1
|
Anderson JC, Hlastala MP. The alcohol breath test in practice: effects of exhaled volume. J Appl Physiol (1985) 2019; 126:1630-1635. [PMID: 30991012 DOI: 10.1152/japplphysiol.00726.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol breath test (ABT) measurements are sensitive to the volume of the exhaled breath. Although a minimum breath volume is required for a legally acceptable sample, any additional increase in the volume of exhaled air increases the measurement of breath alcohol concentration (BrAC). Using a sample of 115 ABTs collected by police agencies for evidentiary purposes, we studied the influence of exhaled air volume on the measurement of BrAC. The 115 ABTs were performed on 30 different Alcotest 9510s. Each of the tests included paired, time series measurements of exhaled breath flow rates and breath alcohol content. The exhalation flow rates and exhalation times were used to create exhalation volume-BrAC plots. On average, exhaled air volumes were ~50% of the subjects' age-, height-, race-, and sex-predicted vital capacities (VC). More than 80% of the samples had exhaled air volumes ranging between 30 and 70% of the subject's predicted VC. Breath volumes for duplicate breath samples were similar. For all breath samples, BrAC increased with exhalation volume, an expected behavior for any very high blood solubility compound such as alcohol. Beyond the legally accepted minimum expiratory volume, BrAC increased, on average, at a rate of 9.2 ± 2.8%/liter air exhaled. As a result, a person who exhales just beyond the minimum volume will have a lower BrAC compared with a person who exhales a full VC. Exhaled volume materially impacts the measurement of an ABT. NEW & NOTEWORTHY Subjects who provide breath samples for evidentiary alcohol breath tests exhale, on average, about half of their predicted vital capacity. Because breath alcohol concentration increases with greater exhaled air volume, subjects who exhale more than average volume will have a greater breath alcohol concentration, whereas subjects who exhale less than average volume will have a lesser breath alcohol concentration. A quantification of air volume impact on breath alcohol concentration is provided.
Collapse
Affiliation(s)
- Joseph C Anderson
- Department of Bioengineering, University of Washington , Seattle, Washington
| | - Michael P Hlastala
- Department of Physiology and Biophysics, University of Washington , Seattle, Washington.,Department of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
2
|
Mondoñedo JR, McNeil JS, Herrmann J, Simon BA, Kaczka DW. Targeted Versus Continuous Delivery of Volatile Anesthetics During Cholinergic Bronchoconstriction. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2018; 1:031003. [PMID: 31106293 PMCID: PMC6516463 DOI: 10.1115/1.4040001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/13/2018] [Indexed: 11/08/2022]
Abstract
Volatile anesthetics have been shown to reduce lung resistance through dilation of constricted airways. In this study, we hypothesized that that diffusion of inhaled anesthetics from airway lumen to smooth muscle would yield significant bronchodilation in vivo, and systemic recirculation would not be necessary to reduce lung resistance (RL ) and elastance (EL ) during sustained bronchoconstriction. To test this hypothesis, we designed a delivery system for precise timing of inhaled volatile anesthetics during the course of a positive pressure breath. We compared changes in RL , EL , and anatomic dead space (VD ) in canines (N=5) during pharmacologically-induced bronchoconstriction with intravenous methacholine, and following treatments with: 1) targeted anesthetic delivery to VD ; and 2) continuous anesthetic delivery throughout inspiration. Both sevoflurane and isoflurane were used during each delivery regimen. Compared to continuous delivery, targeted delivery resulted in significantly lower doses of delivered anesthetic and decreased end-expiratory concentrations. However, we did not detect significant reductions in RL or EL for either anesthetic delivery regimen. This lack of response may have resulted from an insufficient dose of the anesthetic to cause bronchodilation, or from the preferential distribution of air flow with inhaled anesthetic delivery to less constricted, unobstructed regions of the lung, thereby enhancing airway heterogeneity and increasing apparent RL and EL .
