated with regenerating myofiber size. This delay in muscle regeneration in STZ-diabetic mice was abolished by a lower dose of GABA water that did not raise plasma GABA levels. Together, high doses of GABA intake during the early phases of muscle repair may delay regeneration.NEW & NOTEWORTHY With increasing evidence that ketogenic diets improve aspects of muscle health (e.g., insulin sensitivity and mitochondrial function), we hypothesized that supplementation with GABA-a key metabolite changed with ketogenic diets-would improve muscle recovery from injury. Unexpectedly, GABA supplementation during the early inflammatory phases of muscle regeneration delayed muscle repair in type 1 diabetes mice, possibly due to inflammation suppression. Further work is needed to ascertain the effective use of GABA supplementation, particularly following intense or damaging exercise.
Collapse
MESH Headings
- Animals
- Regeneration/drug effects
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/administration & dosage
- gamma-Aminobutyric Acid/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Mice
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Male
- Mice, Inbred C57BL
- Administration, Oral
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
Collapse
Affiliation(s)
- Mayu Horii
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Chanikan Bumrungkit
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Sun Y, Pu Z, Zhao H, Deng Y, Zhang J, Li S, Jiang Y, Sun M, Zhu J, Alam A, Ma D, Han R. Vitamin D can mitigate sepsis-associated neurodegeneration by inhibiting exogenous histone-induced pyroptosis and ferroptosis: Implications for brain protection and cognitive preservation. Brain Behav Immun 2025; 124:40-54. [PMID: 39566666 DOI: 10.1016/j.bbi.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Sepsis-induced neurodegeneration and cognitive dysfunction remain critical challenges worldwide. Vitamin D was reported to reduce neuronal injury and neurotoxicity and its deficiency was associated with neurocognitive disorders. This study investigates the mechanisms by which vitamin D exerts neuroprotective potential against damage-associated molecular patterns (DAMPs), specifically extracellular histones, in sepsis-related brain dysfunction. METHODS The cultured mouse hippocampal neuronal HT22 cells were exposed to 20 µg/ml exogenous histone for 24 h to induce pyroptosis and ferroptosis in the presence or absence of the active form of vitamin D, calcitriol (1 nM). A cecal ligation and puncture mouse sepsis model was used to evaluate histone release and pyroptosis/ferroptosis biomarkers in the brain together with neurobehavioral performance with or without calcitriol treatment (1 µg/kg, i.p. injection) at 24 h or 1 week after sepsis onset. RESULTS In vitro, histone exposure triggered both pyroptosis and ferroptosis in neuronal cells, which was significantly suppressed by calcitriol treatment with the reduced expression of caspase-1 by 38 %, GSDMD by 30 %, ACSL4 by 33 %, and the increased expression of GPX4 by 35 % (n = 6, P < 0.05). Similarly, in vivo, calcitriol treatment inhibited both neuronal pyroptosis and ferroptosis by reducing expression of pyroptosis marker, GSDMD/NeuN (11.6 ± 1.2 % vs. 19.4 ± 1.1 %) and increasing expression of ferroptosis marker, GPX4/NeuN (21.4 ± 1.7 % vs. 13.5 ± 1.1 %), in the brain of septic mice (n = 6, P < 0.01). In addition, calcitriol increased survival rate (72 % vs. 41 %) and ameliorated cognitive dysfunction of septic mice (n = 8-13, P < 0.05). CONCLUSIONS This study demonstrates that vitamin D exerts a neuroprotective effect against sepsis by attenuating histone-induced pyroptosis and ferroptosis. These findings highlight the potential therapeutic role of vitamin D supplementation in mitigating brain dysfunction associated with sepsis which needs for further investigation.
Collapse
Affiliation(s)
- Yibing Sun
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yuxuan Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jing Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Shiwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yingying Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Ming Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jinpiao Zhu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China.
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
3
|
Wageh M, Fortino SA, Pontello R, Maklad A, McGlory C, Kumbhare D, Phillips SM, Parise G. The Effect of Multi-Ingredient Protein versus Collagen Supplementation on Satellite Cell Properties in Males and Females. Med Sci Sports Exerc 2024; 56:2125-2134. [PMID: 39475860 DOI: 10.1249/mss.0000000000003505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Skeletal muscle satellite cells (SC) contribute to the adaptive process of resistance exercise training (RET) and may be influenced by nutritional supplementation. However, little research exists on the impact of multi-ingredient supplementation on the SC response to RET. PURPOSE We tested the effect of a multi-ingredient supplement (MIS) including whey protein, creatine, leucine, calcium citrate, and vitamin D on SC content and activity as well as myonuclear accretion, SC and myonuclear domain compared with a collagen control (COL) throughout a 10-wk RET program. METHODS Twenty-six participants underwent a 10-wk linear RET program while consuming either the MIS or COL supplement twice daily. Muscle biopsies were taken from the vastus lateralis at baseline and 48 h after a bout of damaging exercise, before and after RET. Muscle tissue was analyzed for SC and myonuclear content, domain, acute SC activation, and fiber cross-sectional area (fCSA). RESULTS MIS resulted in a greater increase in type II fCSA following 10 wk of RET (effect size (ES) = 0.89) but not myonuclear accretion or SC content. Change in myonuclei per fiber was positively correlated with type I and II and total fiber hypertrophy in the COL group only, indicating a robust independent effect of MIS on fCSA. Myonuclear domain increased similarly in both groups, whereas SC domain remained unchanged following RET. SC activation was similar between groups for all fiber types in the untrained state but showed a trend toward greater increases with MIS after RET (ES = 0.70). CONCLUSIONS SC responses to acute damaging exercise and long-term RET are predominantly similar in MIS and COL groups. However, MIS can induce greater increases in type II fCSA with RET and potentially SC activation following damage in the trained state.
