1
|
Brown LA, Griffiths JA, Santer P, Jakeman PM, Smith TG. Potential for using simulated altitude as a means of prehabilitation: a physiology study. Anaesthesia 2023; 78:1472-1480. [PMID: 37877784 PMCID: PMC10953332 DOI: 10.1111/anae.16158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
The current pandemic of surgical complications necessitates urgent and pragmatic innovation to reduce postoperative morbidity and mortality, which are associated with poor pre-operative fitness and anaemia. Exercise prehabilitation is a compelling strategy, but it has proven difficult to establish that it improves outcomes either in isolation or as part of a multimodal approach. Simulated altitude exposure improves performance in athletes and offers a novel potential means of improving cardiorespiratory and metabolic fitness and alleviating anaemia within the prehabilitation window. We aimed to provide an initial physiological foundation for 'altitude prehabilitation' by determining the physiological effects of one week of simulated altitude (FI O2 15%, equivalent to approximately 2438 m (8000 ft)) in older sedentary volunteers. The study used a randomised, double-blind, sham-controlled crossover design. Eight participants spent counterbalanced normoxic and hypoxic weeks in a residential hypoxia facility and underwent repeated cardiopulmonary exercise tests. Mean (SD) age of participants was 64 (7) y and they were unfit, with mean (SD) baseline anaerobic threshold 12 (2) ml.kg-1 .min-1 and mean (SD) peak V̇O2 15 (3) ml.kg-1 .min-1 . Hypoxia was mild (mean (SD) Sp O2 93 (2) %, p < 0.001) and well-tolerated. Despite some indication of greater peak exercise capacity following hypoxia, overall there was no effect of simulated altitude on anaerobic threshold or peak V̇O2 . However, hypoxia induced a substantial increase in mean (SD) haemoglobin of 1.5 (2.7) g.dl-1 (13% increase, p = 0.028). This study has established the concept and feasibility of 'altitude prehabilitation' and demonstrated specific potential for improving haematological fitness. Physiologically, there is value in exploring a possible role for simulated altitude in pre-operative optimisation.
Collapse
Affiliation(s)
| | - J. A. Griffiths
- Nuffield Department of AnaesthesiaOxford University Hospitals NHS Foundation TrustOxfordUK
| | - P. Santer
- Department of Anesthesia, Critical Care and Pain MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - P. M. Jakeman
- Health Research Institute and Department of Physical Education and Sport SciencesUniversity of LimerickLimerickIreland
| | - T. G. Smith
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
- Department of AnaesthesiaGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Zhang J, Ge P, Liu J, Luo Y, Guo H, Zhang G, Xu C, Chen H. Glucocorticoid Treatment in Acute Respiratory Distress Syndrome: An Overview on Mechanistic Insights and Clinical Benefit. Int J Mol Sci 2023; 24:12138. [PMID: 37569514 PMCID: PMC10418884 DOI: 10.3390/ijms241512138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), triggered by various pathogenic factors inside and outside the lungs, leads to diffuse lung injury and can result in respiratory failure and death, which are typical clinical critical emergencies. Severe acute pancreatitis (SAP), which has a poor clinical prognosis, is one of the most common diseases that induces ARDS. When SAP causes the body to produce a storm of inflammatory factors and even causes sepsis, clinicians will face a two-way choice between anti-inflammatory and anti-infection objectives while considering the damaged intestinal barrier and respiratory failure, which undoubtedly increases the difficulty of the diagnosis and treatment of SAP-ALI/ARDS. For a long time, many studies have been devoted to applying glucocorticoids (GCs) to control the inflammatory response and prevent and treat sepsis and ALI/ARDS. However, the specific mechanism is not precise, the clinical efficacy is uneven, and the corresponding side effects are endless. This review discusses the mechanism of action, current clinical application status, effectiveness assessment, and side effects of GCs in the treatment of ALI/ARDS (especially the subtype caused by SAP).
