1
|
Lee JH, Yoon YC, Kim HS, Lee J, Kim E, Findeklee C, Katscher U. In vivo electrical conductivity measurement of muscle, cartilage, and peripheral nerve around knee joint using MR-electrical properties tomography. Sci Rep 2022; 12:73. [PMID: 34996978 PMCID: PMC8741940 DOI: 10.1038/s41598-021-03928-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate whether in vivo MR-electrical properties tomography (MR-EPT) is feasible in musculoskeletal tissues by evaluating the conductivity of muscle, cartilage, and peripheral nerve around the knee joint, and to explore whether these measurements change after exercise. This prospective study was approved by the institutional review board. On February 2020, ten healthy volunteers provided written informed consent and underwent MRI of the right knee using a three-dimensional balanced steady-state free precession (bSSFP) sequence. To test the effect of loading, the subjects performed 60 squatting exercises after baseline MRI, immediately followed by post-exercise MRI with the same sequences. After reconstruction of conductivity map based on the bSSFP sequence, conductivity of muscles, cartilages, and nerves were measured. Measurements between the baseline and post-exercise MRI were compared using the paired t-test. Test–retest reliability for baseline conductivity was evaluated using the intraclass correlation coefficient. The baseline and post-exercise conductivity values (mean ± standard deviation) [S/m] of muscles, cartilages, and nerves were 1.73 ± 0.40 and 1.82 ± 0.50 (p = 0.048), 2.29 ± 0.47 and 2.51 ± 0.37 (p = 0.006), and 2.35 ± 0.57 and 2.36 ± 0.57 (p = 0.927), respectively. Intraclass correlation coefficient for the baseline conductivity of muscles, cartilages, and nerves were 0.89, 0.67, and 0.89, respectively. In conclusion, in vivo conductivity measurement of musculoskeletal tissues is feasible using MR-EPT. Conductivity of muscles and cartilages significantly changed with an overall increase after exercise.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea.
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea
| | - Jiyeong Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, Korea
| | | | | | | |
Collapse
|
2
|
Hooijmans MT, Monte JRC, Froeling M, van den Berg-Faay S, Aengevaeren VL, Hemke R, Smithuis FF, Eijsvogels TMH, Bakermans AJ, Maas M, Nederveen AJ, Strijkers GJ. Quantitative MRI Reveals Microstructural Changes in the Upper Leg Muscles After Running a Marathon. J Magn Reson Imaging 2020; 52:407-417. [PMID: 32144857 PMCID: PMC7496541 DOI: 10.1002/jmri.27106] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background The majority of sports‐related injuries involve skeletal muscle. Unlike acute trauma, which is often caused by a single traumatic event leading to acute symptoms, exercise‐induced microtrauma may remain subclinical and difficult to detect. Therefore, novel methods to detect and localize subclinical exercise‐induced muscle microtrauma are desirable. Purpose To assess acute and delayed microstructural changes in upper leg muscles with multiparametric quantitative MRI after running a marathon. Study Type Longitudinal; 1‐week prior, 24–48 hours postmarathon and 2‐week follow‐up Population Eleven men participants (age: 47–68 years). Field Strength/Sequence Spin‐echo echo planar imaging (SE‐EPI) with diffusion weighting, multispin echo, Dixon, and fat‐suppressed turbo spin‐echo (TSE) sequences at 3T. MR datasets and creatine kinase (CK) concentrations were obtained at three timepoints. Assessment Diffusion parameters, perfusion fractions, and quantitative (q)T2 values were determined for hamstring and quadriceps muscles, TSE images were scored for acute injury. The vastus medialis and biceps femoris long head muscles were divided and analyzed in five segments to assess local damage. Statistical Tests Differences between timepoints in MR parameters were assessed with a multilevel linear mixed model and in CK concentrations with a Friedman test. Mean diffusivity (MD) and qT2 for whole muscle and muscle segments were compared using a multivariate analysis of covariance (MANCOVA). Results CK concentrations were elevated (1194 U/L [166–3906], P < 0.001) at 24–48 hours postmarathon and returned to premarathon values (323 U/L [56–2216]) at 2‐week follow‐up. Most of the MRI diffusion indices in muscles without acute injury changed at 24–48 hours postmarathon and returned to premarathon values at follow‐up (MD, RD, and λ3; P < 0.006). qT2 values (P = 0.003) and perfusion fractions (P = 0.003) were higher at baseline compared to follow‐up. Local assessments of MD and qT2 revealed more pronounced changes than whole muscle assessment (2–3‐fold; P < 0.01). Data Conclusion Marathon running‐induced microtrauma was detected with MRI in individual whole upper leg muscles and even more pronounced on local segments. Level of Evidence 2 Technical Efficacy Stage 3 J. Magn. Reson. Imaging 2020;52:407–417.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Amsterdam University Medical Centers, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Jithsa R C Monte
- Amsterdam University Medical Centers, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sandra van den Berg-Faay
