1
|
Banfi C, Gugliandolo P, Paolillo S, Mallia A, Gianazza E, Agostoni P. The alveolar-capillary unit in the physiopathological conditions of heart failure: identification of a potential marker. Eur J Prev Cardiol 2023; 30:ii2-ii8. [PMID: 37819226 DOI: 10.1093/eurjpc/zwad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 10/13/2023]
Abstract
In this review, we describe the structure and function of the alveolar-capillary membrane and the identification of a novel potential marker of its integrity in the context of heart failure (HF). The alveolar-capillary membrane is indeed a crucial structure for the maintenance of the lung parenchyma gas exchange capacity, and the occurrence of pathological conditions determining lung fluids accumulation, such as HF, might significantly impair lung diffusion capacity altering the alveolar-capillary membrane protective functions. In the years, we found that the presence of immature forms of the surfactant protein-type B (proSP-B) in the circulation reflects alterations in the alveolar-capillary membrane integrity. We discussed our main achievements showing that proSP-B, due to its chemical properties, specifically binds to high-density lipoprotein, impairing their antioxidant activity, and likely contributing to the progression of the disease. Further, we found that immature proSP-B, not the mature protein, is related to lung abnormalities, more precisely than the lung function parameters. Thus, to the list of the potential proposed markers of HF, we add proSP-B, which represents a precise marker of alveolar-capillary membrane dysfunction in HF, correlates with prognosis, and represents a precocious marker of drug therapy.
Collapse
Affiliation(s)
- Cristina Banfi
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | | | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples 80131, Italy
| | - Alice Mallia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia 27100, Italy
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan 20138, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| |
Collapse
|
2
|
Vignati C, Contini M, Salvioni E, Lombardi C, Caravita S, Bilo G, Swenson ER, Parati G, Agostoni P. Exercise in hypoxia: a model from laboratory to on-field studies. Eur J Prev Cardiol 2023; 30:ii40-ii46. [PMID: 37819224 DOI: 10.1093/eurjpc/zwad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 10/13/2023]
Abstract
Clinical outcome and quality of life of patients with chronic heart failure (HF) have greatly improved over the last two decades. These results and the availability of modern lifts allow many cardiac patients to spend leisure time at altitude. Heart failure per se does not impede a safe stay at altitude, but exercise at both simulated and real altitudes is associated with a reduction in performance, which is inversely proportional to HF severity. For example, in normal subjects, the reduction in functional capacity is ∼2% every 1000 m altitude increase, whereas it is 4 and 10% in HF patients with normal or slightly diminished exercise capacity and in HF patients with markedly diminished exercise capacity, respectively. Also, the on-field experience with HF patients at altitude confirms safety and shows overall similar data to that reported at simulated altitude. Even 'optimal' HF treatment in patients spending time at altitude or at hypoxic conditions is likely different from optimal treatment at sea level, particularly with regard to the selectivity of β-blockers. Furthermore, high altitude, both simulated and on-field, represents a stimulating model of hypoxia in HF patients and healthy subjects. Our data suggest that spending time at altitude (<3500 m) can be safe even for HF patients, provided that subjects are free from comorbidities that may directly interfere with the adaptation to altitude and are stable. However, HF patients experience a reduction of exercise capacity directly proportional to HF severity and altitude. Finally, HF patients should be tested for functional capacity and must undergo a specific 'hypoxic-tailored treatment' to avoid pharmacological interference with altitude adaptation mechanisms, particularly with regard to the selectivity of β-blockers.
Collapse
Affiliation(s)
- Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Via Parea, Milano 20138, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Via Parea, Milano 20138, Italy
| | - Mauro Contini
- Centro Cardiologico Monzino, IRCCS, Via Parea, Milano 20138, Italy
| | | | - Carolina Lombardi
- Sleep Medicine Center, Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Grzegorz Bilo
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Via Parea, Milano 20138, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Via Parea, Milano 20138, Italy
| |
Collapse
|
3
|
Vignati C, Mapelli M, Nusca B, Bonomi A, Salvioni E, Mattavelli I, Sciomer S, Faini A, Parati G, Agostoni P. A Breathtaking Lift: Sex and Body Mass Index Differences in Cardiopulmonary Response in a Large Cohort of Unselected Subjects with Acute Exposure to High Altitude. High Alt Med Biol 2021; 22:379-385. [PMID: 34424758 PMCID: PMC8742268 DOI: 10.1089/ham.2021.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vignati, Carlo, Massimo Mapelli, Benedetta Nusca, Alice Bonomi, Elisabetta Salvioni, Irene Mattavelli, Susanna Sciomer, Andrea Faini, Gianfranco Parati, and Piergiuseppe Agostoni. A breathtaking lift: sex and body mass index differences in cardiopulmonary response in a large cohort of unselected subjects with acute exposure to high altitude. High Alt Med Biol 00:000-000, 2021. Background: Every year, thousands of people travel to high altitude and experience hypoxemia. At high altitude, the partial pressure of oxygen decreases. The aim of this observational study was to determine if there is a relationship between anthropometric features and basic cardiorespiratory variables, including oxygen saturation (SpO2), heart rate (HR), and blood pressure (BP), following acute exposure to high altitude. Materials and Methods: At the 3,466 m top of a cableway station, we installed an automated system for measuring peripheral SpO2, HR, BP, height, weight, and body mass index (BMI). Results: Between January and October 2020, out of 4,874 volunteers (age 39.9 ± 15.4 years, male 54.4%), 3,267 provided complete data (1,808 cases during winter and 1,459 during summer). SpO2 was 86.8% ± 6.8%. At multivariable analysis, SpO2 was significantly associated with age, sex, season, BMI, and HR but not with BP. We identified 391 (12%) subjects with SpO2 ≤80%: they were older, with a higher BMI and HR but without sex or BP differences. Finally, winter season was associated with greater frequency of SpO2 ≤80% (13.3% vs. 10.3%, p = 0.008). Conclusion: Our data show that high BMI, older age, and male sex were associated with greater degrees of hypoxemia following exposure to high altitude, particularly during the winter.
Collapse
Affiliation(s)
- Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Massimo Mapelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | | | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Susanna Sciomer
- Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza" Rome University, Rome, Italy
| | - Andrea Faini
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Magini A, Zavorsky GS, Apostolo A, Contini M, Barbieri S, Agostoni P. Week to week variability of pulmonary capillary blood volume and alveolar membrane diffusing capacity in patients with heart failure. Respir Physiol Neurobiol 2021; 290:103679. [PMID: 33962028 DOI: 10.1016/j.resp.2021.103679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alveolar-capillary membrane diffusing capacity for carbon monoxide (DMCO) and pulmonary capillary volume (Vcap) can be estimated by the multi-step Roughton and Foster (RF, original method from 1957) or the single-step NO-CO double diffusion technique (developed in the 1980s). The latter method implies inherent assumptions. We sought to determine which combination of the alveolar membrane diffusing capacity for nitric oxide (DMNO) to DMCO ratio, an specific conductance of the blood for NO (θNO) and CO (θCO) gave the lowest week-to-week variability in patients with heart failure. METHODS 44 heart failure patients underwent DMCO and Vcap measurements on three occasions over a ten-week period using both RF and double dilution NO-CO techniques. RESULTS When using the double diffusing method and applying θNO = infinity, the smallest week-to-week coefficient of variation for DMCO was 10 %. Conversely, the RF method derived DMCO had a much greater week-to-week variability (2x higher coefficient of variation) than the DMCO derived via the NO-CO double dilution technique. The DMCO derived from the double diffusion technique most closely matched the DMCO from the RF method when θNO = infinity and DMCO = DLNO/2.42. The Vcap measured week-to-week was unreliable regardless of the method or constants used. CONCLUSIONS In heart failure patients, the week-to-week DMCO variability was lowest when using the single-step NO-CO technique. DMCO obtained from double diffusion most closely matched the RF DMCO when DMCO/2.42 and θNO = infinity. Vcap estimation was unreliable with either method.