Collapse
Affiliation(s)
- Jinquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
3
|
Chanana N, Palmo T, Sharma K, Kumar R, Shah B, Mahajan S, Palleda GM, Gupta MD, Kukreti R, Faruq M, Thinlas T, Graham BB, Pasha Q. Sexual Dimorphism of Dexamethasone as a Prophylactic Treatment in Pathologies Associated With Acute Hypobaric Hypoxia Exposure. Front Pharmacol 2022; 13:873867. [PMID: 35668947 PMCID: PMC9163683 DOI: 10.3389/fphar.2022.873867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Dexamethasone can be taken prophylactically to prevent hypobaric hypoxia-associated disorders of high-altitude. While dexamethasone-mediated protection against high-altitude disorders has been clinically evaluated, detailed sex-based mechanistic insights have not been explored. As part of our India-Leh-Dexamethasone-expedition-2020 (INDEX 2020) programme, we examined the phenotype of control (n = 14) and dexamethasone (n = 13) groups, which were airlifted from Delhi (∼225 m elevation) to Leh, Ladakh (∼3,500 m), India, for 3 days. Dexamethasone 4 mg twice daily significantly attenuated the rise in blood pressure, heart rate, pulmonary pressure, and drop in SaO2 resulting from high-altitude exposure compared to control-treated subjects. Of note, the effect of dexamethasone was substantially greater in women than in men, in whom the drug had relatively little effect. Thus, for the first time, this study shows a sex-biased regulation by dexamethasone of physiologic parameters resulting from the hypoxic environment of high-altitude, which impacts the development of high-altitude pulmonary hypertension and acute mountain sickness. Future studies of cellular contributions toward sex-specific regulation may provide further insights and preventive measures in managing sex-specific, high-altitude–related disorders.
Collapse
Affiliation(s)
- Neha Chanana
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Tsering Palmo
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Kavita Sharma
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Bhushan Shah
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Sudhanshu Mahajan
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Girish M. Palleda
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Mohit D. Gupta
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Ritushree Kukreti
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Faruq
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh, Ladakh, India
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Qadar Pasha
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Institute of Hypoxia Research, New Delhi, India
- *Correspondence: Qadar Pasha,
| |
Collapse
|
4
|
Burns P, Lipman GS, Warner K, Jurkiewicz C, Phillips C, Sanders L, Soto M, Hackett P. The Reply. Am J Med 2021; 134:e231-e232. [PMID: 33637189 DOI: 10.1016/j.amjmed.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Patrick Burns
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, Calif.
| | - Grant S Lipman
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, Calif
| | - Keiran Warner
- Stanford-Kaiser Emergency Medicine Residency, Stanford, Calif
| | - Carrie Jurkiewicz
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, Calif
| | - Caleb Phillips
- Department of Computer Science, University of Colorado, Boulder
| | - Linda Sanders
- Swedish Edmonds Department of Emergency Medicine, Edmonds, Wash
| | - Mario Soto
- Department of Emergency Medicine, Madigan Army Medical Center, Tacoma, Wash
| | - Peter Hackett
- Department of Medicine, Altitude Research Center, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
5
|
Cheng HY, Frise MC, Curtis MK, Bart NK, Petousi N, Talbot NP, Balanos GM, Robbins PA, Dorrington KL. Intravenous iron delivers a sustained (8-week) lowering of pulmonary artery pressure during exercise in healthy older humans. Physiol Rep 2020; 7:e14164. [PMID: 31270967 PMCID: PMC6610221 DOI: 10.14814/phy2.14164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/20/2023] Open
Abstract
In older individuals, pulmonary artery pressure rises markedly during exercise, probably due in part to increased pulmonary vascular resistance and in part to an increase in left-heart filling pressure. Older individuals also show more marked pulmonary vascular response to hypoxia at rest. Treatment with intravenous iron reduces the rise in pulmonary artery pressure observed during hypoxia. Here, we test the hypothesis that intravenous iron administration may also attenuate the rise in pulmonary artery pressure with exercise in older individuals. In a randomized double-blind placebo-controlled physiology study in 32 healthy participants aged 50-80 years, we explored the hypothesis that iron administration would deliver a fall in systolic pulmonary artery pressure (SPAP) during moderate cycling exercise (20 min duration; increase in heart rate of 30 min-1 ) and a change in maximal cycling exercise capacity ( V ˙ O 2 m a x ). Participants were studied before, and at 3 h to 8 weeks after, infusion. SPAP was measured using Doppler echocardiography. Iron administration resulted in marked changes in indices of iron homeostasis over 8 weeks, but no significant change in hemoglobin concentration or inflammatory markers. Resting SPAP was also unchanged, but SPAP during exercise was lower by ~3 mmHg in those receiving iron (P < 0.0001). This effect persisted for 8 weeks. Although V ˙ O 2 m a x remained unaffected in the iron-replete healthy participants studied here, this study demonstrates for the first time the ability of intravenous iron supplementation to reduce systolic pulmonary artery pressure during exercise.