- Amsterdam University Medical Centers, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Vincent L Aengevaeren
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Health Sciences, Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert Hemke
- Amsterdam University Medical Centers, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Frank F Smithuis
- Amsterdam University Medical Centers, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Thijs M H Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Adrianus J Bakermans
- Amsterdam University Medical Centers, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Mario Maas
- Amsterdam University Medical Centers, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Aart J Nederveen
- Amsterdam University Medical Centers, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Gustav J Strijkers
- Amsterdam University Medical Centers, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
3
|
Rockel C, Akbari A, Kumbhare DA, Noseworthy MD. Dynamic DTI (dDTI) shows differing temporal activation patterns in post-exercise skeletal muscles. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:127-138. [PMID: 27624473 DOI: 10.1007/s10334-016-0587-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
OBJECT To assess post-exercise recovery of human calf muscles using dynamic diffusion tensor imaging (dDTI). MATERIALS AND METHODS DTI data (6 directions, b = 0 and 400 s/mm2) were acquired every 35 s from seven healthy men using a 3T MRI, prior to (4 volumes) and immediately following exercise (13 volumes, ~7.5 min). Exercise consisted of 5-min in-bore repetitive dorsiflexion-eversion foot motion with 0.78 kg resistance. Diffusion tensors calculated at each time point produced maps of mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and signal at b = 0 s/mm2 (S0). Region-of-interest (ROI) analysis was performed on five calf muscles: tibialis anterior (ATIB), extensor digitorum longus (EDL) peroneus longus (PER), soleus (SOL), and lateral gastrocnemius (LG). RESULTS Active muscles (ATIB, EDL, PER) showed significantly elevated initial MD post-exercise, while predicted inactive muscles (SOL, LG) did not (p < 0.0001). The EDL showed a greater initial increase in MD (1.90 × 10-4mm2/s) than ATIB (1.03 × 10-4mm2/s) or PER (8.79 × 10-5 mm2/s) (p = 7.40 × 10-4), and remained significantly elevated across more time points than ATIB or PER. Significant increases were observed in post-exercise EDL S0 relative to other muscles across the majority of time points (p < 0.01 to p < 0.001). CONCLUSIONS dDTI can be used to differentiate exercise-induced changes between muscles. These differences are suggested to be related to differences in fiber composition.
Collapse
Affiliation(s)
- Conrad Rockel
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Alireza Akbari
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Dinesh A Kumbhare
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael D Noseworthy
- McMaster School of Biomedical Engineering, McMaster University, ETB-406 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada. .,Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada. .,Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada. .,Department of Radiology, McMaster University, Hamilton, ON, Canada. .,Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Almurdhi MM, Reeves ND, Bowling FL, Boulton AJM, Jeziorska M, Malik RA. Reduced Lower-Limb Muscle Strength and Volume in Patients With Type 2 Diabetes in Relation to Neuropathy, Intramuscular Fat, and Vitamin D Levels. Diabetes Care 2016; 39:441-7. [PMID: 26740641 PMCID: PMC5317239 DOI: 10.2337/dc15-0995] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/24/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Muscle weakness and atrophy of the lower limbs may develop in patients with diabetes, increasing their risk of falls. The underlying basis of these abnormalities has not been fully explained. The aim of this study was to objectively quantify muscle strength and size in patients with type 2 diabetes mellitus (T2DM) in relation to the severity of neuropathy, intramuscular noncontractile tissue (IMNCT), and vitamin D deficiency. RESEARCH DESIGN AND METHODS Twenty patients with T2DM and 20 healthy control subjects were matched by age, sex, and BMI. Strength and size of knee extensor, flexor, and ankle plantar and dorsiflexor muscles were assessed in relation to the severity of diabetic sensorimotor polyneuropathy (DSPN), amount of IMNCT, and serum 25-hydroxyvitamin D (25OHD) levels. RESULTS Compared with control subjects, patients with T2DM had significantly reduced knee extensor strength (P = 0.003) and reduced muscle volume of both knee extensors (P = 0.045) and flexors (P = 0.019). Ankle plantar flexor strength was also significantly reduced (P = 0.001) but without a reduction in ankle plantar flexor (P = 0.23) and dorsiflexor (P = 0.45) muscle volumes. IMNCT was significantly increased in the ankle plantar (P = 0.006) and dorsiflexors (P = 0.005). Patients with DSPN had significantly less knee extensor strength than those without (P = 0.02) but showed no difference in knee extensor volume (P = 0.38) and ankle plantar flexor strength (P = 0.21) or volume (P = 0.96). In patients with <25 nmol/L versus >25 nmol/L 25OHD, no significant differences were found for knee extensor strength and volume (P = 0.32 vs. 0.18) and ankle plantar flexors (P = 0.58 vs. 0.12). CONCLUSIONS Patients with T2DM have a significant reduction in proximal and distal leg muscle strength and a proximal but not distal reduction in muscle volume possibly due to greater intramuscular fat accumulation in distal muscles. Proximal but not distal muscle strength is related to the severity of peripheral neuropathy but not IMNCT or 25OHD level.