Collapse
Affiliation(s)
| | - Gerald S Zavorsky
- Pulmonary Services Laboratory, UC Davis Medical Center, Sacramento, California, United States
| | | | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy.
| |
Collapse
|
5
|
Dünnwald T, Kienast R, Niederseer D, Burtscher M. The Use of Pulse Oximetry in the Assessment of Acclimatization to High Altitude. SENSORS 2021; 21:s21041263. [PMID: 33578839 PMCID: PMC7916608 DOI: 10.3390/s21041263] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Background: Finger pulse oximeters are widely used to monitor physiological responses to high-altitude exposure, the progress of acclimatization, and/or the potential development of high-altitude related diseases. Although there is increasing evidence for its invaluable support at high altitude, some controversy remains, largely due to differences in individual preconditions, evaluation purposes, measurement methods, the use of different devices, and the lacking ability to interpret data correctly. Therefore, this review is aimed at providing information on the functioning of pulse oximeters, appropriate measurement methods and published time courses of pulse oximetry data (peripheral oxygen saturation, (SpO2) and heart rate (HR), recorded at rest and submaximal exercise during exposure to various altitudes. Results: The presented findings from the literature review confirm rather large variations of pulse oximetry measures (SpO2 and HR) during acute exposure and acclimatization to high altitude, related to the varying conditions between studies mentioned above. It turned out that particularly SpO2 levels decrease with acute altitude/hypoxia exposure and partly recover during acclimatization, with an opposite trend of HR. Moreover, the development of acute mountain sickness (AMS) was consistently associated with lower SpO2 values compared to individuals free from AMS. Conclusions: The use of finger pulse oximetry at high altitude is considered as a valuable tool in the evaluation of individual acclimatization to high altitude but also to monitor AMS progression and treatment efficacy.
Collapse
Affiliation(s)
- Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT—Private University for Health Sciences, Medical Informatics and Technology, 6060 Hall in Tirol, Austria;
| | - Roland Kienast
- Department of Biomedical and Health Technology, Federal Higher Technical Institute for Education and Experimentation—HTL Anichstraße, 6020 Innsbruck, Austria;
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University Heart Center Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
6
|
Talaminos-Barroso A, Roa-Romero LM, Ortega-Ruiz F, Cejudo-Ramos P, Márquez-Martín E, Reina-Tosina J. Effects of genetics and altitude on lung function. CLINICAL RESPIRATORY JOURNAL 2020; 15:247-256. [PMID: 33112470 DOI: 10.1111/crj.13300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this work is to present a review on the impact of genetics and altitude on lung function from classic and recent studies. DATA SOURCE A systematic search has been carried out in different databases of scientific studies, using keywords related to lung volumes, spirometry, altitude and genetics. RESULTS The results of this work have been structured into three parts. First, the relationship between genes and lung function. Next, a review of the genetic predispositions related to respiratory adaptation of people who inhabit high-altitude regions for millennia. Finally, temporary effects and long-term acclimatisation on respiratory physiology at high altitude are presented. CONCLUSIONS The works focused on the influence of genetics and altitude on lung function are currently of interest in terms of studying the interactions between genetic, epigenetic and environmental factors in the configuration of the pathophysiological adaptation patterns.
Collapse
Affiliation(s)
| | | | - Francisco Ortega-Ruiz
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain.,Spanish Networking Center on Biomedical Research, Area of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Pilar Cejudo-Ramos
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain.,Spanish Networking Center on Biomedical Research, Area of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Eduardo Márquez-Martín
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain
| | | |
Collapse
|
7
|
Ji Q, Zhang Y, Zhang H, Liu J, Cao C, Yuan Z, Ma Q, Zhang W. Effects of β-adrenoceptor activation on haemodynamics during hypoxic stress in rats. Exp Physiol 2020; 105:1660-1668. [PMID: 32706493 DOI: 10.1113/ep088669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The acute hypoxic compensatory reaction is based on haemodynamic changes, and β-adrenoceptors are involved in haemodynamic regulation. What is the role of β-adrenoceptors in haemodynamics during hypoxic exposure? What is the main finding and its importance? Activation of β2 -adrenoceptors attenuates the increase in pulmonary artery pressure during hypoxic exposure. This compensatory reaction activated by β2 -adrenoceptors during hypoxic stress is very important to maintain the activities of normal life. ABSTRACT The acute hypoxic compensatory reaction is accompanied by haemodynamic changes. We monitored the haemodynamic changes in rats undergoing acute hypoxic stress and applied antagonists of β-adrenoceptor (β-ARs) subtypes to reveal the regulatory role of β-ARs on haemodynamics. Sprague-Dawley rats were randomly divided into control, atenolol (β1 -AR antagonist), ICI 118,551 (β2 -AR antagonist) and propranolol (non-selective β-AR antagonist) groups. Rats were continuously recorded for changes in haemodynamic indexes for 10 min after administration. Then, a hypoxic ventilation experiment [15% O2 , 2200 m a.sl., 582 mmHg (0.765 Pa), P O 2 87.3 mmHg; Xining, China] was conducted, and the indexes were monitored for 5 min after induction of hypoxia. Plasma catecholamine concentrations were also measured. We found that, during normoxia, the mean arterial pressure, heart rate, ascending aortic blood flow and pulmonary artery pressure were reduced in the propranolol and atenolol groups. Catecholamine concentrations were increased significantly in the atenolol group compared with the control group. During hypoxia, mean arterial pressure and total peripheral resistance were decreased in the control, propranolol and ICI 118,551 groups. Pulmonary arterial pressure and pulmonary vascular resistance were increased in the propranolol and ICI 118,551 groups. During hypoxia, catecholamine concentrations were increased significantly in the control group, but decreased in β-AR antagonist groups. In conclusion, the β2 -AR is involved in regulation of pulmonary haemodynamics in the acute hypoxic compensatory reaction, and the activation of β2 -ARs attenuates the increase in pulmonary arterial pressure during hypoxic stress. This compensatory reaction activated by β2 -ARs during hypoxic stress is very important to maintain activities of normal life.
Collapse
Affiliation(s)
- Qiaorong Ji
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Huan Zhang
- Department of Pathology, Weinan Central Hospital, Shengli street, Weinan, Shaanxi, 714000, China
| | - Jie Liu
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Chengzhu Cao
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Zhouyang Yuan
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Qianqian Ma
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Wei Zhang
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| |
Collapse
|
8
|
Lung Diffusion in a 14-Day Swimming Altitude Training Camp at 1850 Meters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103501. [PMID: 32429560 PMCID: PMC7277217 DOI: 10.3390/ijerph17103501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Swimming exercise at sea level causes a transient decrease in lung diffusing capacity for carbon monoxide (DLCO). The exposure to hypobaric hypoxia can affect lung gas exchange, and hypoxic pulmonary vasoconstriction may elicit pulmonary oedema. The purpose of this study is to evaluate whether there are changes in DLCO during a 14-day altitude training camp (1850 m) in elite swimmers and the acute effects of a combined training session of swimming in moderate hypoxia and 44-min cycling in acute normobaric severe hypoxia (3000 m). Participants were eight international level swimmers (5 females and 3 males; 17–24 years old; 173.5 ± 5.5 cm; 64.4 ± 5.3 kg) with a training volume of 80 km per week. The single-breath method was used to measure the changes in DLCO and functional gas exchange parameters. No changes in DLCO after a 14-day altitude training camp at 1850 m were detected but a decrease in alveolar volume (VA; 7.13 ± 1.61 vs. 6.50 ± 1.59 L; p = 0.005; d = 0.396) and an increase in the transfer coefficient of the lung for carbon monoxide (KCO; 6.23 ± 1.03 vs. 6.83 ± 1.31 mL·min−1·mmHg−1·L−1; p = 0.038; d = 0.509) after the altitude camp were observed. During the acute hypoxia combined session, there were no changes in DLCO after swimming training at 1850 m, but there was a decrease in DLCO after cycling at a simulated altitude of 3000 m (40.6 ± 10.8 vs. 36.8 ± 11.2 mL·min−1·mmHg−1; p = 0.044; d = 0.341). A training camp at moderate altitude did not alter pulmonary diffusing capacity in elite swimmers, although a cycling session at a higher simulated altitude caused a certain degree of impairment of the alveolar–capillary gas exchange.
