1
|
Mickle AR, Peñaloza-Aponte JD, Coffey R, Hall NA, Baekey D, Dale EA. Closed-loop cervical epidural stimulation partially restores ipsilesional diaphragm EMG after acute C 2 hemisection. Respir Physiol Neurobiol 2024; 320:104182. [PMID: 37923238 PMCID: PMC11135909 DOI: 10.1016/j.resp.2023.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Cervical spinal cord injury creates lasting respiratory deficits which can require mechanical ventilation long-term. We have shown that closed-loop epidural stimulation (CL-ES) elicits respiratory plasticity in the form of increased phrenic network excitability (Malone et. al., E Neuro, Vol 9, 0426-21.2021, 2022); however, the ability of this treatment to create functional benefits for breathing function per se after injury has not been demonstrated. Here, we demonstrate in C2 hemisected anesthetized rats, a 20-minute bout of CL-ES administered at current amplitudes below the motor threshold restores paralyzed hemidiaphragm activity in-phase with breathing while potentiating contralesional activity. While this acute bout of stimulation did not elicit the increased network excitability seen in our chronic model, a subset of stimulated animals continued spontaneous ipsilesional diaphragm activity for several seconds after stopping stimulation. These results support the use of CL-ES as a therapeutic to rescue breathing after high cervical spinal cord injury, with the potential to lead to lasting recovery and device independence.
Collapse
Affiliation(s)
- Alyssa R Mickle
- Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; Breathing Research and Therapeutics Center, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; McKnight Brain Institute, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States.
| | - Jesús D Peñaloza-Aponte
- Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; Breathing Research and Therapeutics Center, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; McKnight Brain Institute, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States
| | - Richard Coffey
- Department of Physiology and Aging, University of Florida, 1600 SW Archer Rd M552, Gainesville, FL 32603, United States
| | - Natale A Hall
- Department of Physiology and Aging, University of Florida, 1600 SW Archer Rd M552, Gainesville, FL 32603, United States
| | - David Baekey
- Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; Breathing Research and Therapeutics Center, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; McKnight Brain Institute, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States
| | - Erica A Dale
- Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; Breathing Research and Therapeutics Center, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; McKnight Brain Institute, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, United States; Department of Physiology and Aging, University of Florida, 1600 SW Archer Rd M552, Gainesville, FL 32603, United States
| |
Collapse
|
2
|
Dos Anjos L, Rodrigues F, Scataglini S, Baptista RR, Lobo da Costa P, Vieira MF. Trunk variability and local dynamic stability during gait after generalized fatigue induced by incremental exercise test in young women in different phases of the menstrual cycle. PeerJ 2023; 11:e16223. [PMID: 37901461 PMCID: PMC10607266 DOI: 10.7717/peerj.16223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose The purpose of this study was to identify how generalized fatigue along with hormonal changes throughout the menstrual cycle affects trunk variability and local dynamic stability during gait. Methods General fatigue was induced by an incremental test on a treadmill, and the menstrual cycle was divided into three phases: follicular, ovulatory, and luteal. Twenty-six healthy, young volunteers (aged 18 to 28 years) who did not use oral contraceptives or other hormonal drugs with a regular menstrual cycle participated in the study. They walked on the treadmill for 4 min at the preferred speed, before the incremental test, followed by four sets of 4 min alternating between walking, also at preferred speed, and resting. From trunk kinematic data, the following were extracted: the mean of the standard deviation along strides, as a measure of variability, and the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS). Results After the incremental test, variability increased, and LDS decreased. However, they showed a tendency to return to the initial value faster in women compared to previous results for men. In the follicular phase, which has less hormonal release, the volunteers had an almost complete recovery in LDS soon after the first rest interval, suggesting that female hormones can interfere with fatigue recovery. Nevertheless, concerning the LDS, it was significantly lower in the luteal phase than in the follicular phase. Conclusion Women that are not taking oral contraceptives should be aware that they are susceptible to increased gait instabilities in the pre-menstrual phase after strenuous activities.