Collapse
Affiliation(s)
- Monirah M Almurdhi
- Centre for Endocrinology and Diabetes, Institute of Human Development, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - Neil D Reeves
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, U.K
| | - Frank L Bowling
- Centre for Endocrinology and Diabetes, Institute of Human Development, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - Andrew J M Boulton
- Centre for Endocrinology and Diabetes, Institute of Human Development, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - Maria Jeziorska
- Centre for Endocrinology and Diabetes, Institute of Human Development, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K
| | - Rayaz A Malik
- Centre for Endocrinology and Diabetes, Institute of Human Development, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, U.K. Weill Cornell Medical College, Doha, Qatar
| |
Collapse
|
5
|
Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2015. [PMID: 26221741 DOI: 10.1002/jmri.25016] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is increasingly applied to study skeletal muscle physiology, anatomy, and pathology. The reason for this growing interest is that DTI offers unique, noninvasive, and potentially diagnostically relevant imaging readouts of skeletal muscle structure that are difficult or impossible to obtain otherwise. DTI has been shown to be feasible within most skeletal muscles. DTI parameters are highly sensitive to patient-specific properties such as age, body mass index (BMI), and gender, but also to more transient factors such as exercise, rest, pressure, temperature, and relative joint position. However, when designing a DTI study one should not only be aware of sensitivity to the above-mentioned factors but also the fact that the DTI parameters are dependent on several acquisition parameters such as echo time, b-value, and diffusion mixing time. The purpose of this review is to provide an overview of DTI studies covering the technical, demographic, and clinical aspects of DTI in skeletal muscles. First we will focus on the critical aspects of the acquisition protocol. Second, we will cover the reported normal variance in skeletal muscle diffusion parameters, and finally we provide an overview of clinical studies and reported parameter changes due to several (patho-)physiological conditions.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Froeling M, Oudeman J, Strijkers GJ, Maas M, Drost MR, Nicolay K, Nederveen AJ. Muscle changes detected with diffusion-tensor imaging after long-distance running. Radiology 2014; 274:548-62. [PMID: 25279435 DOI: 10.1148/radiol.14140702] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop a protocol for diffusion-tensor imaging (DTI) of the complete upper legs and to demonstrate feasibility of detection of subclinical sports-related muscle changes in athletes after strenuous exercise, which remain undetected by using conventional T2-weighted magnetic resonance (MR) imaging with fat suppression. MATERIALS AND METHODS The research was approved by the institutional ethics committee review board, and the volunteers provided written consent before the study. Five male amateur long-distance runners underwent an MR examination (DTI, T1-weighted MR imaging, and T2-weighted MR imaging with fat suppression) of both upper legs 1 week before, 2 days after, and 3 weeks after they participated in a marathon. The tensor eigenvalues (λ1, λ2, and λ3), the mean diffusivity, and the fractional anisotropy (FA) were derived from the DTI data. Data per muscle from the three time-points were compared by using a two-way mixed-design analysis of variance with a Bonferroni posthoc test. RESULTS The DTI protocol allowed imaging of both complete upper legs with adequate signal-to-noise ratio and within a 20-minute imaging time. After the marathon, T2-weighted MR imaging revealed grade 1 muscle strains in nine of the 180 investigated muscles. The three eigenvalues, mean diffusivity, and FA were significantly increased (P < .05) in the biceps femoris muscle 2 days after running. Mean diffusivity and eigenvalues λ1 and λ2 were significantly (P < .05) increased in the semitendinosus and gracilis muscles 2 days after the marathon. CONCLUSION A feasible method for DTI measurements of the upper legs was developed that fully included frequently injured muscles, such as hamstrings, in one single imaging session. This study also revealed changes in DTI parameters that over time were not revealed by qualitative T2-weighted MR imaging with fat suppression.