Collapse
Affiliation(s)
- Mai Wageh
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Stephen A Fortino
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Riley Pontello
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Ahmed Maklad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
4
|
Han P, Chen X, Liang Z, Liu Y, Yu X, Song P, Zhao Y, Zhang H, Zhu S, Shi X, Guo Q. Metabolic signatures and risk of sarcopenia in suburb-dwelling older individuals by LC-MS-based untargeted metabonomics. Front Endocrinol (Lausanne) 2024; 15:1308841. [PMID: 38962681 PMCID: PMC11220188 DOI: 10.3389/fendo.2024.1308841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Background Untargeted metabonomics has provided new insight into the pathogenesis of sarcopenia. In this study, we explored plasma metabolic signatures linked to a heightened risk of sarcopenia in a cohort study by LC-MS-based untargeted metabonomics. Methods In this nested case-control study from the Adult Physical Fitness and Health Cohort Study (APFHCS), we collected blood plasma samples from 30 new-onset sarcopenia subjects (mean age 73.2 ± 5.6 years) and 30 healthy controls (mean age 74.2 ± 4.6 years) matched by age, sex, BMI, lifestyle, and comorbidities. An untargeted metabolomics methodology was employed to discern the metabolomic profile alterations present in individuals exhibiting newly diagnosed sarcopenia. Results In comparing individuals with new-onset sarcopenia to normal controls, a comprehensive analysis using liquid chromatography-mass spectrometry (LC-MS) identified a total of 62 metabolites, predominantly comprising lipids, lipid-like molecules, organic acids, and derivatives. Receiver operating characteristic (ROC) curve analysis indicated that the three metabolites hypoxanthine (AUC=0.819, 95% CI=0.711-0.927), L-2-amino-3-oxobutanoic acid (AUC=0.733, 95% CI=0.598-0.868) and PC(14:0/20:2(11Z,14Z)) (AUC= 0.717, 95% CI=0.587-0.846) had the highest areas under the curve. Then, these significant metabolites were observed to be notably enriched in four distinct metabolic pathways, namely, "purine metabolism"; "parathyroid hormone synthesis, secretion and action"; "choline metabolism in cancer"; and "tuberculosis". Conclusion The current investigation elucidates the metabolic perturbations observed in individuals diagnosed with sarcopenia. The identified metabolites hold promise as potential biomarkers, offering avenues for exploring the underlying pathological mechanisms associated with sarcopenia.
Collapse
Affiliation(s)
- Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Xiaoyu Chen
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhenwen Liang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuewen Liu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xing Yu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Peiyu Song
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Yinjiao Zhao
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Hui Zhang
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| | - Shuyan Zhu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Shi
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Jiangwan Hospital of Shanghai Hongkou District, Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
5
|
Hirunsai M, Srikuea R. Differential effects of cholecalciferol and calcitriol on muscle proteolysis and oxidative stress in angiotensin II-induced C2C12 myotube atrophy. Physiol Rep 2024; 12:e16011. [PMID: 38627219 PMCID: PMC11021198 DOI: 10.14814/phy2.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Renin-angiotensin system activation contributes to skeletal muscle atrophy in aging individuals with chronic diseases. We aimed to explore the effects of cholecalciferol (VD3) and calcitriol (1,25VD3) on signaling of muscle proteolysis and oxidative stress in myotubes challenged with angiotensin II (AII). The mouse C2C12 myotubes were assigned to vehicle, AII, AII + VD3, AII + 1,25VD3, and AII + losartan groups. The expression levels of muscle-specific E3 ubiquitin ligase proteins, autophagy-related proteins, and oxidative stress markers were investigated. We demonstrated the diverse effects of VD3 and 1,25VD3 on AII-induced myotube atrophy. The myotube diameter was preserved by treatment with 100 nM VD3 and losartan, while 1 and 10 nM 1,25VD3 increased levels of FoxO3a, MuRF1, and atrogin-1 protein expression in myotubes exposed to AII. Treatment with AII + 10 nM 1,25VD3 resulted in the upregulation of LC3B-II, LC3B-II/LC3B-I, and mature cathepsin L, which are autophagic marker proteins. The p62/SQSTM1 protein was downregulated and vitamin D receptor was upregulated after treatment with AII + 10 nM 1,25VD3. A cellular redox imbalance was observed as AII + 10 nM 1,25VD3-induced reactive oxygen species and NADPH oxidase-2 overproduction, and these changes were associated with an inadequate response of antioxidant superoxide dismutase-1 and catalase proteins. Collectively, these findings provide a translational perspective on the role of vitamin D3 in alleviating muscle atrophy related to high levels of AII.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of PharmacySrinakharinwirot UniversityNakhon NayokThailand
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
6
|
Agoncillo M, Yu J, Gunton JE. The Role of Vitamin D in Skeletal Muscle Repair and Regeneration in Animal Models and Humans: A Systematic Review. Nutrients 2023; 15:4377. [PMID: 37892452 PMCID: PMC10609905 DOI: 10.3390/nu15204377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Vitamin D deficiency, prevalent worldwide, is linked to muscle weakness, sarcopenia, and falls. Muscle regeneration is a vital process that allows for skeletal muscle tissue maintenance and repair after injury. PubMed and Web of Science were used to search for studies published prior to May 2023. We assessed eligible studies that discussed the relationship between vitamin D, muscle regeneration in this review. Overall, the literature reports strong associations between vitamin D and skeletal myocyte size, and muscle regeneration. In vitro studies in skeletal muscle cells derived from mice and humans showed vitamin D played a role in regulating myoblast growth, size, and gene expression. Animal studies, primarily in mice, demonstrate vitamin D's positive effects on skeletal muscle function, such as improved grip strength and endurance. These studies encompass vitamin D diet research, genetically modified models, and disease-related mouse models. Relatively few studies looked at muscle function after injury, but these also support a role for vitamin D in muscle recovery. The human studies have also reported that vitamin D deficiency decreases muscle grip strength and gait speed, especially in the elderly population. Finally, human studies reported the benefits of vitamin D supplementation and achieving optimal serum vitamin D levels in muscle recovery after eccentric exercise and surgery. However, there were no benefits in rotator cuff injury studies, suggesting that repair mechanisms for muscle/ligament tears may be less reliant on vitamin D. In summary, vitamin D plays a crucial role in skeletal muscle function, structural integrity, and regeneration, potentially offering therapeutic benefits to patients with musculoskeletal diseases and in post-operative recovery.
