1
|
Sennesh E, Theriault J, Brooks D, van de Meent JW, Barrett LF, Quigley KS. Interoception as modeling, allostasis as control. Biol Psychol 2022; 167:108242. [PMID: 34942287 PMCID: PMC9270659 DOI: 10.1016/j.biopsycho.2021.108242] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023]
Abstract
The brain regulates the body by anticipating its needs and attempting to meet them before they arise - a process called allostasis. Allostasis requires a model of the changing sensory conditions within the body, a process called interoception. In this paper, we examine how interoception may provide performance feedback for allostasis. We suggest studying allostasis in terms of control theory, reviewing control theory's applications to related issues in physiology, motor control, and decision making. We synthesize these by relating them to the important properties of allostatic regulation as a control problem. We then sketch a novel formalism for how the brain might perform allostatic control of the viscera by analogy to skeletomotor control, including a mathematical view on how interoception acts as performance feedback for allostasis. Finally, we suggest ways to test implications of our hypotheses.
Collapse
Affiliation(s)
- Eli Sennesh
- Northeastern University, Boston, MA , United States.
| | | | - Dana Brooks
- Northeastern University, Boston, MA , United States
| | | | | | | |
Collapse
|
2
|
Latash ML. Understanding and Synergy: A Single Concept at Different Levels of Analysis? Front Syst Neurosci 2021; 15:735406. [PMID: 34867220 PMCID: PMC8636674 DOI: 10.3389/fnsys.2021.735406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Biological systems differ from the inanimate world in their behaviors ranging from simple movements to coordinated purposeful actions by large groups of muscles, to perception of the world based on signals of different modalities, to cognitive acts, and to the role of self-imposed constraints such as laws of ethics. Respectively, depending on the behavior of interest, studies of biological objects based on laws of nature (physics) have to deal with different salient sets of variables and parameters. Understanding is a high-level concept, and its analysis has been linked to other high-level concepts such as "mental model" and "meaning". Attempts to analyze understanding based on laws of nature are an example of the top-down approach. Studies of the neural control of movements represent an opposite, bottom-up approach, which starts at the interface with classical physics of the inanimate world and operates with traditional concepts such as forces, coordinates, etc. There are common features shared by the two approaches. In particular, both assume organizations of large groups of elements into task-specific groups, which can be described with only a handful of salient variables. Both assume optimality criteria that allow the emergence of families of solutions to typical tasks. Both assume predictive processes reflected in anticipatory adjustments to actions (motor and non-motor). Both recognize the importance of generating dynamically stable solutions. The recent progress in studies of the neural control of movements has led to a theory of hierarchical control with spatial referent coordinates for the effectors. This theory, in combination with the uncontrolled manifold hypothesis, allows quantifying the stability of actions with respect to salient variables. This approach has been used in the analysis of motor learning, changes in movements with typical and atypical development and with aging, and impaired actions by patients with various neurological disorders. It has been developed to address issues of kinesthetic perception. There seems to be hope that the two counter-directional approaches will meet and result in a single theoretical scheme encompassing biological phenomena from figuring out the best next move in a chess position to activating motor units appropriate for implementing that move on the chessboard.
Collapse
Affiliation(s)
- Mark L. Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
- Moscow Institute of Physics and Technology, Dolgoprudnyj, Russia
| |
Collapse
|
3
|
Oh K, Rymer WZ, Choi J. The speed of adaptation is dependent on the load type during target reaching by intact human subjects. Exp Brain Res 2021; 239:3091-3104. [PMID: 34401936 DOI: 10.1007/s00221-021-06189-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
When lifting or moving a novel object, humans are routinely able to quickly characterize the nature of the unknown load and swiftly achieve the desired movement trajectory. It appears that both tactile and proprioceptive feedback systems help humans develop an accurate prediction of load properties and determine how associated limb segments behave during voluntary movements. While various types of limb movement information, such as position, velocity, acceleration, and manipulating forces, can be detected using human tactile and proprioceptive systems, we know little about how the central nervous system decodes these various types of movement data, and in which order or priority they are used when developing predictions of joint motion during novel object manipulation. In this study, we tested whether the ability to predict motion is different between position- (elastic), velocity- (viscous), and acceleration-dependent (inertial) loads imposed using a multiaxial haptic robot. Using this protocol, we can learn if the prediction of the motion model is optimized for one or more of these types of mechanical load. We examined ten neurologically intact subjects. Our key findings indicated that inertial and viscous loads showed the fastest adaptation speed, whereas elastic loads showed the slowest adaptation speed. Different speeds of adaptation were observed across different magnitudes of the load, suggesting that human capabilities for predicting joint motion and manipulating loads may vary systematically with different load types and load magnitudes. Our results imply that human capabilities for load manipulation seems to be most sensitive to and potentially optimized for inertial loads.