Collapse
Affiliation(s)
- Martijn Froeling
- From the Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands (M.F., G.J.S., K.N.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (M.F., J.O., M.M., A.J.N.); and Department of Human Movement Science, School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands (M.R.D.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Okamoto Y, Kemp GJ, Isobe T, Sato E, Hirano Y, Shoda J, Minami M. Changes in diffusion tensor imaging (DTI) eigenvalues of skeletal muscle due to hybrid exercise training. Magn Reson Imaging 2014; 32:1297-300. [PMID: 25086331 DOI: 10.1016/j.mri.2014.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 03/29/2014] [Accepted: 07/24/2014] [Indexed: 10/25/2022]
Abstract
Several studies have proposed the cell membrane as the main water diffusion restricting factor in the skeletal muscle cell. We sought to establish whether a particular form of exercise training (which is likely to affect only intracellular components) could affect water diffusion. The purpose of this study is to characterise prospectively the changes in diffusion tensor imaging (DTI) eigenvalues of thigh muscle resulting from hybrid training (HYBT) in patients with non-alcoholic fatty liver disease (NAFLD). Twenty-one NAFLD patients underwent HYBT for 30 minutes per day, twice a week for 6 months. Patients were scanned using DTI of the thigh pre- and post-HYBT. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), the three eigenvalues lambda 1 (λ1), λ2, λ3, and the maximal cross sectional area (CSA) were measured in bilateral thigh muscles: knee flexors (biceps femoris (BF), semitendinosus (ST), semimembranous (SM)) and knee extensors (medial vastus (MV), intermediate vastus (IV), lateral vastus (LV), and rectus femoris (RF)), and compared pre- and post-HYBT by paired t-test. Muscle strength of extensors (P<0.01), but not flexors, increased significantly post-HYBT. For FA, ADC and eigenvalues, the overall picture was of increase. Some (P<0.05 in λ2 and P<0.01 in λ1) eigenvalues of flexors and all (λ1-λ3) eigenvalues of extensors increased significantly (P<0.01) post-HYBT. HYBT increased all 3 eigenvalues. We suggest this might be caused by enlargement of muscle intracellular space.
Collapse
Affiliation(s)
- Yoshikazu Okamoto
- Department of Radiology, Institute of Clinical Medicine, University of Tsukuba Hospital, Ibaraki, Japan.