Collapse
Affiliation(s)
- Hung-Yuan Cheng
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthew C Frise
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nicole K Bart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nayia Petousi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - George M Balanos
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Keith L Dorrington
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Lichtblau M, Furian M, Aeschbacher SS, Bisang M, Ulrich S, Saxer S, Sheraliev U, Marazhapov NH, Osmonov B, Estebesova B, Sooronbaev T, Bloch KE, Ulrich S. Dexamethasone improves pulmonary hemodynamics in COPD-patients going to altitude: A randomized trial. Int J Cardiol 2019; 283:159-164. [DOI: 10.1016/j.ijcard.2018.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/25/2018] [Accepted: 12/18/2018] [Indexed: 11/27/2022]
|
7
|
Molano Franco D, Nieto Estrada VH, Gonzalez Garay AG, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 3. Miscellaneous and non-pharmacological interventions. Cochrane Database Syst Rev 2019; 4:CD013315. [PMID: 31012483 PMCID: PMC6477878 DOI: 10.1002/14651858.cd013315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND High altitude illness (HAI) is a term used to describe a group of mainly cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (˜ 8200 feet). Acute mountain sickness (AMS), high altitude cerebral oedema (HACE), and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude ascent. In this, the third of a series of three reviews about preventive strategies for HAI, we assessed the effectiveness of miscellaneous and non-pharmacological interventions. OBJECTIVES To assess the clinical effectiveness and adverse events of miscellaneous and non-pharmacological interventions for preventing acute HAI in people who are at risk of developing high altitude illness in any setting. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) in January 2019. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text search terms. We scanned the reference lists and citations of included trials and any relevant systematic reviews that we identified for further references to additional trials. SELECTION CRITERIA We included randomized controlled trials conducted in any setting where non-pharmacological and miscellaneous interventions were employed to prevent acute HAI, including preacclimatization measures and the administration of non-pharmacological supplements. We included trials involving participants who are at risk of developing high altitude illness (AMS or HACE, or HAPE, or both). We included participants with, and without, a history of high altitude illness. We applied no age or gender restrictions. We included trials where the relevant intervention was administered before the beginning of ascent. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures employed by Cochrane. MAIN RESULTS We included 20 studies (1406 participants, 21 references) in this review. Thirty studies (14 ongoing, and 16 pending classification (awaiting)) will be considered in future versions of this suite of three reviews as appropriate. We report the results for the primary outcome of this review (risk of AMS) by each group of assessed interventions.Group 1. Preacclimatization and other measures based on pressureUse of simulated altitude or remote ischaemic preconditioning (RIPC) might not improve the risk of AMS on subsequent exposure to altitude, but this effect is uncertain (simulated altitude: risk ratio (RR) 1.18, 95% confidence interval (CI) 0.82 to 1.71; I² = 0%; 3 trials, 140 participants; low-quality evidence. RIPC: RR 3.0, 95% CI 0.69 to 13.12; 1 trial, 40 participants; low-quality evidence). We found evidence of improvement of this risk using positive end-expiratory pressure (PEEP), but this information was derived from a cross-over trial with a limited number of participants (OR 3.67, 95% CI 1.38 to 9.76; 1 trial, 8 participants; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions.Group 2. Supplements and vitaminsSupplementation of antioxidants, medroxyprogesterone, iron or Rhodiola crenulata might not improve the risk of AMS on exposure to high altitude, but this effect is uncertain (antioxidants: RR 0.58, 95% CI 0.32 to 1.03; 1 trial, 18 participants; low-quality evidence. Medroxyprogesterone: RR 0.71, 95% CI 0.48 to 1.05; I² = 0%; 2 trials, 32 participants; low-quality evidence. Iron: RR 0.65, 95% CI 0.38 to 1.11; I² = 0%; 2 trials, 65 participants; low-quality evidence. R crenulata: RR 1.00, 95% CI 0.78 to 1.29; 1 trial, 125 participants; low-quality evidence). We found evidence of improvement of this risk with the administration of erythropoietin, but this information was extracted from a trial with issues related to risk of bias and imprecision (RR 0.41, 95% CI 0.20 to 0.84; 1 trial, 39 participants; very low-quality evidence). Regarding administration of ginkgo biloba, we did not perform a pooled estimation of RR for AMS due to considerable heterogeneity between the included studies (I² = 65%). RR estimates from the individual studies were conflicting (from 0.05 to 1.03; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions.Group 3. Other comparisonsWe found heterogeneous evidence regarding the risk of AMS when ginkgo biloba was compared with acetazolamide (I² = 63%). RR estimates from the individual studies were conflicting (estimations from 0.11 (95% CI 0.01 to 1.86) to 2.97 (95% CI 1.70 to 5.21); low-quality evidence). We found evidence of improvement when ginkgo biloba was administered along with acetazolamide, but this information was derived from a single trial with issues associated to risk of bias (compared to ginkgo biloba alone: RR 0.43, 95% CI 0.26 to 0.71; 1 trial, 311 participants; low-quality evidence). Administration of medroxyprogesterone plus acetazolamide did not improve the risk of AMS when compared to administration of medroxyprogesterone or acetazolamide alone (RR 1.33, 95% CI 0.50 to 3.55; 1 trial, 12 participants; low-quality evidence). We found scarcity of evidence about the risk of adverse events for these interventions. AUTHORS' CONCLUSIONS This Cochrane Review is the final in a series of three providing relevant information to clinicians, and other interested parties, on how to prevent high altitude illness. The assessment of non-pharmacological and miscellaneous interventions suggests that there is heterogeneous and even contradictory evidence related to the effectiveness of these prophylactic strategies. Safety of these interventions remains as an unclear issue due to lack of assessment. Overall, the evidence is limited due to its quality (low to very low), the relative paucity of that evidence and the number of studies pending classification for the three reviews belonging to this series (30 studies either awaiting classification or ongoing). Additional studies, especially those comparing with pharmacological alternatives (such as acetazolamide) are required, in order to establish or refute the strategies evaluated in this review.