Collapse
Affiliation(s)
- Ludmila Dos Anjos
- Bioengineering and Biomechanics Laboratory, Federal University of Goiás, Goiânia, Brazil
| | - Fábio Rodrigues
- Bioengineering and Biomechanics Laboratory, Federal University of Goiás, Goiânia, Brazil
| | - Sofia Scataglini
- Department of Product Development, Faculty of Design Science, University of Antwerp, Antwerp, Belgium
| | - Rafael Reimann Baptista
- School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula Lobo da Costa
- Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Marcus Fraga Vieira
- Bioengineering and Biomechanics Laboratory, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
3
|
Shandybina ND, Kuropatenko MV, Moshonkina TR. Regulation of Human Respiration by Electrical Stimulation. J EVOL BIOCHEM PHYS+ 2022; 58:1879-1891. [PMID: 36573159 PMCID: PMC9773692 DOI: 10.1134/s0022093022060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
The review addresses modern methods of electrical stimulation used to regulate the function of external respiration in humans. The methods include abdominal functional stimulation of respiratory muscles, diaphragmatic stimulation, phrenic nerve stimulation, epidural and transcutaneous spinal cord stimulation. The physiological rationale of their application is described along with the examples of their use in clinical practice, including stimulation parameters and electrode placement diagrams for each of the methods. We analyze the effectiveness of each of the methods in patients with respiratory muscle paresis and the features of their use depending on the level of spinal cord injury. Special attention is paid to the method of epidural spinal cord stimulation because this technique is widely used in electrophysiological studies on animal models, providing deeper insight into the spinal levels of the functional control of external respiration. The review substantiates the great potential of using the method of transcutaneous electrical spinal cord stimulation both in fundamental studies of external respiration and in clinical practice.
Collapse
Affiliation(s)
- N. D. Shandybina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - T. R. Moshonkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Huang R, Worrell J, Garner E, Wang S, Homsey T, Xu B, Galer EL, Zhou Y, Tavakol S, Daneshvar M, Le T, Vinters HV, Salamon N, McArthur DL, Nuwer MR, Wu I, Leiter JC, Lu DC. Epidural electrical stimulation of the cervical spinal cord opposes opioid-induced respiratory depression. J Physiol 2022; 600:2973-2999. [PMID: 35639046 DOI: 10.1113/jp282664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 02/02/2023] Open
Abstract
Opioid overdose suppresses brainstem respiratory circuits, causes apnoea and may result in death. Epidural electrical stimulation (EES) at the cervical spinal cord facilitated motor activity in rodents and humans, and we hypothesized that EES of the cervical spinal cord could antagonize opioid-induced respiratory depression in humans. Eighteen patients requiring surgical access to the dorsal surface of the spinal cord between C2 and C7 received EES or sham stimulation for up to 90 s at 5 or 30 Hz during complete (OFF-State) or partial suppression (ON-State) of respiration induced by remifentanil. During the ON-State, 30 Hz EES at C4 and 5 Hz EES at C3/4 increased tidal volume and decreased the end-tidal carbon dioxide level compared to pre-stimulation control levels. EES of 5 Hz at C5 and C7 increased respiratory frequency compared to pre-stimulation control levels. In the OFF-State, 30 Hz cervical EES at C3/4 terminated apnoea and induced rhythmic breathing. In cadaveric tissue obtained from a brain bank, more neurons expressed both the neurokinin 1 receptor (NK1R) and somatostatin (SST) in the cervical spinal levels responsive to EES (C3/4, C6 and C7) compared to a region non-responsive to EES (C2). Thus, the capacity of cervical EES to oppose opioid depression of respiration may be mediated by NK1R+/SST+ neurons in the dorsal cervical spinal cord. This study provides proof of principle that cervical EES may provide a novel therapeutic approach to augment respiratory activity when the neural function of the central respiratory circuits is compromised by opioids or other pathological conditions. KEY POINTS: Epidural electrical stimulation (EES) using an implanted spinal cord stimulator (SCS) is an FDA-approved method to manage chronic pain. We tested the hypothesis that cervical EES facilitates respiration during administration of opioids in 18 human subjects who were treated with low-dose remifentanil that suppressed respiration (ON-State) or high-dose remifentanil that completely inhibited breathing (OFF-State) during the course of cervical surgery. Dorsal cervical EES of the spinal cord augmented the respiratory tidal volume or increased the respiratory frequency, and the response to EES varied as a function of the stimulation frequency (5 or 30 Hz) and the cervical level stimulated (C2-C7). Short, continuous cervical EES restored a cyclic breathing pattern (eupnoea) in the OFF-State, suggesting that cervical EES reversed the opioid-induced respiratory depression. These findings add to our understanding of respiratory pattern modulation and suggest a novel mechanism to oppose the respiratory depression caused by opioids.