Collapse
Affiliation(s)
- Jarred R. Mondoñedo
- Department of Biomedical Engineering,
School of Medicine,
Boston University,
Boston, MA 02215
| | - John S. McNeil
- Department of Anesthesiology,
University of Virginia,
Charlottesville, VA 22903
| | - Jacob Herrmann
- Department of Anesthesiology;Department of Biomedical Engineering,
University of Iowa,
Iowa City, IA 52242
| | - Brett A. Simon
- Department of Anesthesiology
and Critical Care Medicine;
Department of Surgery,
Memorial Sloan Kettering Cancer Center,
New York, NY 10065
| | - David W. Kaczka
- Department of Anesthesiology, Biomedical
Engineering, and Radiology;
Department of Biomedical Engineering;
Department of Radiology,
University of Iowa Hospitals and Clinics,
Iowa City, IA 52242
e-mail:
| |
Collapse
|
3
|
Hlastala MP, Anderson JC. Alcohol breath test: gas exchange issues. J Appl Physiol (1985) 2016; 121:367-75. [PMID: 27197859 DOI: 10.1152/japplphysiol.00548.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 05/16/2016] [Indexed: 11/22/2022] Open
Abstract
The alcohol breath test is reviewed with a focus on gas exchange factors affecting its accuracy. The basis of the alcohol breath test is the assumption that alveolar air reaches the mouth during exhalation with no change in alcohol concentration. Recent investigations have shown that alcohol concentration is altered during its transit to the mouth. The exhaled alcohol concentration is modified by interaction with the mucosa of the pulmonary airways. Exhaled alcohol concentration is not an accurate indicator of alveolar alcohol concentration. Measuring alcohol concentration in the breath is very different process than measuring a blood level from air equilibrated with a blood sample. Airway exchange of alcohol leads to a bias against certain individuals depending on the anatomic and physiologic characteristics. Methodological modifications are proposed to improve the accuracy of the alcohol breath test to become fair to all.
Collapse
Affiliation(s)
- Michael P Hlastala
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington; and
| | - Joseph C Anderson
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Mondoñedo JR, McNeil JS, Amin SD, Herrmann J, Simon BA, Kaczka DW. Volatile Anesthetics and the Treatment of Severe Bronchospasm: A Concept of Targeted Delivery. ACTA ACUST UNITED AC 2014; 15:43-50. [PMID: 26744597 DOI: 10.1016/j.ddmod.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Status asthmaticus (SA) is a severe, refractory form of asthma that can result in rapid respiratory deterioration and death. Treatment of SA with inhaled anesthetics is a potentially life-saving therapy, but remarkably few data are available about its mechanism of action or optimal administration. In this paper, we will review the clinical use of inhaled anesthetics for treatment of SA, the potential mechanisms by which they dilate constricted airways, and the side effects associated with their administration. We will also introduce the concept of 'targeted' delivery of these agents to the conducting airways, a process which may maximize their therapeutic effects while minimizing associated systemic side effects. Such a delivery regimen has the potential to define a rapidly translatable treatment paradigm for this life-threatening disorder.
Collapse
Affiliation(s)
- Jarred R Mondoñedo
- Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston MA
| | - John S McNeil
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA
| | - Samir D Amin
- Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston MA
| | - Jacob Herrmann
- Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston MA
| | - Brett A Simon
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA
| | - David W Kaczka
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA
| |
Collapse
|
5
|
Butler JP, Tsuda A. Transport of gases between the environment and alveoli--theoretical foundations. Compr Physiol 2013; 1:1301-16. [PMID: 23733643 DOI: 10.1002/cphy.c090016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transport of oxygen and carbon dioxide in the gas phase from the ambient environment to and from the alveolar gas/blood interface is accomplished through the tracheobronchial tree, and involves mechanisms of bulk or convective transport and diffusive net transport. The geometry of the airway tree and the fluid dynamics of these two transport processes combine in such a way that promotes a classical fractionation of ventilation into dead space and alveolar ventilation, respectively. This simple picture continues to capture much of the essence of gas phase transport. On the other hand, a more detailed look at the interaction of convection and diffusion leads to significant new issues, many of which remain open questions. These are associated with parallel and serial inhomogeneities especially within the distal acinar units, velocity profiles in distal airways and terminal spaces subject to moving boundary conditions, and the serial transport of respiratory gases within the complex acinar architecture. This article focuses specifically on the theoretical foundations of gas transport, addressing two broad areas. The first deals with the reasons why the classical picture of alveolar and dead space ventilation is so successful; the second examines the underlying assumptions within current approximations to convective and diffusive transport, and how they interact to effect net gas exchange.