Collapse
Affiliation(s)
- Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Víctor H Nieto Estrada
- Los Cobos Medical Centre. Grupo Investigacion GRIBOSDepartment of Critical CareBogotaBogotaColombia
| | | | | | - Ingrid Arevalo‐Rodriguez
- Hospital Universitario Ramón y Cajal (IRYCIS), CIBER Epidemiology and Public Health (CIBERESP)Clinical Biostatistics UnitCtra. Colmenar Km. 9,100MadridSpain28034
- Cochrane Associate Centre of MadridMadridSpain
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica EquinoccialCochrane EcuadorQuitoEcuador
| | | |
Collapse
|
8
|
Li Y, Zhang Y, Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir Med 2018; 145:145-152. [DOI: 10.1016/j.rmed.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
|
9
|
Cheng HY, Croft QPP, Frise MC, Talbot NP, Petousi N, Robbins PA, Dorrington KL. Human hypoxic pulmonary vasoconstriction is unaltered by 8 h of preceding isocapnic hyperoxia. Physiol Rep 2018; 5:5/17/e13396. [PMID: 28899910 PMCID: PMC5599860 DOI: 10.14814/phy2.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Exposure to sustained hypoxia of 8 h duration increases the sensitivity of the pulmonary vasculature to acute hypoxia, but it is not known whether exposure to sustained hyperoxia affects human pulmonary vascular control. We hypothesized that exposure to 8 h of hyperoxia would diminish the hypoxic pulmonary vasoconstriction (HPV) that occurs in response to a brief exposure to hypoxia. Eleven healthy volunteers were studied in a crossover protocol with randomization of order. Each volunteer was exposed to acute isocapnic hypoxia (end‐tidal PO2 = 50 mmHg for 10 min) before and after 8 h of hyperoxia (end‐tidal PO2 = 420 mmHg) or euoxia (end‐tidal PO2 = 100 mmHg). After at least 3 days, each volunteer returned and was exposed to the other condition. Systolic pulmonary artery pressure (an index of HPV) and cardiac output were measured, using Doppler echocardiography. Eight hours of hyperoxia had no effect on HPV or the response of cardiac output to acute hypoxia.