Collapse
Affiliation(s)
- Ruyi Huang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Interdepartmental Program in Neuroscience, University of California, Los Angeles, CA, USA
| | - Jason Worrell
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eric Garner
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephanie Wang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tali Homsey
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bo Xu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Erika L Galer
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Molecular, Cellular, Integrated Physiology Program, University of California, Los Angeles, CA, USA
| | - Yan Zhou
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sherwin Tavakol
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meelod Daneshvar
- University of California Fresno, Department of Surgery, Fresno, CA, USA
| | - Timothy Le
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David L McArthur
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Marc R Nuwer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Irene Wu
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine, Lebanon, NH, USA
| | - Daniel C Lu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Interdepartmental Program in Neuroscience, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Lee KZ, Liou LM, Vinit S, Ren MY. Rostral-caudal effect of cervical magnetic stimulation on the diaphragm motor evoked potential following cervical spinal cord contusion in the rat. J Neurotrauma 2021; 39:683-700. [PMID: 34937419 DOI: 10.1089/neu.2021.0403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study was designed to investigate the rostro-caudal effect of spinal magnetic stimulation on diaphragmatic motor-evoked potentials following cervical spinal cord injury. The diaphragm electromyogram was recorded in rats that received a laminectomy or a left mid-cervical contusion at the acute (1 day), subchronic (2 weeks), or chronic (8 weeks) injured stages. The center of a figure-eight coil was placed at 30 mm lateral to bregma on the left side, and the effect of magnetic stimulation was evaluated by stimulating the rostral, middle, and caudal cervical regions in spontaneously breathing rats. The results demonstrated that cervical magnetic stimulation induced intensity-dependent motor-evoked potentials in the bilateral diaphragm in both uninjured and contused rats; however, the left diaphragm exhibited a higher amplitude and earlier onset than the right diaphragm. Moreover, the intensity-response curve was shifted upward in the rostral-to-caudal direction of magnetic stimulation, suggesting that caudal cervical magnetic stimulation produced more robust diaphragmatic motor-evoked potentials compared to rostral cervical magnetic stimulation. Interestingly, the diaphragmatic motor-evoked potentials were similar between uninjured and contused rats during cervical magnetic stimulation despite weaker inspiratory diaphragmatic activity in contused rats. Additionally, in contused animals but not uninjured animals, diaphragmatic motor-evoked potential amplitude were greater at the chronic stage than during earlier injured stages. These results demonstrated that cervical magnetic stimulation can excite the residual phrenic motor circuit to activate the diaphragm in the presence of a significant lesion in the cervical spinal cord. These findings indicate that this non-invasive approach is effective for modulating diaphragmatic excitability following cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| | - Li-Min Liou
- Kaohsiung Medical University Hospital, 89234, Neurology, Kaohsiung, Taiwan;
| | - Stéphane Vinit
- Université Paris-Saclay, 27048, UFR des Sciences de la Santé Simone Veil, Saint-Aubin, Île-de-France, France;
| | - Ming-Yue Ren
- National Sun Yat-sen University, 34874, Biological Sciences, Kaohsiung, Taiwan;
| |
Collapse
|
6
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Zander HJ, Kowalski KE, DiMarco AF, Lempka SF. Model-Based Optimization of Spinal Cord Stimulation for Inspiratory Muscle Activation. Neuromodulation 2021; 25:1317-1329. [PMID: 33987918 DOI: 10.1111/ner.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE High-frequency spinal cord stimulation (HF-SCS) is a potential method to provide natural and effective inspiratory muscle pacing in patients with ventilator-dependent spinal cord injuries. Experimental data have demonstrated that HF-SCS elicits physiological activation of the diaphragm and inspiratory intercostal muscles via spinal cord pathways. However, the activation thresholds, extent of activation, and optimal electrode configurations (i.e., lead separation, contact spacing, and contact length) to activate these neural elements remain unknown. Therefore, the goal of this study was to use a computational modeling approach to investigate the direct effects of HF-SCS on the spinal cord and to optimize electrode design and stimulation parameters. MATERIALS AND METHODS We developed a computer model of HF-SCS that consisted of two main components: 1) finite element models of the electric field generated during HF-SCS, and 2) multicompartment cable models of axons and motoneurons within the spinal cord. We systematically evaluated the neural recruitment during HF-SCS for several unique electrode designs and stimulation configurations to optimize activation of these neural elements. We then evaluated our predictions by testing two of these lead designs with in vivo canine experiments. RESULTS Our model results suggested that within physiological stimulation amplitudes, HF-SCS activates both axons in the ventrolateral funiculi (VLF) and inspiratory intercostal motoneurons. We used our model to predict a lead design to maximize HF-SCS activation of these neural targets. We evaluated this lead design via in vivo experiments, and our computational model predictions demonstrated excellent agreement with our experimental testing. CONCLUSIONS Our computational modeling and experimental results support the potential advantages of a lead design with longer contacts and larger edge-to-edge contact spacing to maximize inspiratory muscle activation during HF-SCS at the T2 spinal level. While these results need to be further validated in future studies, we believe that the results of this study will help improve the efficacy of HF-SCS technologies for inspiratory muscle pacing.
Collapse
Affiliation(s)
- Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Anthony F DiMarco
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|