Collapse
Affiliation(s)
- Miguel Agoncillo
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
| | - Josephine Yu
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney 2145, Australia
| |
Collapse
|
7
|
Srikuea R, Hirunsai M. TGF-β1 stimulation and VDR-dependent activation modulate calcitriol action on skeletal muscle fibroblasts and Smad signalling-associated fibrogenesis. Sci Rep 2023; 13:13811. [PMID: 37612333 PMCID: PMC10447566 DOI: 10.1038/s41598-023-40978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Fibroblasts play a pivotal role in fibrogenesis after skeletal muscle injury. Excess fibrous formation can disrupt contractile functions and delay functional recovery. Although vitamin D receptor (VDR) is expressed explicitly in regenerating muscle compared with uninjured muscle, how calcitriol [1α,25(OH)2D3] directly regulates skeletal muscle primary fibroblast proliferation, the transition to myofibroblasts, and Smad signalling-associated fibrogenesis is currently unknown. Herein, the effects of calcitriol on cultured skeletal muscle primary fibroblasts of male C57BL/6 mice (aged 1 month old) were investigated. The percentage of BrdU+ nuclei in primary fibroblasts was significantly decreased after calcitriol treatment; however, the antiproliferative effect of calcitriol was diminished after TGF-β1 stimulation to induce fibroblast to myofibroblast transition. This suppressive effect was associated with significantly decreased VDR expression in TGF-β1-treated cells. In addition, Vdr siRNA transfection abolished the effects of calcitriol on the suppression of α-SMA expression and Smad2/3 signalling in myofibroblasts, supporting that its antifibrogenic effect requires VDR activation. Compared with calcitriol, the antifibrotic agent suramin could inhibit fibroblast/myofibroblast proliferation and suppress the expression of TCF-4, which regulates fibrogenic determination. Collectively, these findings suggest that profibrotic stimulation and VDR-dependent activation could modulate the effects of calcitriol on skeletal muscle fibroblast proliferation and fibrogenesis processes. Therefore, TGF-β1 and VDR expression levels are crucial determinants for the antifibrogenic effect of calcitriol on skeletal muscle after injury.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
8
|
Vitamin D as a Shield against Aging. Int J Mol Sci 2023; 24:ijms24054546. [PMID: 36901976 PMCID: PMC10002864 DOI: 10.3390/ijms24054546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Aging can be seen as a physiological progression of biomolecular damage and the accumulation of defective cellular components, which trigger and amplify the process, toward whole-body function weakening. Senescence initiates at the cellular level and consists in an inability to maintain homeostasis, characterized by the overexpression/aberrant expression of inflammatory/immune/stress responses. Aging is associated with significant modifications in immune system cells, toward a decline in immunosurveillance, which, in turn, leads to chronic elevation of inflammation/oxidative stress, increasing the risk of (co)morbidities. Albeit aging is a natural and unavoidable process, it can be regulated by some factors, like lifestyle and diet. Nutrition, indeed, tackles the mechanisms underlying molecular/cellular aging. Many micronutrients, i.e., vitamins and elements, can impact cell function. This review focuses on the role exerted by vitamin D in geroprotection, based on its ability to shape cellular/intracellular processes and drive the immune response toward immune protection against infections and age-related diseases. To this aim, the main biomolecular paths underlying immunosenescence and inflammaging are identified as biotargets of vitamin D. Topics such as heart and skeletal muscle cell function/dysfunction, depending on vitamin D status, are addressed, with comments on hypovitaminosis D correction by food and supplementation. Albeit research has progressed, still limitations exist in translating knowledge into clinical practice, making it necessary to focus attention on the role of vitamin D in aging, especially considering the growing number of older individuals.
Collapse
|
9
|
Huang K, Wang DD, Hu WB, Zeng WQ, Xu X, Li QX, Bi FF, Yang H, Qiu J. Calcitriol increases MBNL1 expression and alleviates myotonic dystrophy phenotypes in HSA LR mouse models. J Transl Med 2022; 20:588. [PMID: 36510245 PMCID: PMC9743610 DOI: 10.1186/s12967-022-03806-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1), one of the most common forms of adult-onset muscular dystrophy, is caused by abnormally expanded CTG repeats in the 3' untranslated region of the DMPK gene. The CUG repeats transcribed from the expanded CTG repeats sequestrate a splicing factor, MBNL1, causing the clinical symptoms in DM1. Nowadays, only symptomatic treatments are available for DM1, and no rational therapy is available. Recently, upregulation of MBNL1 expression has been found to be one of the promising therapies for DM1. METHODS All experiments were conducted in the C2C12 myoblasts and HSALR mice, a DM1 mouse model. Real-time PCR and western blot were used to detect the mRNA and protein level, respectively. The rotarod exercise, grip strength and hanging time were used to evaluate the muscle strength of mice. RESULTS In this study, we demonstrated that calcitriol, an active form of vitamin D3, increased MBNL1 in C2C12 mouse myoblasts as well as in HSALR mice model for DM1. In HSALR mice model, calcitriol improved muscle strength, and corrected aberrant splicing in skeletal muscle. Besides, calcitriol reduced the number of central nuclei, and improved muscle histopathology in HSALR mice. In addition, we identified that calcitriol upregulated MBNL1 expression via activating the promoter of Mbnl1 in C2C12 myogenic cells. CONCLUSION Our study suggests that calcitriol is a potential pharmacological strategy for DM1 that enhances MBNL1 expression.
Collapse
Affiliation(s)
- Kun Huang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Dan-Dan Wang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Wen-Bao Hu
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Wei-Qian Zeng
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Xia Xu
- grid.216417.70000 0001 0379 7164Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Qiu-Xiang Li
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Fang-Fang Bi
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Huan Yang
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jian Qiu
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
10
|
Alfaqih MS, Tarawan VM, Sylviana N, Goenawan H, Lesmana R, Susianti S. Effects of Vitamin D on Satellite Cells: A Systematic Review of In Vivo Studies. Nutrients 2022; 14:4558. [PMID: 36364820 PMCID: PMC9657163 DOI: 10.3390/nu14214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.
Collapse
Affiliation(s)
- Muhammad Subhan Alfaqih
- Biomedical Science Master Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof Eyckman No.38, Bandung 45363, Indonesia
| | - Vita Murniati Tarawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
11
|
Zeng X, Xie L, Ge Y, Zhou Y, Wang H, Chen Y, Zhu X, Liu H, Liao Q, Kong Y, Pan L, Li J, Xue L, Li S, Zhou X, Shi C, Sheng X. Satellite Cells are Activated in a Rat Model of Radiation-Induced Muscle Fibrosis. Radiat Res 2022; 197:638-649. [PMID: 35294551 DOI: 10.1667/rade-21-00183.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
Radiation-induced muscle fibrosis is a long-term side effect of radiotherapy that significantly affects the quality of life and even reduces the survival of cancer patients. We have demonstrated that radiation induces satellite cell (SC) activation at the molecular level; however, cellular evidence in a rat model of radiation-induced muscle fibrosis was lacking. In this study, we evaluated SC activation in vivo and investigated whether radiation affects the proliferation and differentiation potential of SCs in vitro. For in vivo studies, Sprague-Dawley rats were randomly divided into six groups (n = 6 per group): non-irradiated controls, 90 Gy/1 week-, 90 Gy/2 weeks-, 90 Gy/4 weeks-, 90 Gy/12 weeks- and 90 Gy/24 weeks-postirradiation groups. Rats received a single dose of radiation in the left groin area and rectus femoris tissues were collected in the indicated weeks. Fibrosis, apoptosis, and autophagy were evaluated by Masson's trichrome staining, TUNEL staining, and electron microscopy, respectively. SC activation and central nuclear muscle fibers were evaluated by immunofluorescence staining and hematoxylin and eosin staining. IL-1β concentrations in serum and irradiated muscle tissue samples were determined by ELISA. For in vitro studies, SCs were isolated from rats with radiation-induced muscle fibrosis and their proliferation and differentiation were evaluated by immunofluorescence staining. In vivo, fibrosis increased over time postirradiation. Apoptosis and autophagy levels, IL-1β concentrations in serum and irradiated skin tissues, and the numbers of SCs and central nuclear muscle fibers were increased in the irradiated groups when compared with the control group. In vitro, cultured SCs from irradiated muscle were positive for the proliferation marker Pax7, and differentiated SCs were positive for the myogenic differentiation marker MyHC. This study provided cellular evidence of SC activation and proliferation in rats with radiation-induced muscle fibrosis.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Luyuan Xie
- Changsha Medical University, Changsha, Hunan Province, China
| | - Yuxin Ge
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yue Zhou
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yongyi Chen
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Xiaomei Zhu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Huayun Liu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Qianjin Liao
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yu Kong
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Junjun Li
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Lei Xue
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Sha Li
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Xiao Zhou
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowu Sheng
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Single bout of exercise triggers the increase of vitamin D blood concentration in adolescent trained boys: a pilot study. Sci Rep 2022; 12:1825. [PMID: 35115578 PMCID: PMC8814171 DOI: 10.1038/s41598-022-05783-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is necessary for musculoskeletal health, however, the supplementation of vitamin D above the sufficiency level does not bring additional bone mass density (BMD), unlike physical exercise which enhances the bone formatting process. Regular physical activity has been shown to upregulate VDR expression in muscles and to increase circulating vitamin D. Here we investigate whether a single bout of exercise might change 25(OH)D3 blood concentration and how it affects metabolic response to exercise. Twenty-six boys, 13.8 years old (SD ± 0.7) soccer players, participated in the study. The participants performed one of two types of exercise: the first group performed the VO2max test until exhaustion, and the second performed three times the repeated 30 s Wingate Anaerobic Test (WAnT). Blood was collected before, 15 min and one hour after the exercise. The concentration of 25(OH)D3, parathyroid hormone (PTH), interleukin-6 (IL-6), lactate, non-esterified fatty acids (NEFA) and glycerol were determined. 25(OH)D3 concentration significantly increased after the exercise in all boys. The most prominent changes in 25(OH)D3, observed after WAnT, were associated with the rise of PTH. The dimensions of response to the exercises observed through the changes in the concentration of 25(OH)D3, PTH, NEFA and glycerol were associated with the significant increases of IL-6 level. A single bout of exercise may increase the serum’s 25(OH)D3 concentration in young trained boys. The intensive interval exercise brings a more potent stimulus to vitamin D fluctuations in young organisms. Our results support the hypothesis that muscles may both store and release 25(OH)D3.