Collapse
|
9
|
Sinagra G, Corrà U, Contini M, Magrì D, Paolillo S, Perrone Filardi P, Sciomer S, Badagliacca R, Agostoni P. Choosing among β-blockers in heart failure patients according to β-receptors' location and functions in the cardiopulmonary system. Pharmacol Res 2020; 156:104785. [PMID: 32224252 DOI: 10.1016/j.phrs.2020.104785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Several large clinical trials showed a favorable effect of β-blocker treatment in patients with chronic heart failure (HF) as regards overall mortality, cardiovascular mortality, and hospitalizations. Indeed, the use of β-blockers is strongly recommended by current international guidelines, and it remains a cornerstone in the pharmacological treatment of HF. Although different types of β-blockers are currently approved for HF therapy, possible criteria to choose the best β-blocking agent according to HF patients' characteristics and to β-receptors' location and functions in the cardiopulmonary system are still lacking. In such a context, a growing body of literature shows remarkable differences between β-blocker types (β1-selective blockers versus β1-β2 blockers) with respect to alveolar-capillary gas diffusion and chemoreceptor response in HF patients, both factors able to impact on quality of life and, most likely, on prognosis. This review suggests an original algorithm for choosing among the currently available β-blocking agents based on the knowledge of cardiopulmonary pathophysiology. Particularly, starting from lung physiology and from some experimental models, it focuses on the mechanisms underlying lung mechanics, chemoreceptors, and alveolar-capillary unit impairment in HF. This paper also remarks the significant benefit deriving from the correct use of the different β-blockers in HF patients through a brief overview of the most important clinical trials.
Collapse
Affiliation(s)
- Gianfranco Sinagra
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Ugo Corrà
- Cardiology Department, Istituti Clinici Scientifici Maugeri, Veruno Institute, Veruno, Italy
| | | | - Damiano Magrì
- Department of Clinical and Molecular Medicine, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | | | - Susanna Sciomer
- Dipartimento Di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Roberto Badagliacca
- Dipartimento Di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, "Sapienza" Università Degli Studi Di Roma, Roma, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milano, Italy.
| |
Collapse
|
10
|
Torlasco C, Bilo G, Giuliano A, Soranna D, Ravaro S, Oliverio G, Faini A, Zambon A, Lombardi C, Parati G. Effects of acute exposure to moderate altitude on blood pressure and sleep breathing patterns. Int J Cardiol 2020; 301:173-179. [DOI: 10.1016/j.ijcard.2019.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/11/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
|
11
|
Parati G, Agostoni P, Basnyat B, Bilo G, Brugger H, Coca A, Festi L, Giardini G, Lironcurti A, Luks AM, Maggiorini M, Modesti PA, Swenson ER, Williams B, Bärtsch P, Torlasco C. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J 2019; 39:1546-1554. [PMID: 29340578 PMCID: PMC5930248 DOI: 10.1093/eurheartj/ehx720] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/15/2017] [Indexed: 01/22/2023] Open
Abstract
Adapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. ![]()
Collapse
Affiliation(s)
- Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Piergiuseppe Agostoni
- Department of Cardiology, Heart Failure Unit, Centro Cardiologico Monzino, via Parea 4, 20138 Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, via Festa del Perdono 7, 20122 Milan, Italy
| | - Buddha Basnyat
- Nuffield Department of Clinical Medicine, Oxford University Clinical Research Unit-Nepal and Centre for Tropical Medicine and Global Health, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK
| | - Grzegorz Bilo
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine at the EURAC Research, viale Druso 1, 39100 Bolzano, Italy.,Medical University, Christoph-Probst-Platz 1, Innrain 52 A - 6020 Innsbruck, Austria
| | - Antonio Coca
- Hypertension and Vascular Risk Unit, Department of Internal Medicine, Hospital Clínic (IDIBAPS), University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Luigi Festi
- Surgery Department, Ospedale di Circolo Fondazione Macchi, viale Luigi Borri, 57, 21100 Varese, Italy.,University of Insubria, via Ravasi 2, 21100 Varese, Italy
| | - Guido Giardini
- Department of Neurology, Neurophysiopathology Unit, Valle d'Aosta Regional Hospital, via Ginevra, 3, 11100 Aosta, Italy
| | - Alessandra Lironcurti
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy
| | - Andrew M Luks
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, 98195 WA, USA
| | - Marco Maggiorini
- Medical Intensive Care Unit, University Hospital, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Pietro A Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Florence, Italy
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, 98195 WA, USA.,Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, 98108 WA, USA
| | - Bryan Williams
- University College London (UCL) and NIHR UCL Hospitals Biomedical Research Centre, NHS Foundation Trust, University College, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Peter Bärtsch
- Department of Internal Medicine, University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Camilla Torlasco
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy
| |
Collapse
|
12
|
Agostoni P, Dumitrescu D. How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure. Int J Cardiol 2019; 288:107-113. [DOI: 10.1016/j.ijcard.2019.04.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/04/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
13
|
Lim R, Ma IWY, Brutsaert TD, Nysten HE, Nysten CN, Sherpa MT, Day TA. Transthoracic sonographic assessment of B-line scores during ascent to altitude among healthy trekkers. Respir Physiol Neurobiol 2019; 263:14-19. [PMID: 30794965 DOI: 10.1016/j.resp.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Sonographic B-lines can indicate pulmonary interstitial edema. We sought to determine the incidence of subclinical pulmonary edema measured by sonographic B-lines among lowland trekkers ascending to high altitude in the Nepal Himalaya. Twenty healthy trekkers underwent portable sonographic examinations and arterial blood draws during ascent to 5160 m over ten days. B-lines were identified in twelve participants and more frequent at 4240 m and 5160 m compared to lower altitudes (P < 0.03). There was a strong negative correlation between arterial oxygen saturation and the number of B-lines at 5160 m (ρ = -0.75, P = 0.008). Our study contributes to the growing body of literature demonstrating the development of asymptomatic pulmonary edema during ascent to high altitude. Portable lung sonography may have utility in fieldwork contexts such as trekking at altitude, but further research is needed in order to clarify its potential clinical applicability.
Collapse
Affiliation(s)
- Rachel Lim
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Irene W Y Ma
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tom D Brutsaert
- Department of Exercise Science and Anthropology, Syracuse University, New York, USA
| | | | - Cassandra N Nysten
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | | | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Hypobaria during long-range flight resulted in significantly increased histopathological evidence of lung and brain damage in a swine model. J Trauma Acute Care Surg 2019; 86:116-122. [DOI: 10.1097/ta.0000000000002014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Gonzalez NC, Kuwahira I. Systemic Oxygen Transport with Rest, Exercise, and Hypoxia: A Comparison of Humans, Rats, and Mice. Compr Physiol 2018; 8:1537-1573. [PMID: 30215861 DOI: 10.1002/cphy.c170051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this article is to compare and contrast the known characteristics of the systemic O2 transport of humans, rats, and mice at rest and during exercise in normoxia and hypoxia. This analysis should help understand when rodent O2 transport findings can-and cannot-be applied to human responses to similar conditions. The O2 -transport system was analyzed as composed of four linked conductances: ventilation, alveolo-capillary diffusion, circulatory convection, and tissue capillary-cell diffusion. While the mechanisms of O2 transport are similar in the three species, the quantitative differences are naturally large. There are abundant data on total O2 consumption and on ventilatory and pulmonary diffusive conductances under resting conditions in the three species; however, there is much less available information on pulmonary gas exchange, circulatory O2 convection, and tissue O2 diffusion in mice. The scarcity of data largely derives from the difficulty of obtaining blood samples in these small animals and highlights the need for additional research in this area. In spite of the large quantitative differences in absolute and mass-specific O2 flux, available evidence indicates that resting alveolar and arterial and venous blood PO2 values under normoxia are similar in the three species. Additionally, at least in rats, alveolar and arterial blood PO2 under hypoxia and exercise remain closer to the resting values than those observed in humans. This is achieved by a greater ventilatory response, coupled with a closer value of arterial to alveolar PO2 , suggesting a greater efficacy of gas exchange in the rats. © 2018 American Physiological Society. Compr Physiol 8:1537-1573, 2018.