Collapse
Affiliation(s)
- Keonyoung Oh
- Shirley Ryan AbilityLab (formerly RIC), Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly RIC), Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Junho Choi
- Center for Bionics, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
4
|
Latash ML. One more time about motor (and non-motor) synergies. Exp Brain Res 2021; 239:2951-2967. [PMID: 34383080 DOI: 10.1007/s00221-021-06188-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
We revisit the concept of synergy based on the recently translated classical book by Nikolai Bernstein (On the construction of movements, Medgiz, Moscow 1947; Latash, Bernstein's Construction of Movements, Routledge, Abingdon 2020b) and progress in understanding the physics and neurophysiology of biological action. Two aspects of synergies are described: organizing elements into stable groups (modes) and ensuring dynamical stability of salient performance variables. The ability of the central nervous system to attenuate synergies in preparation for a quick action-anticipatory synergy adjustments-is emphasized. Recent studies have demonstrated synergies at the level of hypothetical control variables associated with spatial referent coordinates for effectors. Overall, the concept of synergies fits naturally the hierarchical scheme of control with referent coordinates with an important role played by back-coupling loops within the central nervous system and from peripheral sensory endings. Further, we review studies showing non-trivial changes in synergies with development, aging, fatigue, practice, and a variety of neurological disorders. Two aspects of impaired synergic control-impaired stability and impaired agility-are introduced. The recent generalization of the concept of synergies for non-motor domains, including perception, is discussed. We end the review with a list of unresolved and troubling issues.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Abstract
Physical approach to biological movement is based on the idea of control with referent spatial coordinates for effectors, from the whole body to single muscles. Within this framework, neural control signals induce changes in parameters of corresponding biology-specific laws of nature, and motor performance emerges as a result of interaction with the external force field. This approach is naturally compatible with the principle of abundance and the uncontrolled manifold hypothesis, which offer the framework for analysis of movement stability. The presence of two basic commands, reciprocal and co-activation, makes even single-effector tasks abundant and allows stabilizing their performance at the control level. Kinesthetic perception can be viewed as the process of estimating afferent signals within a reference system provided by the efferent process. Percepts are reflections of stable iso-perceptual manifolds in the combined afferent-efferent multi-dimensional space. This approach offers new, logical and based on laws of nature, interpretations for such phenomena as muscle co-activation, unintentional drifts in performance, and vibration-induced kinesthetic illusions. It also allows predicting new phenomena such as counter-intuitive effects of muscle co-activation of force production and perception, vibration-induced force illusions, performance drifts at two different speeds, and high variability in matching the contribution of individual elements in multi-element tasks. This approach can be developed for various subfields of movement studies including studies of athletics, movement disorders, and movement rehabilitation.
Collapse
|
6
|
Stability of Action and Kinesthetic Perception in Parkinson's Disease. J Hum Kinet 2021; 76:145-159. [PMID: 33603931 PMCID: PMC7877286 DOI: 10.2478/hukin-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a review of action and perception stability within the theoretical framework based on the idea of control with spatial referent coordinates for the effectors at a number of hierarchical levels. Stability of salient variables is ensured by synergies, neurophysiological structures that act in multi-dimensional spaces of elemental variables and limit variance to the uncontrolled manifold during action and iso-perceptual manifold during perception. Patients with Parkinson’s disease show impaired synergic control reflected in poor stability (low synergy indices) and poor agility (low indices of anticipatory synergy adjustments prior to planned quick actions). They also show impaired perception across modalities, including kinesthetic perception. We suggest that poor stability at the level of referent coordinates can be the dominant factor leading to poor stability of percepts.