Collapse
|
13
|
Mak RH, Querfeld U, Gonzalez A, Gunta S, Cheung WW. Differential Effects of 25-Hydroxyvitamin D 3 versus 1α 25-Dihydroxyvitamin D 3 on Adipose Tissue Browning in CKD-Associated Cachexia. Cells 2021; 10:3382. [PMID: 34943890 PMCID: PMC8699879 DOI: 10.3390/cells10123382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with chronic kidney disease (CKD) often have low serum concentrations of 25(OH)D3 and 1,25(OH)2D3. We investigated the differential effects of 25(OH)D3 versus 1,25(OH)2D3 repletion in mice with surgically induced CKD. Intraperitoneal supplementation of 25(OH)D3 (75 μg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) for 6 weeks normalized serum 25(OH)D3 or 1,25(OH)2D3 concentrations in CKD mice, respectively. Repletion of 25(OH)D3 normalized appetite, significantly improved weight gain, increased fat and lean mass content and in vivo muscle function, as well as attenuated elevated resting metabolic rate relative to repletion of 1,25(OH)2D3 in CKD mice. Repletion of 25(OH)D3 in CKD mice attenuated adipose tissue browning as well as ameliorated perturbations of energy homeostasis in adipose tissue and skeletal muscle, whereas repletion of 1,25(OH)2D3 did not. Significant improvement of muscle fiber size and normalization of fat infiltration of gastrocnemius was apparent with repletion of 25(OH)D3 but not with 1,25(OH)2D3 in CKD mice. This was accompanied by attenuation of the aberrant gene expression of muscle mass regulatory signaling, molecular pathways related to muscle fibrosis as well as muscle expression profile associated with skeletal muscle wasting in CKD mice. Our findings provide evidence that repletion of 25(OH)D3 exerts metabolic advantages over repletion of 1,25(OH)2D3 by attenuating adipose tissue browning and muscle wasting in CKD mice.
Collapse
Affiliation(s)
- Robert H. Mak
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| | - Uwe Querfeld
- Department of Paediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| | - Sujana Gunta
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
- Pediatric Services, Vista Community Clinic, Vista, CA 92084, USA
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| |
Collapse
|
14
|
Iolascon G, Moretti A, Paoletta M, Liguori S, Di Munno O. Muscle Regeneration and Function in Sports: A Focus on Vitamin D. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57101015. [PMID: 34684052 PMCID: PMC8537590 DOI: 10.3390/medicina57101015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Muscle is one of the main targets for the biological effects of vitamin D. This hormone modulates several functions of skeletal muscles, from development to tissue repair after injury, through genomic and non-genomic mechanisms. Vitamin D deficiency and supplementation seem to significantly affect muscle strength in different populations, including athletes, although optimal serum 25(OH)D3 level for sport performance has not been defined so far. Additionally, vitamin D deficiency results in myopathy characterized by fast-twitch fiber atrophy, fatty infiltration, and fibrosis. However, less is known about regenerative effects of vitamin D supplementation after sport-related muscle injuries. Vitamin D receptor (VDR) is particularly expressed in the embryonic mesoderm during intrauterine life and in satellite cells at all stages of life for recovery of the skeletal muscle after injury. Vitamin D supplementation enhances muscle differentiation, growth, and regeneration by increasing the expression of myogenic factors in satellite cells. The objective of this narrative review is to describe the role of vitamin D in sport-related muscle injury and tissue regeneration.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
- Correspondence: ; Tel.: +39-0815665537
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 6, 80138 Naples, Italy; (G.I.); (M.P.); (S.L.)
| | - Ombretta Di Munno
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56122 Pisa, Italy;
| |
Collapse
|
15
|
Jia S, Chen F, Wang H, Kesavamoorthy G, Lai JSM, Wong IYH, Chiu K, Chan JCH. Effect of Vitamin D3 on Regulating Human Tenon's Fibroblasts Activity. Transl Vis Sci Technol 2021; 10:7. [PMID: 34251424 PMCID: PMC8287040 DOI: 10.1167/tvst.10.8.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To study the in vitro effect of vitamin D3 on the healing response of human Tenon's fibroblasts (HTF) and its possible role in preventing excessive postoperative subconjunctival fibrosis. Methods Effect of vitamin D3 on cytotoxicity and cell survival of primary cultured HTF was measured by lactate dehydrogenase and PrestoBlue assays, respectively. Proliferation and migration of vitamin D3-treated HTF (D3-HTF) was determined by CyQUANT proliferation and scratch assay, respectively. The mRNA expression profiles of control-HTF and D3-HTF from six subjects (three with glaucoma and long-term use of topical medications, three with primary pterygium) were assessed by RNA sequencing analyses to identify potential biomarkers for the inhibitory effect on HTF by vitamin D3. Validation of these biomarkers and their potential pathways were performed by quantitative real-time polymerase chain reaction (qRT-PCR) detection. Results Pure monolayers of HTF from controls (retinal detachment or squint surgeries), pterygium, and glaucoma subjects were successfully prepared and passaged. Proliferation and migration of pterygium and glaucoma HTF were inhibited by vitamin D3 in a dose-dependent manner, and without cytotoxicity or decrease in cellular viability with concentrations up to 10 µM. The qRT-PCR results were consistent with the transcriptome analyses, vitamin D3 appears to enhance CYP24A1, SHE, KRT16 but suppresses CILP expression in HTF. Conclusions Vitamin D3 can inhibit the in vitro activity of HTF without compromising cellular survivability at concentration up to 10 µM. This has potential clinical application for improving the outcome of pterygium and filtering surgeries. Translational Relevance Vitamin D3 can suppress the in vitro proliferation, migration, and transdifferentiation of human Tenon's fibroblasts, without the cytotoxicity of mitomycin-C, the current standard antifibrotic agent in clinical use.