Collapse
Affiliation(s)
- Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ichiro Kuwahira
- Department of Pulmonary Medicine, Tokai University School of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Dane DM, Cao K, Lu H, Yilmaz C, Dolan J, Thaler CD, Ravikumar P, Hammond KA, Hsia CCW. Acclimatization of low altitude-bred deer mice ( Peromyscus maniculatus) to high altitude. J Appl Physiol (1985) 2018; 125:1411-1423. [PMID: 30091664 DOI: 10.1152/japplphysiol.01036.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A colony of deer mice subspecies ( Peromyscus maniculatus sonoriensis) native to high altitude (HA) has been maintained at sea level for 18-20 generations and remains genetically unchanged. To determine if these animals retain responsiveness to hypoxia, one group (9-11 wk old) was acclimated to HA (3,800 m) for 8 wk. Age-matched control animals were acclimated to a lower altitude (LA; 252 m). Maximal O2 uptake (V̇o2max) was measured at the respective altitudes. On a separate day, lung volume, diffusing capacity for carbon monoxide (DLCO), and pulmonary blood flow were measured under anesthesia using a rebreathing technique at two inspired O2 tensions. The HA-acclimated deer mice maintained a normal V̇o2max relative to LA baseline. Compared with LA control mice, antemortem lung volume was larger in HA mice in a manner dependent on alveolar O2 tension. Systemic hematocrit, pulmonary blood flow, and standardized DLCO did not differ significantly between groups. HA mice showed a higher postmortem alveolar-capillary hematocrit, larger alveolar ducts, and smaller distal conducting structures. In HA mice, absolute volumes of alveolar type I epithelia and endothelia were higher whereas that of interstitia was lower than in LA mice. These structural changes occurred without a net increase in whole-lung septal tissue-capillary volumes or surface areas. Thus, deer mice bred and raised to adulthood at LA retain phenotypic plasticity and adapt to HA without a decrement in V̇o2max via structural (enlarged airspaces, alveolar septal remodeling) and nonstructural (lung expansion under hypoxia) mechanisms and without an increase in systemic hematocrit or compensatory lung growth. NEW & NOTEWORTHY Deer mice ( Peromyscus maniculatus) are robust and very active mammals that are found across the North American continent. They are also highly adaptable to extreme environments. When introduced to high altitude they retain remarkable adaptive ability to the low-oxygen environment via lung expansion and remodeling of existing lung structure, thereby maintaining normal aerobic capacity without generating more red blood cells or additional lung tissue.
Collapse
Affiliation(s)
- D Merrill Dane
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Khoa Cao
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Hua Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Cuneyt Yilmaz
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jamie Dolan
- Department of Evolution, Ecology and Organismal Biology, University of California at Riverside , Riverside, California
| | - Catherine D Thaler
- Department of Evolution, Ecology and Organismal Biology, University of California at Riverside , Riverside, California
| | - Priya Ravikumar
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Kimberly A Hammond
- Department of Evolution, Ecology and Organismal Biology, University of California at Riverside , Riverside, California
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
17
|
Faoro V, Deboeck G, Vicenzi M, Gaston AF, Simaga B, Doucende G, Hapkova I, Roca E, Subirats E, Durand F, Naeije R. Pulmonary Vascular Function and Aerobic Exercise Capacity at Moderate Altitude. Med Sci Sports Exerc 2018; 49:2131-2138. [PMID: 28915226 DOI: 10.1249/mss.0000000000001320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE There has been suggestion that a greater "pulmonary vascular reserve" defined by a low pulmonary vascular resistance (PVR) and a high lung diffusing capacity (DL) allow for a superior aerobic exercise capacity. How pulmonary vascular reserve might affect exercise capacity at moderate altitude is not known. METHODS Thirty-eight healthy subjects underwent an exercise stress echocardiography of the pulmonary circulation, combined with measurements of DL for nitric oxide (NO) and carbon monoxide (CO) and a cardiopulmonary exercise test at sea level and at an altitude of 2250 m. RESULTS At rest, moderate altitude decreased arterial oxygen content (CaO2) from 19.1 ± 1.6 to 18.4 ± 1.7 mL·dL, P < 0.001, and slightly increased PVR, DLNO, and DLCO. Exercise at moderate altitude was associated with decreases in maximum O2 uptake (V˙O2max), from 51 ± 9 to 43 ± 8 mL·kg⋅min, P < 0.001, and CaO2 to 16.5 ± 1.7 mL·dL, P < 0.001, but no different cardiac output, PVR, and pulmonary vascular distensibility. DLNO was inversely correlated to the ventilatory equivalent of CO2 (V˙E/V˙CO2) at sea level and at moderate altitude. Independent determinants of V˙O2max as determined by a multivariable analysis were the slope of mean pulmonary artery pressure-cardiac output relationship, resting stroke volume, and resting DLNO at sea level as well as at moderate altitude. The magnitude of the decrease in V˙O2max at moderate altitude was independently predicted by more pronounced exercise-induced decrease in CaO2 at moderate altitude. CONCLUSION Aerobic exercise capacity is similarly modulated by pulmonary vascular reserve at moderate altitude and at sea level. Decreased aerobic exercise capacity at moderate altitude is mainly explained by exercise-induced decrease in arterial oxygenation.
Collapse
Affiliation(s)
- Vitalie Faoro
- 1Laboratory of Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, BELGIUM; 2Department of Cardiology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, BELGIUM; 3U.O.C. Cardiovascular Diseases, Fondazione IRCCS Granda Hospital Maggiore Policlinico, Milan, ITALY; 4European Laboratory of Performance Health and Altitude, University of Perpignan, Font-Romeu, FRANCE; 5Faculty of Medicine, University of Girona, Girona, SPAIN; and 6Hospital Transfronterer de Cerdanya, Puigcerdà, SPAIN
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Revera M, Salvi P, Faini A, Giuliano A, Gregorini F, Bilo G, Lombardi C, Mancia G, Agostoni P, Parati G. Renin–Angiotensin–Aldosterone System Is Not Involved in the Arterial Stiffening Induced by Acute and Prolonged Exposure to High Altitude. Hypertension 2017; 70:75-84. [DOI: 10.1161/hypertensionaha.117.09197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/17/2017] [Accepted: 04/29/2017] [Indexed: 11/16/2022]
Abstract
This randomized, double-blind, placebo-controlled study was designed to explore the effects of exposure to very high altitude hypoxia on vascular wall properties and to clarify the role of renin–angiotensin–aldosterone system inhibition on these vascular changes. Forty-seven healthy subjects were included in this study: 22 randomized to telmisartan (age, 40.3±10.8 years; 7 women) and 25 to placebo (age, 39.3±9.8 years; 7 women). Tests were performed at sea level, pre- and post-treatment, during acute exposure to 3400 and 5400-m altitude (Mt. Everest Base Camp), and after 2 weeks, at 5400 m. The effects of hypobaric hypoxia on mechanical properties of large arteries were assessed by applanation tonometry, measuring carotid–femoral pulse wave velocity, analyzing arterial pulse waveforms, and evaluating subendocardial oxygen supply/demand index. No differences in hemodynamic changes during acute and prolonged exposure to 5400-m altitude were found between telmisartan and placebo groups. Aortic pulse wave velocity significantly increased with altitude (
P
<0.001) from 7.41±1.25 m/s at sea level to 7.70±1.13 m/s at 3400 m and to 8.52±1.59 m/s at arrival at 5400 m (
P
<0.0001), remaining elevated during prolonged exposure to this altitude (8.41±1.12 m/s;
P
<0.0001). Subendocardial oxygen supply/demand index significantly decreased with acute exposure to 3400 m: from 1.72±0.30 m/s at sea level to 1.41±0.27 m/s at 3400 m (
P
<0.001), remaining significantly although slightly less reduced after reaching 5400 m (1.52±0.33) and after prolonged exposure to this altitude (1.53±0.25;
P
<0.001). In conclusion, the acute exposure to hypobaric hypoxia induces aortic stiffening and reduction in subendocardial oxygen supply/demand index. Renin–angiotensin–aldosterone system does not seem to play any significant role in these hemodynamic changes.