Collapse
|
7
|
Abstract
A number of notions in the fields of motor control and kinesthetic perception have been used without clear definitions. In this review, we consider definitions for efference copy, percept, and sense of effort based on recent studies within the physical approach, which assumes that the neural control of movement is based on principles of parametric control and involves defining time-varying profiles of spatial referent coordinates for the effectors. The apparent redundancy in both motor and perceptual processes is reconsidered based on the principle of abundance. Abundance of efferent and afferent signals is viewed as the means of stabilizing both salient action characteristics and salient percepts formalized as stable manifolds in high-dimensional spaces of relevant elemental variables. This theoretical scheme has led recently to a number of novel predictions and findings. These include, in particular, lower accuracy in perception of variables produced by elements involved in a multielement task compared with the same elements in single-element tasks, dissociation between motor and perceptual effects of muscle coactivation, force illusions induced by muscle vibration, and errors in perception of unintentional drifts in performance. Taken together, these results suggest that participation of efferent signals in perception frequently involves distorted copies of actual neural commands, particularly those to antagonist muscles. Sense of effort is associated with such distorted efferent signals. Distortions in efference copy happen spontaneously and can also be caused by changes in sensory signals, e.g., those produced by muscle vibration.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
8
|
Takamuku S, Ohta H, Kanai C, de C Hamilton AF, Gomi H. Seeing motion of controlled object improves grip timing in adults with autism spectrum condition: evidence for use of inverse dynamics in motor control. Exp Brain Res 2021; 239:1047-1059. [PMID: 33528597 DOI: 10.1007/s00221-021-06046-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
Previous studies (Haswell et al. in Nat Neurosci 12:970-972, 2009; Marko et al. in Brain J Neurol 138:784-797, 2015) reported that people with autism rely less on vision for learning to reach in a force field. This suggested a possibility that they have difficulties in extracting force information from visual motion signals, a process called inverse dynamics computation. Our recent study (Takamuku et al. in J Int Soc Autism Res 11:1062-1075, 2018) examined the ability of inverse computation with two perceptual tasks and found similar performances in typical and autistic adults. However, this tested the computation only in the context of sensory perception while it was possible that the suspected disability is specific to the motor domain. Here, in order to address the concern, we tested the use of inverse dynamics computation in the context of motor control by measuring changes in grip timing caused by seeing/not seeing a controlled object. The motion of the object was informative of its inertial force and typical participants improved their grip timing based on the visual feedback. Our interest was on whether the autism participants show the same improvement. While some autism participants showed atypical hand slowing when seeing the controlled object, we found no evidence of abnormalities in the inverse computation in our grip timing task or in a replication of the perceptual task. This suggests that the ability of inverse dynamics computation is preserved not only for sensory perception but also for motor control in adults with autism.
Collapse
Affiliation(s)
- Shinya Takamuku
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan.
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Chieko Kanai
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan.,Department of Child Development and Education, Wayo Women's University, Ichikawa, Chiba, Japan
| | | | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan
| |
Collapse
|
9
|
Cuadra C, Corey J, Latash ML. Distortions of the Efferent Copy during Force Perception: A Study of Force Drifts and Effects of Muscle Vibration. Neuroscience 2021; 457:139-154. [PMID: 33465409 DOI: 10.1016/j.neuroscience.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023]
Abstract
We used a finger force matching task to explore the role of efferent signals in force perception. Healthy, young participants performed accurate force production tasks at different force levels with the index and middle fingers of one hand (task-hand). They received visual feedback during an early part of each trial only. After the feedback was turned off, the force drifted toward lower magnitudes. After 5 s of the drift, the participants matched the force with the same finger pair of the other hand (match-hand). The match-hand consistently overshot the task-hand force by a magnitude invariant over the initial force levels. During force matching, both hands were lifted and lowered smoothly to estimate their referent coordinate (RC) and apparent stiffness values. These trials were performed without muscle vibration and under vibration applied to the finger/hand flexors or extensors of the task-hand or match-hand. Effects of vibration were seen in the match-hand only; they were the same during vibration of flexors and extensors. We interpret the vibration-induced effects as consequences of using distorted copies of the central commands to the task-hand during force matching. In particular, using distorted copies of the RC for the antagonist muscle group could account for the differences between the task-hand and match-hand. We conclude that efferent signals may be distorted before their participation in the perceptual process. Such distortions emerge spontaneously and may be amplified by the response of sensory endings to muscle vibration combined over both agonist and antagonist muscle groups.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Calle Quillota 980, Viña del Mar, Chile
| | - Jacob Corey
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Hipólito I, Baltieri M, Friston K, Ramstead MJD. Embodied skillful performance: where the action is. SYNTHESE 2021; 199:4457-4481. [PMID: 34866668 PMCID: PMC8602225 DOI: 10.1007/s11229-020-02986-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/02/2020] [Indexed: 05/13/2023]
Abstract
When someone masters a skill, their performance looks to us like second nature: it looks as if their actions are smoothly performed without explicit, knowledge-driven, online monitoring of their performance. Contemporary computational models in motor control theory, however, are instructionist: that is, they cast skillful performance as a knowledge-driven process. Optimal motor control theory (OMCT), as representative par excellence of such approaches, casts skillful performance as an instruction, instantiated in the brain, that needs to be executed-a motor command. This paper aims to show the limitations of such instructionist approaches to skillful performance. We specifically address the question of whether the assumption of control-theoretic models is warranted. The first section of this paper examines the instructionist assumption, according to which skillful performance consists of the execution of theoretical instructions harnessed in motor representations. The second and third sections characterize the implementation of motor representations as motor commands, with a special focus on formulations from OMCT. The final sections of this paper examine predictive coding and active inference-behavioral modeling frameworks that descend, but are distinct, from OMCT-and argue that the instructionist, control-theoretic assumptions are ill-motivated in light of new developments in active inference.