Collapse
Affiliation(s)
- Shuo Jia
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fushun Chen
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Huogang Wang
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | | | - Jimmy Shiu-Ming Lai
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Ian Yat-Hing Wong
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Kin Chiu
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
16
|
Latham CM, Brightwell CR, Keeble AR, Munson BD, Thomas NT, Zagzoog AM, Fry CS, Fry JL. Vitamin D Promotes Skeletal Muscle Regeneration and Mitochondrial Health. Front Physiol 2021; 12:660498. [PMID: 33935807 PMCID: PMC8079814 DOI: 10.3389/fphys.2021.660498] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin D is an essential nutrient for the maintenance of skeletal muscle and bone health. The vitamin D receptor (VDR) is present in muscle, as is CYP27B1, the enzyme that hydroxylates 25(OH)D to its active form, 1,25(OH)D. Furthermore, mounting evidence suggests that vitamin D may play an important role during muscle damage and regeneration. Muscle damage is characterized by compromised muscle fiber architecture, disruption of contractile protein integrity, and mitochondrial dysfunction. Muscle regeneration is a complex process that involves restoration of mitochondrial function and activation of satellite cells (SC), the resident skeletal muscle stem cells. VDR expression is strongly upregulated following injury, particularly in central nuclei and SCs in animal models of muscle injury. Mechanistic studies provide some insight into the possible role of vitamin D activity in injured muscle. In vitro and in vivo rodent studies show that vitamin D mitigates reactive oxygen species (ROS) production, augments antioxidant capacity, and prevents oxidative stress, a common antagonist in muscle damage. Additionally, VDR knockdown results in decreased mitochondrial oxidative capacity and ATP production, suggesting that vitamin D is crucial for mitochondrial oxidative phosphorylation capacity; an important driver of muscle regeneration. Vitamin D regulation of mitochondrial health may also have implications for SC activity and self-renewal capacity, which could further affect muscle regeneration. However, the optimal timing, form and dose of vitamin D, as well as the mechanism by which vitamin D contributes to maintenance and restoration of muscle strength following injury, have not been determined. More research is needed to determine mechanistic action of 1,25(OH)D on mitochondria and SCs, as well as how this action manifests following muscle injury in vivo. Moreover, standardization in vitamin D sufficiency cut-points, time-course study of the efficacy of vitamin D administration, and comparison of multiple analogs of vitamin D are necessary to elucidate the potential of vitamin D as a significant contributor to muscle regeneration following injury. Here we will review the contribution of vitamin D to skeletal muscle regeneration following injury.
Collapse
Affiliation(s)
- Christine M Latham
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Camille R Brightwell
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Alexander R Keeble
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Brooke D Munson
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Nicholas T Thomas
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Alyaa M Zagzoog
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States.,Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Jean L Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States.,Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Bass JJ, Nakhuda A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, Philp A, Tarum J, Kadi F, Andersen D, Garcia AM, Smith K, Gallagher IJ, Szewczyk NJ, Cleasby ME, Atherton PJ. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol Metab 2020; 42:101059. [PMID: 32771696 PMCID: PMC7475200 DOI: 10.1016/j.molmet.2020.101059] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused on the loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofibre size and function and impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact of VDR over-expression (OE) in vivo before exploring the importance of VDR expression upon muscle hypertrophy in humans. METHODS Wistar rats underwent in vivo electrotransfer (IVE) to overexpress the VDR in the Tibialis anterior (TA) muscle for 10 days, before comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic signalling and satellite cell activity. Stable isotope tracer (D2O) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq analysis. Finally, human participants underwent 20 wks of resistance exercise training, with body composition and transcriptomic analysis. RESULTS Muscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area, i.e., hypertrophy. The observed increases in MPS were associated with enhanced anabolic signalling, reflecting translational efficiency (e.g., mammalian target of rapamycin (mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix (ECM) remodelling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were upregulated. Finally, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training. CONCLUSION VDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion and upregulation of ECM remodelling-related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and analogues.
Collapse
Affiliation(s)
- Joseph J Bass
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Asif Nakhuda
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Colleen S Deane
- Department of Sport and Health Sciences, University of Exeter, EX1 2LU, UK
| | - Matthew S Brook
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Bethan E Phillips
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, 2010, Australia; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - Janelle Tarum
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Ditte Andersen
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Amadeo Muñoz Garcia
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, UK; Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, the Netherlands
| | - Ken Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Iain J Gallagher
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, FK9 4LA, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Mark E Cleasby
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK.
| |
Collapse
|
18
|
Bollen SE, Atherton PJ. Myogenic, genomic and non-genomic influences of the vitamin D axis in skeletal muscle. Cell Biochem Funct 2020; 39:48-59. [PMID: 33037688 DOI: 10.1002/cbf.3595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Abstract
Despite vitamin D-deficiency clinically presenting with myopathy, muscle weakness and atrophy, the mechanisms by which vitamin D exerts its homeostatic effects upon skeletal muscle remain to be fully established. Recent studies have shown that the receptor by which 1α,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ) exerts its biological actions (ie, the vitamin D receptor, VDR) elicits both genomic and non-genomic effects upon skeletal muscle. The controversy surrounding skeletal muscle VDR mRNA/protein expression in post-natal muscle has been allayed by myriad recent studies, while dynamic expression of VDR throughout myogenesis, and association of higher VDR levels during muscle regeneration/immature muscle cells, suggests a role in myogenesis and perhaps an enrichment of VDR in satellite cells. Accordingly, in vitro studies have demonstrated 1,25(OH)2 D3 is anti-proliferative in myoblasts, yet pro-differentiation in latter stages of myogenesis. These effects involve modulation of gene expression (VDR as a transcriptional co-activator controls ~3% of the genome) and post-genomic intracellular signalling for example, via c-Src and alterations to intramuscular calcium homeostasis and proteostasis. The aim of this review is to consider the biomolecular role for the vitamin D/VDR axis in myogenesis, while also exploring global evidence for genomic and non-genomic mechanisms of action for 1,25(OH)2 D3 /VDR.