Clinical Trial Registration—
URL:
https://www.clinicaltrialsregister.eu/
. Unique identifier: 2008-000540-14.
Collapse
Affiliation(s)
- Miriam Revera
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Paolo Salvi
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Andrea Faini
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Andrea Giuliano
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Francesca Gregorini
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Grzegorz Bilo
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Carolina Lombardi
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Giuseppe Mancia
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Piergiuseppe Agostoni
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| | - Gianfranco Parati
- From the Department of Cardiovascular, Neural, and Metabolic Sciences, Istituto Auxologico Italiano, Milan (M.R., P.S., A.F., A.G., F.G., G.B., C.L., G.M., G.P.); Department of Medicine and Surgery, Università di Milano-Bicocca, Italy (G.B., G.M., G.P.); Centro Cardiologico Monzino, Milan, Italy (P.A.); and Department of Clinical Sciences and Community Health, Cardiovascular Section, Università degli Studi di Milano, Italy (P.A.)
| |
Collapse
|
19
|
Taylor BJ, Stewart GM, Marck JW, Summerfield DT, Issa AN, Johnson BD. Interstitial lung fluid balance in healthy lowlanders exposed to high-altitude. Respir Physiol Neurobiol 2017; 243:77-85. [PMID: 28554819 DOI: 10.1016/j.resp.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 11/27/2022]
Abstract
We aimed to assess lung fluid balance before and after gradual ascent to 5150m. Lung diffusion capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (DmCO) and ultrasound lung comets (ULCs) were assessed in 12 healthy lowlanders at sea-level, and on Day 1, Day 5 and Day 9 after arrival at Mount Everest Base Camp (EBC). EBC was reached following an 8-day hike at progressively increasing altitudes starting at 2860m. DLCO was unchanged from sea-level to Day 1 at EBC, but increased on Day 5 (11±10%) and Day 9 (10±9%) vs. sea-level (P≤0.047). DmCO increased from sea-level to Day 1 (9±6%), Day 5 (12±8%), and Day 9 (17±11%) (all P≤0.001) at EBC. There was no change in ULCs from sea-level to Day 1, Day 5 and Day 9 at EBC. These data provide evidence that interstitial lung fluid remains stable or may even decrease relative to at sea-level following 8days of gradual exposure to high-altitude in healthy humans.
Collapse
Affiliation(s)
- Bryan J Taylor
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, UK; Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, USA.
| | - Glenn M Stewart
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, USA
| | - Jan W Marck
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, USA
| | - Douglas T Summerfield
- Critical Care Medicine, Department of Internal Medicine, Mayo Clinic and Foundation, USA
| | - Amine N Issa
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, USA
| | - Bruce D Johnson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, USA
| |
Collapse
|
20
|
Reappraisal of DLCO adjustment to interpret the adaptive response of the air-blood barrier to hypoxia. Respir Physiol Neurobiol 2016; 238:59-65. [PMID: 27595980 DOI: 10.1016/j.resp.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022]
Abstract
DLCO measured in hypoxia must be corrected due to the higher affinity (increase in coefficient θ) of CO with Hb. We propose an adjustment accounting for individual changes in the equation relating DLCO to subcomponents Dm (membrane diffusive capacity) and Vc (lung capillary volume): 1/DLCO=1/Dm+1/θVc. We adjusted the individual DLCO measured in hypoxia (HA, 3269m) by interpolating the 1/DLCO to the sea level (SL) 1/θ value. Nineteen healthy subjects were studied at SL and HA. Based on the proposed adjustment, DLCO increased in HA in 53% of subjects, reflecting the increase in Dm that largely overruled the decrease in Vc. We hypothesize that a decrease in Vc (buffering microvascular filtration) and the increase in Dm (possibly resulting from a decrease in thickness of the air-blood barrier) represent the anti-edemagenic adaptation of the lung to hypoxia exposure. The efficiency of this adaptation varied among subjects as DLCO did not change in 31% of subjects and decreased in 16%.
Collapse
|
21
|
Lovering AT, Elliott JE, Davis JT. Physiological impact of patent foramen ovale on pulmonary gas exchange, ventilatory acclimatization, and thermoregulation. J Appl Physiol (1985) 2016; 121:512-7. [PMID: 27418686 DOI: 10.1152/japplphysiol.00192.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The foramen ovale, which is part of the normal fetal cardiopulmonary circulation, fails to close after birth in ∼35% of the population and represents a potential source of right-to-left shunt. Despite the prevalence of patent foramen ovale (PFO) in the general population, cardiopulmonary, exercise, thermoregulatory, and altitude physiologists may have underestimated the potential effect of this shunted blood flow on normal physiological processes in otherwise healthy humans. Because this shunted blood bypasses the respiratory system, it would not participate in either gas exchange or respiratory system cooling and may have impacts on other physiological processes that remain undetermined. The consequences of this shunted blood flow in PFO-positive (PFO+) subjects can potentially have a significant, and negative, impact on the alveolar-to-arterial oxygen difference (AaDO2), ventilatory acclimatization to high altitude and respiratory system cooling with PFO+ subjects having a wider AaDO2 at rest, during exercise after acclimatization, blunted ventilatory acclimatization, and a higher core body temperature (∼0.4(°)C) at rest and during exercise. There is also an association of PFO with high-altitude pulmonary edema and acute mountain sickness. These effects on physiological processes are likely dependent on both the presence and size of the PFO, with small PFOs not likely to have significant/measureable effects. The PFO can be an important determinant of normal physiological processes and should be considered a potential confounder to the interpretation of former and future data, particularly in small data sets where a significant number of PFO+ subjects could be present and significantly impact the measured outcomes.