| | - Graham J Kemp
- Department of Musculoskeletal Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Tomonori Isobe
- Department of Radiology, Institute of Clinical Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Eisuke Sato
- Department of Radiology, University of Kitasato, Tokyo, Japan
| | - Yuji Hirano
- Department of Radiology, Institute of Clinical Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Junichi Shoda
- Department of Gastroenterology, Institute of Clinical Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Manabu Minami
- Department of Radiology, Institute of Clinical Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| |
Collapse
|
8
|
Nketiah G, Savio S, Dastidar P, Nikander R, Eskola H, Sievänen H. Detection of exercise load-associated differences in hip muscles by texture analysis. Scand J Med Sci Sports 2014; 25:428-34. [PMID: 24840507 DOI: 10.1111/sms.12247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2014] [Indexed: 12/15/2022]
Abstract
We examined whether specific physical exercise loading is associated with texture parameters from hip muscles scanned with magnetic resonance imaging (MRI). Ninety-one female athletes representing five distinct exercise-loading groups (high-impact, odd-impact, low-impact, nonimpact and high-magnitude) and 20 nonathletic female controls underwent MRI of the hip. Texture parameters were computed from the MRI images of four hip muscles (gluteus maximus, gluteus medius, iliopsoas and obturator internus). Differences in muscle texture between the athlete groups and the controls were evaluated using Mann-Whitney U-test. Significant (P < 0.05) textural differences were found between the high-impact (triple and high jumpers) and the control group in gluteus medius, iliopsoas and obturator internus muscles. Texture of the gluteus maximus, gluteus medius and obturator internus muscles differed significantly between the odd impact (soccer and squash players) and the control group. Textures of all studied muscles differed significantly between the low impact (endurance runners) and the controls. Only the gluteus medius muscle differed significantly between the nonimpact (swimmers) and the controls. No significant difference in muscle texture was found between the high-magnitude (powerlifters) and the control group. In conclusion, MRI texture analysis provides a quantitative method capable of detecting textural differences in hip muscles that are associated with specific types of long-term exercise loadings.
Collapse
Affiliation(s)
- G Nketiah
- Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland
| | - S Savio
- Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland.,Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - P Dastidar
- Department of Radiology, Tampere University Hospital, Tampere, Finland
| | - R Nikander
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland.,Jyväskylä Central Hospital, Jyväskylä, Finland
| | - H Eskola
- Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland
| | - H Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| |
Collapse
|
9
|
Sikiö M, Harrison LCV, Nikander R, Ryymin P, Dastidar P, Eskola HJ, Sievänen H. Influence of exercise loading on magnetic resonance image texture of thigh soft tissues. Clin Physiol Funct Imaging 2013; 34:370-6. [DOI: 10.1111/cpf.12107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Minna Sikiö
- Department of Radiology; Medical Imaging Center and Hospital Pharmacy; Tampere University Hospital; Tampere Finland
- Department of Electronics and Communications Engineering; Tampere University of Technology; Tampere Finland
| | - Lara C. V. Harrison
- Department of Electronics and Communications Engineering; Tampere University of Technology; Tampere Finland
- Department of Anaesthesia; Tampere University Hospital; Tampere Finland
| | - Riku Nikander
- Department of Health Sciences; University of Jyväskylä; Tampere Finland
- GeroCenter Foundation for Aging Research and Development; Jyväskylä Finland
- Jyväskylä Central Hospital; Jyväskylä Finland
| | - Pertti Ryymin
- Department of Radiology; Medical Imaging Center and Hospital Pharmacy; Tampere University Hospital; Tampere Finland
| | - Prasun Dastidar
- Department of Radiology; Medical Imaging Center and Hospital Pharmacy; Tampere University Hospital; Tampere Finland
- Tampere Medical School; University of Tampere; Tampere Finland
| | - Hannu J. Eskola
- Department of Radiology; Medical Imaging Center and Hospital Pharmacy; Tampere University Hospital; Tampere Finland
- Department of Electronics and Communications Engineering; Tampere University of Technology; Tampere Finland
| | - Harri Sievänen
- Bone Research Group; UKK Intstitute for Health Promotion Research; Tampere Finland
| |
Collapse
|
10
|
Froeling M, Nederveen AJ, Nicolay K, Strijkers GJ. DTI of human skeletal muscle: the effects of diffusion encoding parameters, signal-to-noise ratio and T2 on tensor indices and fiber tracts. NMR IN BIOMEDICINE 2013; 26:1339-52. [PMID: 23670990 DOI: 10.1002/nbm.2959] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 05/18/2023]
Abstract
In this study, we have performed simulations to address the effects of diffusion encoding parameters, signal-to-noise ratio (SNR) and T2 on skeletal muscle diffusion tensor indices and fiber tracts. Where appropriate, simulations were corroborated and validated by in vivo diffusion tensor imaging (DTI) of human skeletal muscle. Specifically, we have addressed: (i) the accuracy and precision of the diffusion parameters and eigenvectors at different SNR levels; (ii) the effects of the diffusion gradient direction encoding scheme; (iii) the optimal b value for diffusion tensor estimation; (iv) the effects of changes in skeletal muscle T2; and, finally, the influence of SNR on fiber tractography and derived (v) fiber lengths, (vi) pennation angles and (vii) fiber curvatures. We conclude that accurate DTI of skeletal muscle requires an SNR of at least 25, a b value of between 400 and 500 s/mm(2), and data acquired with at least 12 diffusion gradient directions homogeneously distributed on half a sphere. Furthermore, for DTI studies focusing on skeletal muscle injury or pathology, apparent changes in the diffusion parameters need to be interpreted with great care in view of the confounding effects of T2, particularly for moderate to low SNR values.