Collapse
Affiliation(s)
- Inês Hipólito
- Berlin School of Mind and Brain and Institut Für Philosophie Humboldt, Universität zu Berlin, Berlin, Germany
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Manuel Baltieri
- Lab for Neural Computation and Adaptation RIKEN Center for Brain Science Wako, Saitama, Japan
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Maxwell J. D. Ramstead
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC Canada
- Culture, Mind, and Brain Program, McGill University, Montreal, QC Canada
| |
Collapse
|
11
|
Laws of nature that define biological action and perception. Phys Life Rev 2020; 36:47-67. [PMID: 32868159 DOI: 10.1016/j.plrev.2020.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
We describe a physical approach to biological functions, with the emphasis on the motor and sensory functions. The approach assumes the existence of biology-specific laws of nature uniting salient physical variables and parameters. In contrast to movements in inanimate nature, actions are produced by changes in parameters of the corresponding laws of nature. For movements, parameters are associated with spatial referent coordinates (RCs) for the effectors. Stability of motor actions is ensured by the abundant mapping of RCs across hierarchical control levels. The sensory function is viewed as based on an interaction of efferent and afferent signals leading to an iso-perceptual manifold where percepts of salient sensory variables are stable. This approach offers novel interpretations for a variety of known neurophysiological and behavioral phenomena and makes a number of novel testable predictions. In particular, we discuss novel interpretations for the well-known phenomena of agonist-antagonist co-activation and vibration-induced illusions of both position and force. We also interpret results of several new experiments with unintentional force changes and with analysis of accuracy of perception of variables produced by elements of multi-element systems. Recently, this approach has been expanded to interpret motor disorders including spasticity and consequences of subcortical disorders (such as Parkinson's disease). We suggest that the approach can be developed for cognitive functions.
Collapse
|
12
|
Feldman AG, Zhang L. Eye and head movements and vestibulo-ocular reflex in the context of indirect, referent control of motor actions. J Neurophysiol 2020; 124:115-133. [PMID: 32490708 PMCID: PMC7474454 DOI: 10.1152/jn.00076.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 01/03/2023] Open
Abstract
Conventional explanations of the vestibulo-ocular reflex (VOR) and eye and head movements are revisited by considering two alternative frameworks addressing the question of how the brain controls motor actions. Traditionally, biomechanical and/or computational frameworks reflect the views of several prominent scholars of the past, including Helmholtz and von Holst, who assumed that the brain directly specifies the desired motor outcome and uses efference copy to influence perception. However, empirical studies resulting in the theory of referent control of action and perception (an extension of the equilibrium-point hypothesis) revealed that direct specification of motor outcome is inconsistent with nonlinear properties of motoneurons and with the physical principle that the brain can control motor actions only indirectly, by changing or maintaining the values of neurophysiological parameters that influence, but can remain independent of, biomechanical variables. Some parameters are used to shift the origin (referent) points of spatial frames of reference (FRs) or system of coordinates in which motor actions emerge without being predetermined. Parameters are adjusted until the emergent motor actions meet the task demands. Several physiological parameters and spatial FRs have been identified, supporting the notion of indirect, referent control of movements. Instead of integration of velocity-dependent signals, position-dimensional referent signals underlying head motion can likely be transmitted to motoneurons of extraocular muscles. This would produce compensatory eye movement preventing shifts in gaze during head rotation, even after bilateral destruction of the labyrinths. The referent control framework symbolizes a shift in the paradigm for the understanding of VOR and eye and head movement production.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| | - Lei Zhang
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
13
|
What do people match when they try to match force? Analysis at the level of hypothetical control variables. Exp Brain Res 2020; 238:1885-1901. [PMID: 32537705 DOI: 10.1007/s00221-020-05850-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