Collapse
Affiliation(s)
- Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, Oregon;
| | - Jonathan E Elliott
- Oregon Health & Science University, Department of Neurology and VA Portland Health Care System, Portland, Oregon; and
| | - James T Davis
- Indiana State University, Department of Kinesiology, Recreation, and Sport, Terre Haute, Indiana
| |
Collapse
|
22
|
Goss KN, Tepper RS, Lahm T, Ahlfeld SK. Increased Cardiac Output and Preserved Gas Exchange Despite Decreased Alveolar Surface Area in Rats Exposed to Neonatal Hyperoxia and Adult Hypoxia. Am J Respir Cell Mol Biol 2016; 53:902-6. [PMID: 26623969 DOI: 10.1165/rcmb.2015-0100le] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kara N Goss
- 1 University of Wisconsin School of Medicine and Public Health Madison, Wisconsin
| | - Robert S Tepper
- 2 Indiana University School of Medicine Indianapolis, Indiana
| | - Tim Lahm
- 2 Indiana University School of Medicine Indianapolis, Indiana.,3 Richard L Roudebush VA Medical Center Indianapolis, Indiana
| | | |
Collapse
|
23
|
Mushtaq S, Andreini D, Farina S, Salvioni E, Pontone G, Sciomer S, Volpato V, Agostoni P. Levosimendan improves exercise performance in patients with advanced chronic heart failure. ESC Heart Fail 2015; 2:133-141. [PMID: 27708855 PMCID: PMC5042087 DOI: 10.1002/ehf2.12047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 11/06/2022] Open
Abstract
AIMS Cardiopulmonary exercise test (CPET) provides parameters such as peak VO2 and ventilation/CO2 production (VE/VCO2) slope, which are strong prognostic predictors in patients with stable advanced chronic heart failure (ADHF). The study aim was to evaluate the effects of the inodilator levosimendan on CPET in patients with ADHF under stable clinical conditions. METHODS AND RESULTS We enrolled patients with ADHF (peak VO2 < 12 mL/min/kg) in a double-blind, placebo-controlled protocol. Patients were randomly assigned to i.v. infusion of placebo (500 mL 5% glucose; n = 19) or levosimendan (in 500 mL 5% glucose; n = 23). Before and 24 h after the end of the infusion, patients underwent determination of New York Heart Association class, B-type natriuretic peptide (BNP), haemoglobin, serum creatinine, and blood urea nitrogen levels, as well as CPET, standard spirometry, and alveolar capillary gas diffusion. BNP showed no change with placebo (1042 ± 811 to 1043 ± 867 pg/mL), but it was decreased with levosimendan (1163 ± 897 to 509 ± 543 pg/mL, P < 0.001). No changes were observed for haemoglobin, creatinine, and blood urea nitrogen in either group. With levosimendan, a minor improvement was observed in spirometry measurements, but not in alveolar capillary gas diffusion. Peak VO2 showed a small, non-significant increase with placebo (9.5 ± 1.7 to 10.0 ± 2.1 mL/kg/min, P = 0.12), and a greater increase with levosimendan (9.8 ± 1.7 to 11.0 ± 1.9 mL/kg/min, P < 0.005). The VE/VCO2 slope showed no change (44.0 ± 11 vs. 43.4 ± 10.3, P = 0.44), and a decrease (41.9 ± 10 vs. 36.6 ± 6.4, P < 0.001) in the placebo and in the levosimendan group, respectively. CONCLUSION Levosimendan treatment significantly improves peak VO2 and reduces VE/VCO2 slope and BNP in patients with ADHF.
Collapse
Affiliation(s)
- Saima Mushtaq
- Centro Cardiologico MonzinoScientific Institute for Research, Hospitalisation and Health Care (IRCCS)MilanItaly
| | - Daniele Andreini
- Centro Cardiologico MonzinoScientific Institute for Research, Hospitalisation and Health Care (IRCCS)MilanItaly
- Cardiovascular Section, Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| | - Stefania Farina
- Centro Cardiologico MonzinoScientific Institute for Research, Hospitalisation and Health Care (IRCCS)MilanItaly
| | - Elisabetta Salvioni
- Centro Cardiologico MonzinoScientific Institute for Research, Hospitalisation and Health Care (IRCCS)MilanItaly
| | - Gianluca Pontone
- Centro Cardiologico MonzinoScientific Institute for Research, Hospitalisation and Health Care (IRCCS)MilanItaly
| | - Susanna Sciomer
- Department of Cardiovascular, Respiratory, Nephrological, Anaesthesiological and Geriatric Sciences‘La Sapienza’ University of RomeRomeItaly
| | - Valentina Volpato
- Centro Cardiologico MonzinoScientific Institute for Research, Hospitalisation and Health Care (IRCCS)MilanItaly
| | - Piergiuseppe Agostoni
- Centro Cardiologico MonzinoScientific Institute for Research, Hospitalisation and Health Care (IRCCS)MilanItaly
- Cardiovascular Section, Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
| |
Collapse
|
24
|
Hoiland RL, Foster GE, Donnelly J, Stembridge M, Willie CK, Smith KJ, Lewis NC, Lucas SJ, Cotter JD, Yeoman DJ, Thomas KN, Day TA, Tymko MM, Burgess KR, Ainslie PN. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude. Chest 2015; 148:219-225. [DOI: 10.1378/chest.14-1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Torday JS. Pleiotropy as the Mechanism for Evolving Novelty: Same Signal, Different Result. BIOLOGY 2015; 4:443-59. [PMID: 26103090 PMCID: PMC4498309 DOI: 10.3390/biology4020443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022]
Abstract
In contrast to the probabilistic way of thinking about pleiotropy as the random expression of a single gene that generates two or more distinct phenotypic traits, it is actually a deterministic consequence of the evolution of complex physiology from the unicellular state. Pleiotropic novelties emerge through recombinations and permutations of cell-cell signaling exercised during reproduction based on both past and present physical and physiologic conditions, in service to the future needs of the organism for its continued survival. Functional homologies ranging from the lung to the kidney, skin, brain, thyroid and pituitary exemplify the evolutionary mechanistic strategy of pleiotropy. The power of this perspective is exemplified by the resolution of evolutionary gradualism and punctuated equilibrium in much the same way that Niels Bohr resolved the paradoxical duality of light as Complementarity.
Collapse
Affiliation(s)
- John S Torday
- Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502-2006, USA.
| |
Collapse
|
26
|
Elliott JE, Laurie SS, Kern JP, Beasley KM, Goodman RD, Kayser B, Subudhi AW, Roach RC, Lovering AT. AltitudeOmics: impaired pulmonary gas exchange efficiency and blunted ventilatory acclimatization in humans with patent foramen ovale after 16 days at 5,260 m. J Appl Physiol (1985) 2015; 118:1100-12. [PMID: 25678698 DOI: 10.1152/japplphysiol.00879.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/08/2015] [Indexed: 12/29/2022] Open
Abstract
A patent foramen ovale (PFO), present in ∼40% of the general population, is a potential source of right-to-left shunt that can impair pulmonary gas exchange efficiency [i.e., increase the alveolar-to-arterial Po2 difference (A-aDO2)]. Prior studies investigating human acclimatization to high-altitude with A-aDO2 as a key parameter have not investigated differences between subjects with (PFO+) or without a PFO (PFO-). We hypothesized that in PFO+ subjects A-aDO2 would not improve (i.e., decrease) after acclimatization to high altitude compared with PFO- subjects. Twenty-one (11 PFO+) healthy sea-level residents were studied at rest and during cycle ergometer exercise at the highest iso-workload achieved at sea level (SL), after acute transport to 5,260 m (ALT1), and again at 5,260 m after 16 days of high-altitude acclimatization (ALT16). In contrast to PFO- subjects, PFO+ subjects had 1) no improvement in A-aDO2 at rest and during exercise at ALT16 compared with ALT1, 2) no significant increase in resting alveolar ventilation, or alveolar Po2, at ALT16 compared with ALT1, and consequently had 3) an increased arterial Pco2 and decreased arterial Po2 and arterial O2 saturation at rest at ALT16. Furthermore, PFO+ subjects had an increased incidence of acute mountain sickness (AMS) at ALT1 concomitant with significantly lower peripheral O2 saturation (SpO2). These data suggest that PFO+ subjects have increased susceptibility to AMS when not taking prophylactic treatments, that right-to-left shunt through a PFO impairs pulmonary gas exchange efficiency even after acclimatization to high altitude, and that PFO+ subjects have blunted ventilatory acclimatization after 16 days at altitude compared with PFO- subjects.