Collapse
Affiliation(s)
- Hung-Yuan Cheng
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Quentin P P Croft
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthew C Frise
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nick P Talbot
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Nayia Petousi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Keith L Dorrington
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Gonzalez Garay AG, Molano Franco D, Nieto Estrada VH, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs. Cochrane Database Syst Rev 2018; 3:CD012983. [PMID: 29529715 PMCID: PMC6494375 DOI: 10.1002/14651858.cd012983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND High altitude illness (HAI) is a term used to describe a group of mainly cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (˜ 8200 feet). Acute mountain sickness (AMS), high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude ascent. In this second review, in a series of three about preventive strategies for HAI, we assessed the effectiveness of five of the less commonly used classes of pharmacological interventions. OBJECTIVES To assess the clinical effectiveness and adverse events of five of the less commonly used pharmacological interventions for preventing acute HAI in participants who are at risk of developing high altitude illness in any setting. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) in May 2017. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text search terms. We scanned the reference lists and citations of included trials and any relevant systematic reviews that we identified for further references to additional trials. SELECTION CRITERIA We included randomized controlled trials conducted in any setting where one of five classes of drugs was employed to prevent acute HAI: selective 5-hydroxytryptamine(1) receptor agonists; N-methyl-D-aspartate (NMDA) antagonist; endothelin-1 antagonist; anticonvulsant drugs; and spironolactone. We included trials involving participants who are at risk of developing high altitude illness (AMS or HACE, or HAPE, or both). We included participants with and without a history of high altitude illness. We applied no age or gender restrictions. We included trials where the relevant medication was administered before the beginning of ascent. We excluded trials using these drugs during ascent or after ascent. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures employed by Cochrane. MAIN RESULTS We included eight studies (334 participants, 9 references) in this review. Twelve studies are ongoing and will be considered in future versions of this review as appropriate. We have been unable to obtain full-text versions of a further 12 studies and have designated them as 'awaiting classification'. Four studies were at a low risk of bias for randomization; two at a low risk of bias for allocation concealment. Four studies were at a low risk of bias for blinding of participants and personnel. We considered three studies at a low risk of bias for blinding of outcome assessors. We considered most studies at a high risk of selective reporting bias.We report results for the following four main comparisons.Sumatriptan versus placebo (1 parallel study; 102 participants)Data on sumatriptan showed a reduction of the risk of AMS when compared with a placebo (risk ratio (RR) = 0.43, CI 95% 0.21 to 0.84; 1 study, 102 participants; low quality of evidence). The one included study did not report events of HAPE, HACE or adverse events related to administrations of sumatriptan.Magnesium citrate versus placebo (1 parallel study; 70 participants)The estimated RR for AMS, comparing magnesium citrate tablets versus placebo, was 1.09 (95% CI 0.55 to 2.13; 1 study; 70 participants; low quality of evidence). In addition, the estimated RR for loose stools was 3.25 (95% CI 1.17 to 8.99; 1 study; 70 participants; low quality of evidence). The one included study did not report events of HAPE or HACE.Spironolactone versus placebo (2 parallel studies; 205 participants)Pooled estimation of RR for AMS was not performed due to considerable heterogeneity between the included studies (I² = 72%). RR from individual studies was 0.40 (95% CI 0.12 to 1.31) and 1.44 (95% CI 0.79 to 2.01; very low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated.Acetazolamide versus spironolactone (1 parallel study; 232 participants)Data on acetazolamide compared with spironolactone showed a reduction of the risk of AMS with the administration of acetazolamide (RR = 0.36, 95% CI 0.18 to 0.70; 232 participants; low quality of evidence). No events of HAPE or HACE were reported. Adverse events were not evaluated. AUTHORS' CONCLUSIONS This Cochrane Review is the second in a series of three providing relevant information to clinicians and other interested parties on how to prevent high altitude illness. The assessment of five of the less commonly used classes of drugs suggests that there is a scarcity of evidence related to these interventions. Clinical benefits and harms related to potential interventions such as sumatriptan are still unclear. Overall, the evidence is limited due to the low number of studies identified (for most of the comparison only one study was identified); limitations in the quality of the evidence (moderate to low); and the number of studies pending classification (24 studies awaiting classification or ongoing). We lack the large and methodologically sound studies required to establish or refute the efficacy and safety of most of the pharmacological agents evaluated in this review.
Collapse
Affiliation(s)
- Alejandro G Gonzalez Garay
- National Institute of PediatricsMethodology Research UnitInsurgentes Sur 3700 ‐ CCol. Insurgentes Cuicuilco, CoyoacanMexico CityDistrito FederalMexico04530
| | - Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Víctor H Nieto Estrada
- Fundacion Universitaria Sanitas, Colombia ClinicDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | | | - Ingrid Arevalo‐Rodriguez
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoAv. Mariscal Sucre s/n y Av. Mariana de JesúsQuitoEcuador
- Hospital Universitario Ramon y Cajal (IRYCIS)Clinical Biostatistics UnitMadridSpain
| | | |
Collapse
|
11
|
Lipman GS, Pomeranz D, Burns P, Phillips C, Cheffers M, Evans K, Jurkiewicz C, Juul N, Hackett P. Budesonide Versus Acetazolamide for Prevention of Acute Mountain Sickness. Am J Med 2018; 131:200.e9-200.e16. [PMID: 28668540 DOI: 10.1016/j.amjmed.2017.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inhaled budesonide has been suggested as a novel prevention for acute mountain sickness. However, efficacy has not been compared with the standard acute mountain sickness prevention medication acetazolamide. METHODS This double-blind, randomized, placebo-controlled trial compared inhaled budesonide versus oral acetazolamide versus placebo, starting the morning of ascent from 1240 m (4100 ft) to 3810 m (12,570 ft) over 4 hours. The primary outcome was acute mountain sickness incidence (headache and Lake Louise Questionnaire ≥3 and another symptom). RESULTS A total of 103 participants were enrolled and completed the study; 33 (32%) received budesonide, 35 (34%) acetazolamide, and 35 (34%) placebo. Demographics were not different between the groups (P > .09). Acute mountain sickness prevalence was 73%, with severe acute mountain sickness of 47%. Fewer participants in the acetazolamide group (n = 15, 43%) developed acute mountain sickness compared with both budesonide (n = 24, 73%) (odds ratio [OR] 3.5, 95% confidence interval [CI] 1.3-10.1) and placebo (n = 22, 63%) (OR 0.5, 95% CI 0.2-1.2). Severe acute mountain sickness was reduced with acetazolamide (n = 11, 31%) compared with both budesonide (n = 18, 55%) (OR 2.6, 95% CI 1-7.2) and placebo (n = 19, 54%) (OR 0.4, 95% CI 0.1-1), with a number needed to treat of 4. CONCLUSION Budesonide was ineffective for the prevention of acute mountain sickness, and acetazolamide was preventive of severe acute mountain sickness taken just before rapid ascent.