We used the theory of control with spatial referent coordinates (RC) to explore how young, healthy persons modify finger pressing force and match forces between the two hands. Three specific hypotheses were tested related to patterns of RC and apparent stiffness (defined as the slope of force-coordinate relation) used in the presence of visual feedback on the force and in its absence. The subjects used the right hand to produce accurate force under visual feedback; further the force could be increased or decreased, intentionally or unintentionally (induced by controlled lifting or lowering of the fingertips). The left hand was used to match force without visual feedback before and after the force change; the match hand consistently underestimated the actual force change in the task hand. The "inverse piano" device was used to compute RC and apparent stiffness. We found very high coefficients of determination for the inter-trial hyperbolic regressions between RC and apparent stiffness in the presence of visual feedback; the coefficients of determination dropped significantly without visual feedback. There were consistent preferred sharing patterns in the space of RC and apparent stiffness between the task and match hands across subjects. In contrast, there was much less consistency between the task and match hands in the magnitudes of RC and apparent stiffness observed in individual trials. Compared to the task hand, the match hand showed consistently lower magnitudes of apparent stiffness and, correspondingly, larger absolute magnitudes of RC. Involuntary force changes produced by lifting and lowering the force sensors led to significantly lower force changes compared to what could be expected based on the computed values of apparent stiffness and sensor movement amplitude. The results confirm the importance of visual feedback for stabilization of force in the space of hypothetical control variables. They suggest the existence of personal traits reflected in preferred ranges of RC and apparent stiffness across the two hands. They also show that subjects react to external perturbations, even when instructed "not to interfere": Such perturbations cause unintentional and unperceived drifts in both RC and apparent stiffness.
Collapse
|
14
|
Stirling L, Kelty-Stephen D, Fineman R, Jones MLH, Daniel Park BK, Reed MP, Parham J, Choi HJ. Static, Dynamic, and Cognitive Fit of Exosystems for the Human Operator. HUMAN FACTORS 2020; 62:424-440. [PMID: 32004106 DOI: 10.1177/0018720819896898] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To define static, dynamic, and cognitive fit and their interactions as they pertain to exosystems and to document open research needs in using these fit characteristics to inform exosystem design. BACKGROUND Initial exosystem sizing and fit evaluations are currently based on scalar anthropometric dimensions and subjective assessments. As fit depends on ongoing interactions related to task setting and user, attempts to tailor equipment have limitations when optimizing for this limited fit definition. METHOD A targeted literature review was conducted to inform a conceptual framework defining three characteristics of exosystem fit: static, dynamic, and cognitive. Details are provided on the importance of differentiating fit characteristics for developing exosystems. RESULTS Static fit considers alignment between human and equipment and requires understanding anthropometric characteristics of target users and geometric equipment features. Dynamic fit assesses how the human and equipment move and interact with each other, with a focus on the relative alignment between the two systems. Cognitive fit considers the stages of human-information processing, including somatosensation, executive function, and motor selection. Human cognitive capabilities should remain available to process task- and stimulus-related information in the presence of an exosystem. Dynamic and cognitive fit are operationalized in a task-specific manner, while static fit can be considered for predefined postures. CONCLUSION A deeper understanding of how an exosystem fits an individual is needed to ensure good human-system performance. Development of methods for evaluating different fit characteristics is necessary. APPLICATION Methods are presented to inform exosystem evaluation across physical and cognitive characteristics.
Collapse
Affiliation(s)
| | | | - Richard Fineman
- 2167 Harvard-MIT Health Science and Technology Program, Cambridge, MA, USA
| | - Monica L H Jones
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | | | - Matthew P Reed
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | - Joseph Parham
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Hyeg Joo Choi
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| |
Collapse
|
15
|
Kilteni K, Engeler P, Ehrsson HH. Efference Copy Is Necessary for the Attenuation of Self-Generated Touch. iScience 2020; 23:100843. [PMID: 32058957 PMCID: PMC6997587 DOI: 10.1016/j.isci.2020.100843] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
Self-generated touch feels less intense than external touch of the same intensity. According to theory, this is because the brain predicts and attenuates the somatosensory consequences of our movements using a copy of the motor command, i.e., the efference copy. However, whether the efference copy is necessary for this somatosensory attenuation is unclear. Alternatively, a predictable contact of two body parts could be sufficient. Here we quantified the attenuation of touch applied on the participants' left index finger when the touch was triggered by the active or passive movement of the right index finger and when it was externally generated. We observed attenuation only when the touch was triggered by the participants' active movement. In contrast, during the passive movement, the touch was perceived to be as strong as when the touch was externally triggered. Our results suggest that the efference copy is necessary for the attenuation of self-generated touch. Self-touch by active movement feels weaker than external touch Self-touch by passive movement feels as intense as external touch Efference copy is necessary for predicting and attenuating self-generated touch Our findings support the internal forward model theory of sensory attenuation
Collapse
Affiliation(s)
- Konstantina Kilteni
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden.