Collapse
Affiliation(s)
- Martijn Froeling
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
11
|
Sions JM, Tyrell CM, Knarr BA, Jancosko A, Binder-Macleod SA. Age- and stroke-related skeletal muscle changes: a review for the geriatric clinician. J Geriatr Phys Ther 2012; 35:155-61. [PMID: 22107952 PMCID: PMC3290755 DOI: 10.1519/jpt.0b013e318236db92] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Independently, aging and stroke each have a significant negative impact on skeletal muscle, but the potential cumulative effects of aging and stroke have not been explored. Optimal interventions for individuals post stroke may include those that specifically target skeletal muscle. Addressing changes in muscles may minimize activity limitations and enhance participation post stroke. This article reviews the impact of aging and stroke on muscle morphology and composition, including fiber atrophy, reductions in muscle cross-sectional area, changes in muscle fiber distributions, and increases in intramuscular fat. Relationships between changes in muscle structure, muscle function, and physical mobility are reviewed. Clinical recommendations that preserve and enhance skeletal muscle in the aging adult and individuals post stroke are discussed. Future research directions that include systematic comparison of the differences in skeletal muscle between younger and older adults who have sustained a stroke are suggested.
Collapse
Affiliation(s)
- Jaclyn Megan Sions
- Biomechanics and Movement Science Program, University of Delaware, Newark, USA.
| | | | | | | | | |
Collapse
|
12
|
Diffusion property differences of the lower leg musculature between athletes and non-athletes using 1.5T MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 25:277-84. [DOI: 10.1007/s10334-011-0294-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 10/04/2011] [Accepted: 10/25/2011] [Indexed: 12/20/2022]
|
13
|
Yanagisawa O, Kurihara T, Fukubayashi T. Alterations in intramuscular water movement associated with mechanical changes in human skeletal muscle fibers: an evaluation using magnetic resonance diffusion-weighted imaging and B-mode ultrasonography. Acta Radiol 2011; 52:1003-8. [PMID: 21911840 DOI: 10.1258/ar.2011.110153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Intramuscular water movement is expected to be affected by the mechanical changes of the muscle fibers. However, the effect of changes in fiber length (FL) and pennation angle (PA) on the water movement has not been sufficiently investigated in human skeletal muscles. PURPOSE To determine the relationship between intramuscular water movement and the mechanical changes in human muscle fibers. MATERIAL AND METHODS Axial magnetic resonance diffusion-weighted images of the right leg (eight men) were taken using a 1.5-Tesla device with the ankle joint maximally dorsiflexed and maximally plantar flexed. The apparent diffusion coefficient (ADC) values of both the dorsiflexors (the superficial and deep parts of the tibialis anterior) and the plantar flexors (medial gastrocnemius and soleus) were calculated along three orthogonal axes (S-I: superior-to-inferior, A-P: anterior-to-posterior, and R-L: right-to-left). FL and PA of both muscle groups were also calculated from longitudinal B-mode ultrasound images with the ankle joint maximally dorsiflexed and plantar flexed. RESULTS There was a significant increase in the ADC in superficial (P < 0.05) and deep (P < 0.05) parts of the dorsiflexors in the S-I direction when the ankle was plantar flexed and in the A-P and R-L directions when the ankle was dorsiflexed (P < 0.05). The plantar flexors showed significantly elevated ADC in the S-I direction when the ankle was dorsiflexed (P < 0.05), and in the A-P and R-L directions when the ankle was plantar flexed (P < 0.05). The dorsiflexors also showed significantly increased PA and decreased FL values when the ankle was dorsiflexed (P < 0.05). The plantar flexors displayed similar morphological changes when the ankle was plantar flexed (P < 0.05). CONCLUSION Water diffusion is affected by structural changes in the long axis of the muscle fibers, namely the changes in PA and FL.