Collapse
Affiliation(s)
- Grant S Lipman
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, Calif.
| | - David Pomeranz
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, Calif
| | - Patrick Burns
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, Calif
| | - Caleb Phillips
- Department of Computational Science, University of Colorado, Boulder
| | - Mary Cheffers
- Emergency Medicine Residency L.A. County, University of Southern California, Los Angeles
| | - Kristina Evans
- Stanford-Kaiser Emergency Medicine Residency, Palo Alto, Calif
| | - Carrie Jurkiewicz
- Emeregency Medicine Residency, University of Chicago School of Medicine, Ill
| | - Nick Juul
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine, Palo Alto, Calif
| | - Peter Hackett
- Department of Emergency Medicine, Institute for Altitude Medicine, University of Colorado, Boulder
| |
Collapse
|
12
|
Nieto Estrada VH, Molano Franco D, Medina RD, Gonzalez Garay AG, Martí‐Carvajal AJ, Arevalo‐Rodriguez I. Interventions for preventing high altitude illness: Part 1. Commonly-used classes of drugs. Cochrane Database Syst Rev 2017; 6:CD009761. [PMID: 28653390 PMCID: PMC6481751 DOI: 10.1002/14651858.cd009761.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND High altitude illness (HAI) is a term used to describe a group of cerebral and pulmonary syndromes that can occur during travel to elevations above 2500 metres (8202 feet). Acute hypoxia, acute mountain sickness (AMS), high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE) are reported as potential medical problems associated with high altitude. In this review, the first in a series of three about preventive strategies for HAI, we assess the effectiveness of six of the most recommended classes of pharmacological interventions. OBJECTIVES To assess the clinical effectiveness and adverse events of commonly-used pharmacological interventions for preventing acute HAI. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (OVID), Embase (OVID), LILACS and trial registries in January 2017. We adapted the MEDLINE strategy for searching the other databases. We used a combination of thesaurus-based and free-text terms to search. SELECTION CRITERIA We included randomized-controlled and cross-over trials conducted in any setting where commonly-used classes of drugs were used to prevent acute HAI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as expected by Cochrane. MAIN RESULTS We included 64 studies (78 references) and 4547 participants in this review, and classified 12 additional studies as ongoing. A further 12 studies await classification, as we were unable to obtain the full texts. Most of the studies were conducted in high altitude mountain areas, while the rest used low pressure (hypobaric) chambers to simulate altitude exposure. Twenty-four trials provided the intervention between three and five days prior to the ascent, and 23 trials, between one and two days beforehand. Most of the included studies reached a final altitude of between 4001 and 5000 metres above sea level. Risks of bias were unclear for several domains, and a considerable number of studies did not report adverse events of the evaluated interventions. We found 26 comparisons, 15 of them comparing commonly-used drugs versus placebo. We report results for the three most important comparisons: Acetazolamide versus placebo (28 parallel studies; 2345 participants)The risk of AMS was reduced with acetazolamide (risk ratio (RR) 0.47, 95% confidence interval (CI) 0.39 to 0.56; I2 = 0%; 16 studies; 2301 participants; moderate quality of evidence). No events of HAPE were reported and only one event of HACE (RR 0.32, 95% CI 0.01 to 7.48; 6 parallel studies; 1126 participants; moderate quality of evidence). Few studies reported side effects for this comparison, and they showed an increase in the risk of paraesthesia with the intake of acetazolamide (RR 5.53, 95% CI 2.81 to 10.88, I2 = 60%; 5 studies, 789 participants; low quality of evidence). Budenoside versus placebo (2 parallel studies; 132 participants)Data on budenoside showed a reduction in the incidence of AMS compared with placebo (RR 0.37, 95% CI 0.23 to 0.61; I2 = 0%; 2 studies, 132 participants; low quality of evidence). Studies included did not report events of HAPE or HACE, and they did not find side effects (low quality of evidence). Dexamethasone versus placebo (7 parallel studies; 205 participants)For dexamethasone, the data did not show benefits at any dosage (RR 0.60, 95% CI 0.36 to 1.00; I2 = 39%; 4 trials, 176 participants; low quality of