Collapse
Affiliation(s)
- James P Butler
- Harvard School of Public Health, Boston, Massachusetts, USA.
| | | |
Collapse
|
6
|
On the importance of background sampling in applications of the SF6 tracer technique to determine ruminant methane emissions. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2012.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Abstract
Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.
Collapse
Affiliation(s)
- Michael P Hlastala
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
8
|
Effect of release rate of the SF(6) tracer on methane emission estimates based on ruminal and breath gas samples. Animal 2012; 6:518-25. [PMID: 22436232 DOI: 10.1017/s175173111100156x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The release rate (RR) of sulphur hexafluoride (SF(6)) gas from permeation tube in the rumen appears to be positively related with methane (CH(4)) emissions calculated using the SF(6) tracer technique. Gas samples of breath and ruminal headspace were collected simultaneously in order to evaluate the hypothesis that transactions of SF(6) in the rumen are the source for this relationship. Six non-lactating dairy cows fitted with rumen cannulae were subdivided into two groups and randomly assigned to a two-period crossover design to permeation tubes with low RR (LRR = 1.577 mg/day) or two-times higher RR (HRR = 3.147 mg/day) RR. The cows were fed limited amounts of maize silage (80% ad libitum) split into two meals (40% at 0800 h and 60% at 1600 h). Each period consisted of 3-day gas sampling. Immediately before the morning feed and then each hour over 8 h, ruminal gas samples (50 ml) were withdrawn through the cannula fitted with stoppers to prevent opening. Simultaneously, 8-h integrated breath gas samples were collected over the same period. Ratios of concentration of CH(4)/SF(6), CO(2)/SF(6) and CO(2)/CH(4) and emission estimates of CH(4) and CO(2) were calculated for each sample source using the SF(6) tracer technique principles. The LRR treatment yielded higher (P < 0.001) ruminal CH(4)/SF(6) (by 1.79 times) and CO(2)/SF(6) (by 1.90 times) ratios than the HRR treatment; however, these differences were lower than the 2.0 times difference expected from the RR between the LRR and HRR. Consequently, the LRR treatment was associated with lower (P < 0.01) ruminal emissions of CH(4) over the 8-h collection period than with the HRR treatment (+11%), a difference also confirmed by the breath samples (+11%). RR treatments did not differ (P = 0.53) in ruminal or breath CO(2) emissions; however, our results confirm that the SF(6) tracer seems inappropriate for CO(2) emissions estimation in ruminants. Irrespective of the RR treatment, breath samples yielded 8% to 9% higher CH(4) emission estimates than the ruminal samples (P = 0.01). The relationship between rumen and breath sources for CH(4) emissions was better for LRR than for HRR treatment, suggesting that tracer performance decreases with the highest RR of SF(6) tested in our study (3.1 mg/day). A hypothesis is discussed with regard to the mechanism responsible for the relationship between RR and CH(4) emission estimates. The use of permeation tubes with small range in RR is recommended in animal experiments to decrease variability in CH(4) emission estimates using the SF(6) tracer technique.
Collapse
|
9
|
Lassey K, Pinares-Patiño C, Martin R, Molano G, McMillan A. Enteric methane emission rates determined by the SF6 tracer technique: Temporal patterns and averaging periods. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Anderson JC, Hlastala MP. Impact of airway gas exchange on the multiple inert gas elimination technique: theory. Ann Biomed Eng 2010; 38:1017-30. [PMID: 20336837 DOI: 10.1007/s10439-009-9884-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.
Collapse
Affiliation(s)
- Joseph C Anderson
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA.