Collapse
|
14
|
Froeling M, Oudeman J, van den Berg S, Nicolay K, Maas M, Strijkers GJ, Drost MR, Nederveen AJ. Reproducibility of diffusion tensor imaging in human forearm muscles at 3.0 T in a clinical setting. Magn Reson Med 2010; 64:1182-90. [DOI: 10.1002/mrm.22477] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Nakai R, Azuma T, Kishimoto T, Hirata T, Takizawa O, Hyon SH, Tsutsumi S. Development of a high-precision image-processing automatic measurement system for MRI visceral fat images acquired using a binomial RF-excitation pulse. Magn Reson Imaging 2010; 28:520-6. [DOI: 10.1016/j.mri.2009.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/07/2009] [Indexed: 01/22/2023]
|
16
|
Yanagisawa O, Dohi M, Okuwaki T, Tawara N, Niitsu M, Takahashi H. Appropriate slice location to assess maximal cross-sectional area of individual rotator cuff muscles in normal adults and athletes. Magn Reson Med Sci 2009; 8:65-71. [PMID: 19571498 DOI: 10.2463/mrms.8.65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE We investigated appropriate slice locations for magnetic resonance (MR) imaging evaluation of the maximal cross-sectional area (CSA) of individual rotator cuff (RC) muscles in normal adults and athletes. METHODS We used a 1.5-tesla MR system with body-array and spine coils to obtain oblique sagittal T(1)-weighted shoulder images of 29 normal adults (16 men, 13 women); 6 national-level competitive swimmers (4 men, 2 women); 10 collegiate-level female badminton players; and 7 collegiate-level male rowers. We calculated the supraspinatus, infraspinatus, teres minor, and subscapularis CSAs at the 0-1 locations on the scapula (dividing scapula width into 11 locations), 0 representing the medial border of the scapula and 1, the glenoid fossa surface. We evaluated the differences in CSAs at relative locations on the scapula for each muscle in normal adults, swimmers, badminton players, and rowers using a one-way analysis of variance followed by the Tukey test (P<0.05). RESULTS The supraspinatus CSAs were maximal at 0.7 for all groups. The infraspinatus CSAs were maximal at 0.5 for normal men and women and badminton players, 0.4- and 0.5 locations for swimmers, and 0.4 for rowers. The teres minor CSAs were maximal at 0.9 for all groups except the swimmers (1 location). The subscapularis CSAs were maximal at 0.7 in men, swimmers, and badminton players and 0.6 in women and rowers. CONCLUSION The appropriate slice locations for evaluating maximal CSAs are slightly lateral to the center of the scapula for the supraspinatus and subscapularis, at approximately the center of the scapula for the infraspinatus, and near the glenoid fossa for the teres minor. These slice locations should be clinically useful for morphological and/or function-related assessments of shoulder RC muscles.
Collapse
Affiliation(s)
- Osamu Yanagisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Morvan D, Leroy-Willig A, Malgouyres A, Cuenod CA, Jehenson P, Syrota A. Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique. Magn Reson Med 1993; 26:1220-4. [PMID: 8450745 DOI: 10.1002/nbm.2938] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/30/2012] [Accepted: 02/11/2013] [Indexed: 04/17/2023]
Abstract
The thermal dependence of the translational diffusion coefficient and of the regional blood volume was investigated in vivo by using a special MR pulsed gradient technique with reduced sensitivity to bulk tissue motion. Measurements were done at 0.5 T, using a small gradient insert. The diffusion coefficient of muscle water was calibrated against thermocouple-measured temperature in vitro, both with the muscle fibers parallel and perpendicular to the diffusion gradient. The maximum muscle temperature variation obtained by percutaneous conduction was -8.8 +/- 1.6 degrees C under cooling and +3.7 +/- 1.6 degrees C under heating, from basal state. Simultaneously the fractional regional blood volume decreased by a factor of 3.5 under cooling and increased by a factor of 2.7 under heating. Due to the interdependence of microcirculation and tissue temperature, this technique may be used to follow heat production or deposition in living tissue (muscle exercise, electromagnetic irradiation, etc.).
Collapse
Affiliation(s)
- D Morvan
- Service Hospitalier Frédéric Joliot, C.E.A., Orsay, France
| | | | | | | | | | | |
Collapse
|