evidence). Included studies did not report events of HAPE or HACE, and we rated the evidence about adverse events as of very low quality. AUTHORS' CONCLUSIONS Our assessment of the most commonly-used pharmacological interventions suggests that acetazolamide is an effective pharmacological agent to prevent acute HAI in dosages of 250 to 750 mg/day. This information is based on evidence of moderate quality. Acetazolamide is associated with an increased risk of paraesthesia, although there are few reports about other adverse events from the available evidence. The clinical benefits and harms of other pharmacological interventions such as ibuprofen, budenoside and dexamethasone are unclear. Large multicentre studies are needed for most of the pharmacological agents evaluated in this review, to evaluate their effectiveness and safety.
Collapse
Affiliation(s)
- Víctor H Nieto Estrada
- Fundacion Universitaria Sanitas, Colombia ClinicDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Roger David Medina
- Fundación Universitaria de Ciencias de la SaludDivision of ResearchCarrera 19 # 8‐32Bogotá D.C.Colombia
| | - Alejandro G Gonzalez Garay
- National Institute of PediatricsMethodology Research UnitInsurgentes Sur 3700 ‐ CCol. Insurgentes Cuicuilco, CoyoacanMexico CityDistrito FederalMexico04530
| | | | - Ingrid Arevalo‐Rodriguez
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoAv. Mariscal Sucre s/n y Av. Mariana de JesúsQuitoEcuador
- Hospital Universitario Ramon y Cajal (IRYCIS)Clinical Biostatistics UnitMadridSpain
| | | |
Collapse
|
13
|
Mairbäurl H, Baloglu E. Con: Corticosteroids Are Useful in the Management of HAPE. High Alt Med Biol 2015; 16:190-2. [PMID: 26305280 DOI: 10.1089/ham.2015.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Heimo Mairbäurl
- 1 Medical Clinic VII, Sports Medicine, University Hospital Heidelberg , Germany .,2 Translational Lung Research Center Heidelberg, German Center for Lung Research , Heidelberg, Germany
| | - Emel Baloglu
- 3 Department of Pharmacology, Acibadem University , Istanbul, Turkey
| |
Collapse
|
14
|
Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol (1985) 2015; 120:204-15. [PMID: 26294748 DOI: 10.1152/japplphysiol.00443.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023] Open
Abstract
Pharmacotherapy in acute mountain sickness (AMS) for the past half century has largely rested on the use of carbonic anhydrase (CA) inhibitors, such as acetazolamide, and corticosteroids, such as dexamethasone. The benefits of CA inhibitors are thought to arise from their known ventilatory stimulation and resultant greater arterial oxygenation from inhibition of renal CA and generation of a mild metabolic acidosis. The benefits of corticosteroids include their broad-based anti-inflammatory and anti-edemagenic effects. What has emerged from more recent work is the strong likelihood that drugs in both classes act on other pathways and signaling beyond their classical actions to prevent and treat AMS. For the CA inhibitors, these include reduction in aquaporin-mediated transmembrane water transport, anti-oxidant actions, vasodilation, and anti-inflammatory effects. In the case of corticosteroids, these include protection against increases in vascular endothelial and blood-brain barrier permeability, suppression of inflammatory cytokines and reactive oxygen species production, and sympatholysis. The loci of action of both classes of drug include the brain, but may also involve the lung as revealed by benefits that arise with selective administration to the lungs by inhalation. Greater understanding of their pluripotent actions and sites of action in AMS may help guide development of better drugs with more selective action and fewer side effects.
Collapse
Affiliation(s)
- Erik R Swenson
- Veterans Affairs Puget Sound Health Care System, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
15
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia Z. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25778288 DOI: 10.1111/apha.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia, we suggest that directly or indirectly blunting-specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that (i) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2) as low as 25 mmHg without AMS symptoms; (ii) paradoxically, AMS usually develops at much higher PaO2 levels; and (iii) several biomarkers, suggesting initial activation of specific pathways at such PaO2, are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia-activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS.