Collapse
Affiliation(s)
| | - Steven S Laurie
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Julia P Kern
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Kara M Beasley
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Randall D Goodman
- Oregon Heart and Vascular Institute, Echocardiography, Springfield, Oregon
| | - Bengt Kayser
- University of Lausanne, Department of Physiology and Institute of Sports Sciences, Lausanne, Switzerland
| | - Andrew W Subudhi
- Altitude Research Center, University of Colorado Anschutz Medical Campus, Denver, Colorado; and Department of Biology, University of Colorado, Colorado Springs, Colorado
| | - Robert C Roach
- Altitude Research Center, University of Colorado Anschutz Medical Campus, Denver, Colorado; and
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon;
| |
Collapse
|
27
|
Abstract
This paper describes the interactions between ventilation and acid-base balance under a variety of conditions including rest, exercise, altitude, pregnancy, and various muscle, respiratory, cardiac, and renal pathologies. We introduce the physicochemical approach to assessing acid-base status and demonstrate how this approach can be used to quantify the origins of acid-base disorders using examples from the literature. The relationships between chemoreceptor and metaboreceptor control of ventilation and acid-base balance summarized here for adults, youth, and in various pathological conditions. There is a dynamic interplay between disturbances in acid-base balance, that is, exercise, that affect ventilation as well as imposed or pathological disturbances of ventilation that affect acid-base balance. Interactions between ventilation and acid-base balance are highlighted for moderate- to high-intensity exercise, altitude, induced acidosis and alkalosis, pregnancy, obesity, and some pathological conditions. In many situations, complete acid-base data are lacking, indicating a need for further research aimed at elucidating mechanistic bases for relationships between alterations in acid-base state and the ventilatory responses.
Collapse
Affiliation(s)
- Michael I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
28
|
Pavelescu A, Faoro V, Guenard H, de Bisschop C, Martinot JB, Mélot C, Naeije R. Pulmonary vascular reserve and exercise capacity at sea level and at high altitude. High Alt Med Biol 2013; 14:19-26. [PMID: 23537256 DOI: 10.1089/ham.2012.1073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
It has been suggested that increased pulmonary vascular reserve, as defined by reduced pulmonary vascular resistance (PVR) and increased pulmonary transit of agitated contrast measured by echocardiography, might be associated with increased exercise capacity. Thus, at altitude, where PVR is increased because of hypoxic vasoconstriction, a reduced pulmonary vascular reserve could contribute to reduced exercise capacity. Furthermore, a lower PVR could be associated with higher capillary blood volume and an increased lung diffusing capacity. We reviewed echocardiographic estimates of PVR and measurements of lung diffusing capacity for nitric oxide (DL(NO)) and for carbon monoxide (DL(CO)) at rest, and incremental cardiopulmonary exercise tests in 64 healthy subjects at sea level and during 4 different medical expeditions at altitudes around 5000 m. Altitude exposure was associated with a decrease in maximum oxygen uptake (VO2max), from 42±10 to 32±8 mL/min/kg and increases in PVR, ventilatory equivalents for CO2 (V(E)/VCO2), DL(NO), and DL(CO). By univariate linear regression VO2max at sea level and at altitude was associated with V(E)/VCO2 (p<0.001), mean pulmonary artery pressure (mPpa, p<0.05), stroke volume index (SVI, p<0.05), DL(NO) (p<0.02), and DL(CO) (p=0.05). By multivariable analysis, VO2max at sea level and at altitude was associated with V(E)/VCO2, mPpa, SVI, and DL(NO). The multivariable analysis also showed that the altitude-related decrease in VO2max was associated with increased PVR and V(E)/VCO2. These results suggest that pulmonary vascular reserve, defined by a combination of decreased PVR and increased DL(NO), allows for superior aerobic exercise capacity at a lower ventilatory cost, at sea level and at high altitude.
Collapse
Affiliation(s)
- Adriana Pavelescu
- Department of Pathophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
During dynamic exercise, the healthy pulmonary system faces several major challenges, including decreases in mixed venous oxygen content and increases in mixed venous carbon dioxide. As such, the ventilatory demand is increased, while the rising cardiac output means that blood will have considerably less time in the pulmonary capillaries to accomplish gas exchange. Blood gas homeostasis must be accomplished by precise regulation of alveolar ventilation via medullary neural networks and sensory reflex mechanisms. It is equally important that cardiovascular and pulmonary system responses to exercise be precisely matched to the increase in metabolic requirements, and that the substantial gas transport needs of both respiratory and locomotor muscles be considered. Our article addresses each of these topics with emphasis on the healthy, young adult exercising in normoxia. We review recent evidence concerning how exercise hyperpnea influences sympathetic vasoconstrictor outflow and the effect this might have on the ability to perform muscular work. We also review sex-based differences in lung mechanics.
Collapse
Affiliation(s)
- Andrew William Sheel
- The School of Kinesiology, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
30
|
Magini A, Apostolo A, Salvioni E, Italiano G, Veglia F, Agostoni P. Alveolar-capillary membrane diffusion measurement by nitric oxide inhalation in heart failure. Eur J Prev Cardiol 2013; 22:206-12. [PMID: 24165475 DOI: 10.1177/2047487313510397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In heart failure, lung diffusion is reduced, it correlates with prognosis and exercise capacity, and it is a therapy target. DESIGN Diffusion is measured as CO total diffusion (DL(CO)), which has two components: membrane diffusion (Dm) and capillary volume, the latter related to CO and O2 competition for hemoglobin. DL(CO) needs to be corrected for hemoglobin. Diffusion can also be measured with NO (DL(NO)), which has a very high affinity for hemoglobin, and thus, the resistance of hemoglobin being trivial, it directly represents Dm. Therefore, Dm is directly calculated from DL(NO) through a correction factor. DL(NO) has never been measured in heart failure. The study aims at determining, in heart failure, DL(NO), Dm correction factor, and whether Dm(NO) provides Dm estimates comparable to Dm(CO). METHODS We measured DL(CO), Dm(CO) by multi-maneuver Roughton-Forster method, and DL(CO) and DL(NO) by single-breath maneuver in 50 heart failure and 50 healthy subjects. RESULTS DL(CO) was 21.9 ± 4.8 ml/mmHg per min and 16.8 ± 5.1 in healthy subjects and heart failure subjects, respectively (p < 0.001). DL(NO) was 88.6 ± 20.5 ml/mmHg per min and 72.5 ± 22.3, respectively (p < 0.001). The correction factors to obtain Dm from DL(NO) were 2.68 (entire population), 2.63 (healthy subjects) and 2.75 (heart failure subjects). Dm(CO) and Dm(NO) were 34.7 ± 10.9 ml/mmHg per min and 33.8 ± 7.6 in healthy subjects and 25.9 ± 2.0 and 26.4 ± 8.1 in heart failure subjects. CONCLUSIONS DL(NO) and Dm(NO) measurements are feasible in heart failure. Dm(CO) and Dm(NO) provide comparable results. The correction factor to calculate Dm from DL(NO) in heart failure is 2.75, which is little different from the 2.63 value we observed in healthy subjects.