Collapse
Affiliation(s)
- Shelby E Bollen
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, UK
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
19
|
Puangthong C, Sukhong P, Saengnual P, Srikuea R, Chanda M. A single bout of high-intensity exercise modulates the expression of vitamin D receptor and vitamin D-metabolising enzymes in horse skeletal muscle. Equine Vet J 2020; 53:796-805. [PMID: 32902017 DOI: 10.1111/evj.13346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The expressions of vitamin D receptor (VDR) and vitamin D-metabolising enzymes (CYP27B1 and CYP24A1) in skeletal muscle have been reported. However, the regulation of this vitamin D system in horse skeletal muscle after high-intensity exercise has not yet been elucidated. OBJECTIVES To investigate the effect of high-intensity exercise on the expression of vitamin D system-related proteins in horse skeletal muscle and its associations with skeletal muscle stem cell (SMSC) activity and serum 25(OH)D level. STUDY DESIGN Longitudinal study. METHODS Six healthy ponies (5 geldings, 1 mare; age 6.3 ± 2.2 years) were studied. Serum and muscle samples were taken from the jugular vein and gluteus medius respectively. Samples were collected at pre-exercise, post-exercise, 1 and 3 weeks after a single bout of high-intensity exercise. Protein expression levels of VDR, CYP27B1, CYP24A1, OxPhos and Pax7 (SMSC marker) were determined using immunohistochemical analysis. Oxidative capacity and intramuscular glycogen content were evaluated using histochemical analysis. Blood biochemistry was analysed for lactate concentration and creatine kinase (CK), and 25(OH)D activity. RESULTS High-intensity exercise significantly upregulated Pax7 and VDR protein expression, which correlated with significantly increased blood lactate and serum CK levels immediately post-exercise. Serum 25(OH)D2 level correlated with CYP27B1 protein expression in skeletal muscle, and it reduced significantly immediately post-exercise and at 1 and 3 weeks post-exercise. However, CYP24A1 protein expression was unchanged throughout study periods. MAIN LIMITATION The healthy ponies could not represent a fit population of racehorses and eventers. CONCLUSIONS The rapid increase in Pax7 and VDR protein expression along with serum CK level after high-intensity exercise demonstrated an association between SMSC activity and activation of the vitamin D system in response to muscle injury in horses. Moreover, a decrease in CYP27B1 protein expression, correlated with a reduction in serum 25(OH)D2 , may indicate a compromised vitamin D metabolism after high-intensity exercise.
Collapse
Affiliation(s)
- Chanikarn Puangthong
- Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Patskit Sukhong
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Pattrawut Saengnual
- Pathological unit, Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Metha Chanda
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Center of Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University Bang Khen Campus, Bangkok, Thailand
| |
Collapse
|
20
|
Regulation of vitamin D system in skeletal muscle and resident myogenic stem cell during development, maturation, and ageing. Sci Rep 2020; 10:8239. [PMID: 32427932 PMCID: PMC7237670 DOI: 10.1038/s41598-020-65067-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle exhibits enormous plasticity throughout life, however, less is known regarding how the stages of growth regulate its local vitamin D system. Herein, we investigated serum 25(OH)D3 and Ca2+ levels along with the vitamin D system in skeletal muscle and resident myogenic stem cells of male C57BL/6 mice during development, maturation, and ageing. Compared with development, significant increases in vitamin D receptor (VDR) protein expression in mature and aged muscles were associated with increased serum 25(OH)D3 and centronucleated fibres, respectively. The substantial increase in VDR protein expression in aged muscle was also related to reduced downstream mTOR signalling protein expression which was more pronounced in fast-glycolytic compared to slow-oxidative muscles. Intriguingly, serum Ca2+ and vitamin D-metabolising enzyme (CYP27B1 and CYP24A1) levels in skeletal muscle were not different across age. In primary cell culture, nuclear VDR protein was expressed in undifferentiated skeletal muscle stem cells (SMSC) after 1α,25(OH)2D3 treatment. Additionally, a diminished response to 1α,25(OH)2D3 was observed with age as there was a rapid commitment of SMSC towards differentiation under growth-stimulating conditions. Collectively, understanding the local vitamin D system in skeletal muscle could help develop effective interventions for vitamin D supplementation to improve skeletal muscle mass and function during ageing.
Collapse
|
21
|
Mosele FC, Bissi Ricci R, Abreu P, Rosa Neto JC. Muscle regeneration in adiponectin knockout mice showed early activation of anti-inflammatory response with perturbations in myogenesis. J Cell Physiol 2020; 235:6183-6193. [PMID: 32003014 DOI: 10.1002/jcp.29547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Activation, proliferation, and differentiation of satellite cells can be influenced by extracellular factors, such as adiponectin. This adipokine has been proposed as a regulator of in vitro myogenesis, but its action on in vivo regeneration is not still elucidated. We used C57BL/6 (wild-type [WT]) and adiponectin knockout (AdKO) mice injured with barium chloride at periods of 3, 7, and 14 days after injury. The AdKO presented a higher number of centralized nuclei after 7 days, and a reduction in myogenic genes was observed after 3 days. Moreover, these mice presented an increase in anti-inflammatory cytokines after 3 and 7 days, and an increase in the M2 gene marker and proinflammatory cytokines after 7 days. The WT demonstrated an increase in adiponectin messenger RNA after 7 days. These results demonstrate that adiponectin is important in tissue remodeling during regeneration and that its deficiency does not compromise the maturation of muscle fibers, due to an increase in anti-inflammatory response; however, there is a possible impairment in proinflammatory response and an increase in centralized myonuclei.
Collapse
Affiliation(s)
- Francielle C Mosele
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Bissi Ricci
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Phablo Abreu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, Brazil
| | - José C Rosa Neto
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
22
|
Girgis CM. Vitamin D and Skeletal Muscle: Emerging Roles in Development, Anabolism and Repair. Calcif Tissue Int 2020; 106:47-57. [PMID: 31312865 DOI: 10.1007/s00223-019-00583-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
Abstract
This special issue article will focus on morphologic and functional roles of vitamin D in muscle, from strength to contraction to development and ageing and will characterise the controversy of VDR's expression in skeletal muscle, central to our understanding of vitamin D's effects on this tissue.
Collapse
Affiliation(s)
- Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW, Australia.
- Department of Diabetes and Endocrinology, Royal North Shore Hospital, Sydney, NSW, Australia.