| | | |
Collapse
|
11
|
Lovering AT, Stickland MK, Eldridge MW. Intrapulmonary shunt during normoxic and hypoxic exercise in healthy humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 588:31-45. [PMID: 17089877 DOI: 10.1007/978-0-387-34817-9_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review presents evidence for the recruitment of intrapulmonary arteriovenous shunts (IPAVS) during exercise in normal healthy humans. Support for pre-capillary connections between the arterial and venous circulation in lungs of humans and animals have existed for over one-hundred years. Right-to-left physiological shunt has not been detected during exercise with gas exchange-dependent techniques. However, fundamental assumptions of these techniques may not allow for measurement of a small (1-3%) anatomical shunt, the magnitude of which would explain the entire A-aDO2 typically observed during normoxic exercise. Data from contrast echocardiograph studies are presented demonstrating the development of IPAVS with exercise in 90% of subjects tested. Technetium-99m labeled macroaggregated albumin studies also found exercise IPAVS and calculated shunt to be approximately 2% at max exercise. These exercise IPAVS appear strongly related to the alveolar to arterial PO2 difference, pulmonary blood flow and mean pulmonary artery pressure. Hypoxic exercise was found to induce IPAVS at lower workloads than during normoxic exercise in 50% of subjects, while all subjects continued to shunt during recovery from hypoxic exercise, but only three subjects demonstrated intrapulmonary shunt during recovery from normoxic exercise. We suggest that these previously under-appreciated intrapulmonary arteriovenous shunts develop during exercise, contributing to the impairment in gas exchange typically observed with exercise. Future work will better define the conditions for shunt recruitment as well as their physiologic consequence.
Collapse
Affiliation(s)
- Andrew T Lovering
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin-Madison, Wisconsin, USA.
| | | | | |
Collapse
|
12
|
Anderson JC, Lamm WJE, Hlastala MP. Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver. J Appl Physiol (1985) 2006; 100:880-9. [PMID: 16282431 DOI: 10.1152/japplphysiol.00868.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exhaled acetone is measured to estimate exposure or monitor diabetes and congestive heart failure. Interpreting this measurement depends critically on where acetone exchanges in the lung. Health professionals assume exhaled acetone originates from alveolar gas exchange, but experimental data and theoretical predictions suggest that acetone comes predominantly from airway gas exchange. We measured endogenous acetone in the exhaled breath to evaluate acetone exchange in the lung. The acetone concentration in the exhalate of healthy human subjects was measured dynamically with a quadrupole mass spectrometer and was plotted against exhaled volume. Each subject performed a series of breathing maneuvers in which the steady exhaled flow rate was the only variable. Acetone phase III had a positive slope (0.054 ± 0.016 liter−1) that was statistically independent of flow rate. Exhaled acetone concentration was normalized by acetone concentration in the alveolar air, as estimated by isothermal rebreathing. Acetone concentration in the rebreathed breath ranged from 0.8 to 2.0 parts per million. Normalized end-exhaled acetone concentration was dependent on flow and was 0.79 ± 0.04 and 0.85 ± 0.04 for the slow and fast exhalation rates, respectively. A mathematical model of airway and alveolar gas exchange was used to evaluate acetone transport in the lung. By doubling the connective tissue (epithelium + mucosal tissue) thickness, this model predicted accurately ( R2 = 0.94 ± 0.05) the experimentally measured expirograms and demonstrated that most acetone exchange occurred in the airways of the lung. Therefore, assays using exhaled acetone measurements need to be reevaluated because they may underestimate blood levels.
Collapse
Affiliation(s)
- Joseph C Anderson
- Department of Medicine, Univ. of Washington, Seattle, Washington 98195-6522, USA.
| | | | | |
Collapse
|
13
|
Abstract
Measuring soluble gas in the exhaled breath is a non-invasive technique used to estimate levels of respiratory, solvent, and metabolic gases. The interpretation of these measurements is based on the assumption that the measured gases exchange in the alveoli. While the respiratory gases have a low blood-solubility and exchange in the alveoli, high blood-soluble gases exchange in the airways. The effect of airway gas exchange on the interpretation of these exhaled breath measurements can be significant. We describe airway gas exchange in relation to exhaled measurements of soluble gases that exchange in the alveoli. The mechanisms of airway gas exchange are reviewed and criteria for determining if a gas exchanges in the airways are provided. The effects of diffusion, perfusion, temperature and breathing maneuver on airway gas exchange and on measurement of exhaled soluble gas are discussed. A method for estimating the impact of airway gas exchange on exhaled breath measurements is presented. We recommend that investigators should carefully control the inspired air conditions and type of exhalation maneuver used in a breath test. Additionally, care should be taken when interpreting breath tests from subjects with pulmonary disease.
Collapse
Affiliation(s)
- Joseph C Anderson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Box 356522, University of Washington, Seattle, Washington 98195-6522, USA.
| | | |
Collapse
|