Collapse
Affiliation(s)
| | | | | | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Italy Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
31
|
Acute high-altitude exposure reduces lung diffusion: Data from the HIGHCARE Alps project. Respir Physiol Neurobiol 2013; 188:223-8. [DOI: 10.1016/j.resp.2013.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/27/2013] [Accepted: 04/04/2013] [Indexed: 01/06/2023]
|
32
|
Martinot JB, Mulè M, de Bisschop C, Overbeek MJ, Le-Dong NN, Naeije R, Guénard H. Lung membrane conductance and capillary volume derived from the NO and CO transfer in high-altitude newcomers. J Appl Physiol (1985) 2013; 115:157-66. [DOI: 10.1152/japplphysiol.01455.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute exposure to high altitude may induce changes in carbon monoxide (CO) membrane conductance (DmCO) and capillary lung volume (Vc). Measurements were performed in 25 lowlanders at Brussels (D0), at 4,300 m after a 2- or 3-day exposure (D2,3) without preceding climbing, and 5 days later (D7,8), before and after an exercise test, under a trial with two arterial pulmonary vasodilators or a placebo. The nitric oxide (NO)/CO transfer method was used, assuming both infinite and finite values to the NO blood conductance (θNO). Doppler echocardiography provided hemodynamic data. Compared with sea level, lung diffusing capacity for CO increased by 24% at D2,3 and is returned to control at D7,8. The acute increase in lung diffusing capacity for CO resulted from increases in DmCO and Vc with finite and infinite θNO assumptions. The alveolar volume increased by 16% at D2,3 and normalized at D7,8. The mean increase in systolic arterial pulmonary pressure at rest at D2,3 was minimal. In conclusion, the acute increase in Vc may be related to the increase in alveolar volume and to the increase in capillary pressure. Compared with the infinite θNO value, the use of a finite θNO value led to about a twofold increase in DmCO value and to a persistent increase in DmCO at D7,8 compared with D0. After exercise, DmCO decreased slightly less in subjects treated by the vasodilators, suggesting a beneficial effect on interstitial edema.
Collapse
Affiliation(s)
| | | | - Claire de Bisschop
- Laboratory Mobilité Vieillissement Exercice (MOVE), Poitiers University, Poitiers, France
| | - Maria J. Overbeek
- Department of Pulmonology, Medical Center Haaglanden, the Hague, the Netherlands
| | - Nhat-Nam Le-Dong
- Service de Physiologie, Explorations Fonctionnelles, Hôpital Cochin, Paris, France
| | - Robert Naeije
- Laboratory of Physiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium; and
| | - Hervé Guénard
- Department of Physiology, University Hospital Bordeaux 2, Bordeaux, France
| |
Collapse
|
33
|
Paolillo S, Pellegrino R, Salvioni E, Contini M, Iorio A, Bovis F, Antonelli A, Torchio R, Gulotta C, Locatelli A, Agostoni P. Role of alveolar β2-adrenergic receptors on lung fluid clearance and exercise ventilation in healthy humans. PLoS One 2013; 8:e61877. [PMID: 23613962 PMCID: PMC3627811 DOI: 10.1371/journal.pone.0061877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Background In experimental conditions alveolar fluid clearance is controlled by alveolar β2-adrenergic receptors. We hypothesized that if this occurs in humans, then non-selective β-blockers should reduce the membrane diffusing capacity (DM), an index of lung interstitial fluid homeostasis. Moreover, we wondered whether this effect is potentiated by saline solution infusion, an intervention expected to cause interstitial lung edema. Since fluid retention within the lungs might trigger excessive ventilation during exercise, we also hypothesized that after the β2-blockade ventilation increased in excess to CO2 output and this was further enhanced by interstitial edema. Methods and Results 22 healthy males took part in the study. On day 1, spirometry, lung diffusion for carbon monoxide (DLCO) including its subcomponents DM and capillary volume (VCap), and cardiopulmonary exercise test were performed. On day 2, these tests were repeated after rapid 25 ml/kg saline infusion. Then, in random order 11 subjects were assigned to oral treatment with Carvedilol (CARV) and 11 to Bisoprolol (BISOPR). When heart rate fell at least by 10 beats·min−1, the tests were repeated before (day 3) and after saline infusion (day 4). CARV but not BISOPR, decreased DM (−13±7%, p = 0.001) and increased VCap (+20±22%, p = 0.016) and VE/VCO2 slope (+12±8%, p<0.01). These changes further increased after saline: −18±13% for DM (p<0.01), +44±28% for VCap (p<0.001), and +20±10% for VE/VCO2 slope (p<0.001). Conclusions These findings support the hypothesis that in humans in vivo the β2-alveolar receptors contribute to control alveolar fluid clearance and that interstitial lung fluid may trigger exercise hyperventilation.
Collapse
Affiliation(s)
- Stefania Paolillo
- Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milano, Italy
- Dipartimento di Medicina Interna, Scienze cardiovascolari ed immunologiche, Università Federico II, Napoli, Italy
| | - Riccardo Pellegrino
- Allergologia e Fisiopatologia Respiratoria, ASO S. Croce e Carle, Cuneo, Italy
| | - Elisabetta Salvioni
- Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Mauro Contini
- Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Annamaria Iorio
- Dipartimento cardiovascolare, Ospedali Riuniti e Università di Trieste, Trieste, Italy
| | - Francesca Bovis
- Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Andrea Antonelli
- Allergologia e Fisiopatologia Respiratoria, ASO S. Croce e Carle, Cuneo, Italy
| | - Roberto Torchio
- Pneumologia-Fisiopatologia Respiratoria, AOU S. Luigi, Orbassano, Torino, Italy
| | - Carlo Gulotta
- Pneumologia-Fisiopatologia Respiratoria, AOU S. Luigi, Orbassano, Torino, Italy
| | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, Istituto Di Ricovero e Cura a Carattere Scientifico, Milano, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS One 2012; 7:e49074. [PMID: 23152851 PMCID: PMC3495772 DOI: 10.1371/journal.pone.0049074] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
Slow deep breathing improves blood oxygenation (Sp(O2)) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39) or at 5400 m for 12-16 days (Study B; N = 28). Study variables, including Sp(O2) and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2) (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.
Collapse
|
35
|
Groepenhoff H, Overbeek MJ, Mulè M, van der Plas M, Argiento P, Villafuerte FC, Beloka S, Faoro V, Macarlupu JL, Guenard H, de Bisschop C, Martinot JB, Vanderpool R, Penaloza D, Naeije R. Exercise Pathophysiology in Patients With Chronic Mountain Sickness. Chest 2012; 142:877-884. [DOI: 10.1378/chest.11-2845] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
36
|
de Bisschop C, Martinot JB, Leurquin-Sterk G, Faoro V, Guénard H, Naeije R. Improvement in lung diffusion by endothelin A receptor blockade at high altitude. J Appl Physiol (1985) 2011; 112:20-5. [PMID: 21979801 DOI: 10.1152/japplphysiol.00670.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung diffusing capacity has been reported variably in high-altitude newcomers and may be in relation to different pulmonary vascular resistance (PVR). Twenty-two healthy volunteers were investigated at sea level and at 5,050 m before and after random double-blind intake of the endothelin A receptor blocker sitaxsentan (100 mg/day) vs. a placebo during 1 wk. PVR was estimated by Doppler echocardiography, and exercise capacity by maximal oxygen uptake (Vo(2 max)). The diffusing capacities for nitric oxide (DL(NO)) and carbon monoxide (DL(CO)) were measured using a single-breath method before and 30 min after maximal exercise. The membrane component of DL(CO) (Dm) and capillary volume (Vc) was calculated with corrections for hemoglobin, alveolar volume, and barometric pressure. Altitude exposure was associated with unchanged DL(CO), DL(NO), and Dm but a slight decrease in Vc. Exercise at altitude decreased DL(NO) and Dm. Sitaxsentan intake improved Vo(2 max) together with an increase in resting and postexercise DL(NO) and Dm. Sitaxsentan-induced decrease in PVR was inversely correlated to DL(NO). Both DL(CO) and DL(NO) were correlated to Vo(2 max) at sea level (r = 0.41-0.42, P < 0.1) and more so at altitude (r = 0.56-0.59, P < 0.05). Pharmacological pulmonary vasodilation improves the membrane component of lung diffusion in high-altitude newcomers, which may contribute to exercise capacity.
Collapse
Affiliation(s)
- Claire de Bisschop
- Laboratory of Physiologic Adaptations to Physical Activities, UPRES EA 3813, Poitiers University, Poitiers, France
| | | | | | | | | | | |
Collapse
|
37
|
Sightings edited by John W. Severinghaus. High Alt Med Biol 2011. [DOI: 10.1089/ham.2011.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|