- University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Liu KH, Fu J, Zhou N, Yin W, Yang YY, Ouyang SX, Liang YM. 1,25-Dihydroxyvitamin D3 Prevents Epithelial-Mesenchymal Transition of HMrSV5 Human Peritoneal Mesothelial Cells by Inhibiting Histone Deacetylase 3 (HDAC3) and Increasing Vitamin D Receptor (VDR) Expression Through the Wnt/β-Catenin Signaling Pathway. Med Sci Monit 2019; 25:5892-5902. [PMID: 31391414 PMCID: PMC6698096 DOI: 10.12659/msm.916313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Peritoneal dialysis is the most common treatment for end-stage renal disease. However, peritoneal fibrosis resulting from long-term peritoneal dialysis restricts peritoneal ultrafiltration. Previous studies have shown a role for 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in preventing fibrosis, but the potential mechanisms remain unknown. This study aimed to investigate the role of 1,25(OH)2D3 in epithelial-mesenchymal transition (EMT) and the downstream signaling pathway in HMrSV5 human peritoneal mesothelial cells in vitro. Material/Methods An in vitro cell model of peritoneal fibrosis was established using the HMrSV5 human peritoneal mesothelial cell line. High glucose and lipopolysaccharide (LPS) culture conditions, with or without 1,25(OH)2D3, were used. Wnt agonist 1, a Wnt signaling pathway activator, was applied. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure the vitamin D receptor (VDR) and histone deacetylase 3 (HDAC3) gene and protein expression levels, β-catenin, and EMT-associated biomarkers. Results High glucose plus LPS culture medium inhibited cell proliferation, induced cell apoptosis and promoted EMT in HMrSV5 cells, which was reversed by 1,25(OH)2D3 by down-regulation of HDAC3 and upregulation of VDR. HDAC3 inhibited VDR gene expression. The expression of EMT-associated biomarkers was increased by Wnt agonist 1 and inhibited by 1,25(OH)2D3. Conclusions In HMrSV5 human peritoneal mesothelial cells, 1,25(OH)2D3 reversed EMT by inhibiting the expression of HDAC3 and upregulating VDR gene expression via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Kang-Han Liu
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Jia Fu
- Department of Oncology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Nan Zhou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Wei Yin
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Yi-Ya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Sha-Xi Ouyang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Yu-Mei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| |
Collapse
|
24
|
De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal 2019; 30:1553-1598. [PMID: 30070144 DOI: 10.1089/ars.2017.7420] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Macrophages are crucial for tissue homeostasis. Based on their activation, they might display classical/M1 or alternative/M2 phenotypes. M1 macrophages produce pro-inflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO). M2 macrophages upregulate arginase-1 and reduce NO and ROS levels; they also release anti-inflammatory cytokines, growth factors, and polyamines, thus promoting angiogenesis and tissue healing. Moreover, M1 and M2 display key metabolic differences; M1 polarization is characterized by an enhancement in glycolysis and in the pentose phosphate pathway (PPP) along with a decreased oxidative phosphorylation (OxPhos), whereas M2 are characterized by an efficient OxPhos and reduced PPP. Recent Advances: The glutamine-related metabolism has been discovered as crucial for M2 polarization. Vice versa, flux discontinuities in the Krebs cycle are considered additional M1 features; they lead to increased levels of immunoresponsive gene 1 and itaconic acid, to isocitrate dehydrogenase 1-downregulation and to succinate, citrate, and isocitrate over-expression. Critical Issues: A macrophage classification problem, particularly in vivo, originating from a gap in the knowledge of the several intermediate polarization statuses between the M1 and M2 extremes, characterizes this field. Moreover, the detailed features of metabolic reprogramming crucial for macrophage polarization are largely unknown; in particular, the role of β-oxidation is highly controversial. Future Directions: Manipulating the metabolism to redirect macrophage polarization might be useful in various pathologies, including an efficient skeletal muscle regeneration. Unraveling the complexity pertaining to metabolic signatures that are specific for the different macrophage subsets is crucial for identifying new compounds that are able to trigger macrophage polarization and that might be used for therapeutical purposes.
Collapse
Affiliation(s)
- Francesca De Santa
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessio Torcinaro
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin," Sapienza University, Rome, Italy
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
25
|
Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur J Appl Physiol 2019; 119:825-839. [PMID: 30830277 PMCID: PMC6422984 DOI: 10.1007/s00421-019-04104-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE This review provides a current perspective on the mechanism of vitamin D on skeletal muscle function with the emphasis on oxidative stress, muscle anabolic state and muscle energy metabolism. It focuses on several aspects related to cellular and molecular physiology such as VDR as the trigger point of vitamin D action, oxidative stress as a consequence of vitamin D deficiency. METHOD The interaction between vitamin D deficiency and mitochondrial function as well as skeletal muscle atrophy signalling pathways have been studied and clarified in the last years. To the best of our knowledge, we summarize key knowledge and knowledge gaps regarding the mechanism(s) of action of vitamin D in skeletal muscle. RESULT Vitamin D deficiency is associated with oxidative stress in skeletal muscle that influences the mitochondrial function and affects the development of skeletal muscle atrophy. Namely, vitamin D deficiency decreases oxygen consumption rate and induces disruption of mitochondrial function. These deleterious consequences on muscle may be associated through the vitamin D receptor (VDR) action. Moreover, vitamin D deficiency may contribute to the development of muscle atrophy. The possible signalling pathway triggering the expression of Atrogin-1 involves Src-ERK1/2-Akt- FOXO causing protein degradation. CONCLUSION Based on the current knowledge we propose that vitamin D deficiency results from the loss of VDR function and it could be partly responsible for the development of neurodegenerative diseases in human beings.
Collapse
Affiliation(s)
- Katarzyna Patrycja Dzik
- Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland
| | - Jan Jacek Kaczor
- Department of Neurobiology of Muscle, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336, Gdansk, Poland.