Collapse
Affiliation(s)
- H. Lu
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - R. Wang
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - J. Xiong
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - H. Xie
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - B. Kayser
- Institute of Sports Sciences and Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Z.P. Jia
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| |
Collapse
|
16
|
Gong W, Liu S, Xu P, Fan M, Xue M. Simultaneous Quantification of Diazepam and Dexamethasone in Plasma by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Comparison between Normoxic and Hypoxic Rats. Molecules 2015; 20:6901-12. [PMID: 25913929 PMCID: PMC6272486 DOI: 10.3390/molecules20046901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
In order to investigate the pharmacokinetics of a combination of diazepam and dexamethasone under hypoxic conditions, a novel, sensitive and specific liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of diazepam and dexamethasone in rat plasma was developed and validated. The chromatographic separation of analytes was successfully achieved on an XTerra® MS C18 column using a gradient elution of methanol and water containing 0.1% formic acid at a flow rate of 0.5 mL/min. This method demonstrated good linearity and no endogenous material interferences. The linear ranges were 1.0-100 ng/mL for diazepam and 2.0-200 ng/mL for dexamethasone. The intra- and inter-day precision for the two compounds in plasma were lower than 10.0%, and the accuracy was between -7.9% and 11.5%. Our method was then successfully applied in a pharmacokinetic comparison between normoxic and hypoxic rats. The results indicated that there were significant differences in the main pharmacokinetics parameters of diazepam and dexamethasone between normoxic and hypoxic rats. The results provide the important and valuable information for discovering and developing novel anti-hypoxia drug combinations, as well as a better understanding of the safety and efficacy of these drugs.
Collapse
Affiliation(s)
- Wenwen Gong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Shuhong Liu
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Ming Fan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
- Department of Cognitive Sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
- Beijing Laboratory for Biomedical Detection Technology and Instrument, Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Silva S, Soares A, Wanderley-Teixeira V, Teixeira A, Vilaça-Júnior P, Castanho M. Efeito da dexametasona e melatonina exógenas sobre parâmetros sanguíneos, progesterona, carboidratos totais e histomorfometria de órgãos em ratas prenhes. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/s0102-09352014000100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A dexametasona é utilizada em casos de gestação com risco de prematuridade; porém, doses suprafisiológicas podem afetar a embriogênese. A melatonina tem demonstrado prevenir efeitos deletérios dos glicocorticoides. Assim, avaliamos a influência da melatonina sobre efeitos da dexametasona em ratas prenhes através dos seguintes parâmetros: 1. Hemograma e perfil glicídico; 2. Níveis de progesterona; e 3. Histomorfometria e histoquímica. Foram utilizadas 20 ratas divididas nos grupos: I - ratas prenhes que receberam placebo (Controle); II - ratas prenhes tratadas com dexametasona (0,8mg/kg); III - ratas prenhes tratadas com melatonina (0,5mg/kg); IV - ratas prenhes tratadas com dexametasona e melatonina. Todos os tratamentos foram iniciados 10 dias após confirmação do acasalamento até o final da prenhez. O sangue foi coletado no 7º, 14º e 21º dia de prenhez. As dosagens de carboidratos e progesterona foram realizadas pelo método antrona e ELISA, respectivamente. O fígado, rins e adrenais foram analisados histoquímica e morfometricamente. No 7º dia de prenhez, não houve alteração significativa nos parâmetros analisados. Porém, no 14º dia de prenhez, houve aumento significativo do volume de hematócrito, redução do número total de hemácias e leucócitos, neutrofilia, linfopenia, eosinopenia e redução do diâmetro das hemácias nas matrizes tratadas com dexametasona. Esses efeitos permaneceram no 21º dia de prenhez, exceto para o hematócrito, o qual reduziu. Verificou-se ainda redução significativa dos níveis de glicose (21º dia de prenhez) e progesterona (14º e 21º dia de prenhez). Não houve alteração nos parâmetros morfométricos e histoquímico no fígado, rins e adrenais. A dexametasona na dosagem de 0,8mg/kg, administrada a partir do terço médio da prenhez, produz alterações hematológicas, bioquímicas e hormonais em ratas, sendo prevenidas pela melatonina; porém não afeta o fígado, rins e adrenais quanto aos parâmetros morfométricos e histoquímicos.
Collapse
Affiliation(s)
- S.B. Silva
- Universidade Federal Rural de Pernambuco
| | | | | | | | | | | |
Collapse
|