| |
Collapse
|
26
|
Srikuea R, Suhatcho K. Impact of intramuscular administration of lipid-soluble and water-soluble vehicles into regenerating muscle at the distinct phases of skeletal muscle regeneration. J Physiol Sci 2018; 68:647-661. [PMID: 29134575 PMCID: PMC10717534 DOI: 10.1007/s12576-017-0576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/28/2017] [Indexed: 12/30/2022]
Abstract
Interpretation on the effectiveness of potential substances to enhance skeletal muscle regeneration is difficult if an inappropriate vehicle is administered, since vehicle administration can directly enhance or suppress regenerative capacity. In the current study, intramuscular administration of lipid-soluble and water-soluble vehicles into regenerating muscle at the distinct phases of skeletal muscle regeneration (regenerative vs. remodeling) were investigated. Tested vehicles included lipid-soluble [olive oil, (0.1, 1, 5, and 40%) dimethyl sulfoxide (DMSO), and 40% propylene glycol (PG)] and water-soluble [0.9% NaCl, PBS, 0.1% ethanol, and distilled water]. Skeletal muscle regeneration was induced by 1.2% BaCl2 injection to the tibialis anterior muscle of 10-week-old C57BL/6 male mice. Histological features, skeletal muscle stem cell activity, regenerating muscle fiber formation, angiogenesis, extracellular matrix remodeling, and macrophage infiltration were examined. The results revealed repeated administration of 40% DMSO and 40% PG causes significant recurrent muscle injury, which is pronounced during the remodeling phase compared to the regenerative phase. These findings were supported by (1) massive infiltration of F4/80+ macrophages; (2) significant increase of skeletal muscle stem cell re-activation and nascent regenerating muscle fiber formation; (3) excess fibrous formation; and (4) decreased regenerating muscle fiber cross-sectional area. These deleterious effects were comparable to 2% trypsin (degenerative substance) administration and less pronounced with a single administration. Nevertheless, recurrent muscle injury was still presented with 5% DMSO administration but it can be alleviated when 0.1% DMSO was administered during the remodeling phase. In contrast, none of the tested vehicles enhanced regenerative capacity compared with IGF-1 administration. Altogether, intramuscular administration of vehicle containing high concentration of DMSO or PG could impair skeletal muscle regenerative capacity and potentially affect validation of the investigational substance.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Kanokwan Suhatcho
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
27
|
|
28
|
Camperi A, Pin F, Costamagna D, Penna F, Menduina ML, Aversa Z, Zimmers T, Verzaro R, Fittipaldi R, Caretti G, Baccino FM, Muscaritoli M, Costelli P. Vitamin D and VDR in cancer cachexia and muscle regeneration. Oncotarget 2017; 8:21778-21793. [PMID: 28423519 PMCID: PMC5400623 DOI: 10.18632/oncotarget.15583] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/27/2017] [Indexed: 12/03/2022] Open
Abstract
Low circulating levels of vitamin D were associated with decreased muscle strength and physical performance. Along this line, the present study was aimed to investigate: i) the therapeutic potential of vitamin D in cancer-induced muscle wasting; ii) the mechanisms by which vitamin D affects muscle phenotype in tumor-bearing animals. Rats bearing the AH130 hepatoma showed decreased circulating vitamin D compared to control rats, while muscle vitamin D receptor (VDR) mRNA was up-regulated. Both circulating vitamin D and muscle VDR expression increased after vitamin D administration, without exerting appreciable effects on body weight and muscle mass. The effects of vitamin D on muscle cells were studied in C2C12 myocytes. Vitamin D-treated myoblasts did not differentiate properly, fusing only partially and forming multinucleated structures with aberrant shape and low myosin heavy chain content. Vitamin D treatment resulted in VDR overexpression and myogenin down-regulation. Silencing VDR expression in C2C12 cultures abrogated the inhibition of differentiation exerted by vitamin D treatment. These data suggest that VDR overexpression in tumor-bearing animals contributes to muscle wasting by impairing muscle regenerative program. In this regard, attention should be paid when considering vitamin D supplementation to patients affected by chronic pathologies where muscle regeneration may be involved.
Collapse
Affiliation(s)
- Andrea Camperi
- Department of Clinical and Biological Sciences, University of Turin, Italy.,Indiana University School of Medicine - IUPUI, Indianapolis, IN, USA
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, University of Turin, Italy.,Interuniversity Institute of Myology, Italy
| | - Domiziana Costamagna
- Department of Clinical and Biological Sciences, University of Turin, Italy.,Interuniversity Institute of Myology, Italy.,Current address: Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, University Hospital Gasthuisberg, Leuven, Belgium
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Italy.,Interuniversity Institute of Myology, Italy
| | - Maria Lopez Menduina
- Department of Clinical and Biological Sciences, University of Turin, Italy.,Department of Physiology, Complutense University of Madrid, Spain
| | - Zaira Aversa
- Department of Clinical Medicine, Sapienza University of Rome, Italy
| | - Teresa Zimmers
- Indiana University School of Medicine - IUPUI, Indianapolis, IN, USA
| | | | | | | | | | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Italy.,Interuniversity Institute of Myology, Italy
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW We review recent findings on the involvement of vitamin D in skeletal muscle trophicity. RECENT FINDINGS Vitamin D deficiencies are associated with reduced muscle mass and strength, and its supplementation seems effective to improve these parameters in vitamin D-deficient study participants. Latest investigations have also evidenced that vitamin D is essential in muscle development and repair. In particular, it modulates skeletal muscle cell proliferation and differentiation. However, discrepancies still exist about an enhancement or a decrease of muscle proliferation and differentiation by the vitamin D. Recently, it has been demonstrated that vitamin D influences skeletal muscle cell metabolism as it seems to regulate protein synthesis and mitochondrial function. Finally, apart from its genomic and nongenomic effects, recent investigations have demonstrated a genetic contribution of vitamin D to muscle functioning. SUMMARY Recent studies support the importance of vitamin D in muscle health, and the impact of its deficiency in regard to muscle mass and function. These 'trophic' properties are of particular importance for some specific populations such as elderly persons and athletes, and in situations of loss of muscle mass or function, particularly in the context of chronic diseases.
Collapse
Affiliation(s)
- Carla Domingues-Faria
- aUnité de Nutrition Humaine, UMR 1019 INRA UCA, Equipe ASMS, CRNH Auvergne bUniversité Clermont Auvergne cService de Nutrition Clinique, CHU Clermont-Ferrand, France
| | | | | |
Collapse
|
30
|
Antinozzi C, Corinaldesi C, Giordano C, Pisano A, Cerbelli B, Migliaccio S, Di Luigi L, Stefanantoni K, Vannelli GB, Minisola S, Valesini G, Riccieri V, Lenzi A, Crescioli C. Potential role for the VDR agonist elocalcitol in metabolic control: Evidences in human skeletal muscle cells. J Steroid Biochem Mol Biol 2017; 167:169-181. [PMID: 28042053 DOI: 10.1016/j.jsbmb.2016.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/20/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Vitamin D plays a pivotal role to maintain skeletal muscle integrity and health. Vitamin D deficiency characterizes inflammatory myopathy (IM) and diabetes, often overlapping diseases involving skeletal muscle damage. Vitamin D receptor (VDR) agonists likely exert beneficial effects in both IM and metabolic disturbances. We aim to evaluate in vitro the effect of elocalcitol, a non-hypercalcemic VDR agonist, on the biomolecular metabolic machinery of human skeletal muscle cells (Hfsmc), vs. insulin (I). We analyzed GLUT4, Flotillin-1, Caveolin-3 and Caveolin-1 cell expression/localization; mTOR, AKT, ERK and 4E-BP1 phosphorylation; IL-6 myokine release; VDR expression. We investigated in vivo vitamin D status in IM subjects, evaluating VDR muscular expression and serum vitamin D with metabolism-related parameters, as glycemia, triglycerides, cholesterol, resistin and adiponectin. In Hfsmc, elocalcitol exerted an I-like effect, promoting GLUT4 re-localization in Flotillin-1, Caveolin-3 and Caveolin-1 positive sites and mTOR, AKT, ERK, 4E-BP1 activation; it enhanced IL-6 myokine release. IM subjects, all normoglycemic, showed VDR/vitamin D deficiency that, together with high lipidemic and resistin profile, possibly increases the risk to develop metabolic diseases. VDR agonists as elocalcitol may be therapeutic tools for skeletal muscle integrity/function maintenance, an indispensable condition for health homeostasis.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Clarissa Corinaldesi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Annalinda Pisano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Katia Stefanantoni
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, 00161 Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Valeria Riccieri
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy.
| |
Collapse
|