| | - Patrick Engeler
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| |
Collapse
|
16
|
Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study. Exp Brain Res 2019; 237:1655-1672. [PMID: 30976821 DOI: 10.1007/s00221-019-05498-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.
Collapse
|
17
|
Cuadra C, Latash ML. Exploring the Concept of Iso-perceptual Manifold (IPM): A Study of Finger Force-Matching Tasks. Neuroscience 2019; 401:130-141. [PMID: 30673586 DOI: 10.1016/j.neuroscience.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
We used force-matching tasks between the two hands to test predictions of the recently introduced scheme of perception based on the concept of iso-perceptual manifold (IPM) in the combined afferent-efferent space of neural signals. The main hypothesis was that accuracy and variability of individual finger force matching would be worse in a four-finger task compared to one-finger tasks. The subjects produced accurate force levels under visual feedback by pressing with either all four fingers or by one of the fingers of a hand (task-hand). They tried to match the total four-finger force or individual finger forces by pressing with the other hand (match-hand, no visual feedback). The match-hand consistently overshot the task-hand force during single-finger matching episodes. It showed higher inter-trial force variability during single-finger matching when the task-hand performed the four-finger task compared to trials when the task-hand performed single-finger tasks. These findings confirm our main hypothesis by showing that perception of individual finger forces can vary in multi-finger tasks within a space (IPM) corresponding to veridical perception of total force. Matching hypothetical commands to fingers, rather than finger forces, could be responsible for the consistent force overshoots. Indices of inter-trial variance affecting and unaffecting total force showed strong stabilization of total force in the task-hand but not in the match-hand in support of an earlier hypothesis on the importance of visual feedback for force stabilization. No differences were seen between the right and left hands suggesting that the dynamic dominance hypothesis may not be generalizable to perceptual phenomena.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Escuela Kinesiología, Facultad de Ciencias de la Rehabilitación, Universidad Andres Bello, Calle Quillota 980, Viña del Mar, Chile
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Feldman AG. Indirect, referent control of motor actions underlies directional tuning of neurons. J Neurophysiol 2018; 121:823-841. [PMID: 30565957 DOI: 10.1152/jn.00575.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many neurons of the primary motor cortex (M1) are maximally sensitive to "preferred" hand movement directions and generate progressively less activity with movements away from these directions. M1 activity also correlates with other biomechanical variables. These findings are predominantly interpreted in a framework in which the brain preprograms and directly specifies the desired motor outcome. This approach is inconsistent with the empirically derived equilibrium-point hypothesis, in which the brain can control motor actions only indirectly, by changing neurophysiological parameters that may influence, but remain independent of, biomechanical variables. The controversy is resolved on the basis of experimental findings and theoretical analysis of how sensory and central influences are integrated in the presence of the fundamental nonlinearity of neurons: electrical thresholds. In the presence of sensory inputs, electrical thresholds are converted into spatial thresholds that predetermine the position of the body segments at which muscles begin to be activated. Such thresholds may be considered as referent points of respective spatial frames of reference (FRs) in which neurons, including motoneurons, are centrally predetermined to work. By shifting the referent points of respective FRs, the brain elicits intentional actions. Pure involuntary reactions to perturbations are accomplished in motionless FRs. Neurons are primarily sensitive to shifts in referent directions, i.e., shifts in spatial FRs, whereas emergent neural activity may or may not correlate with different biomechanical variables depending on the motor task and external conditions. Indirect, referent control of posture and movement symbolizes a departure from conventional views based on direct preprogramming of the motor outcome.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec, Canada
| |
Collapse
|
19
|
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J. Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J Neurophysiol 2018; 120:1807-1823. [PMID: 30020837 DOI: 10.1152/jn.00371.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many sensory systems are tuned to specific parameters of behaviors and have effects that are task-specific. We have studied how force feedback contributes to activation of synergist muscles in serially homologous legs of stick insects. Forces were applied using conventional half-sine or ramp and hold functions. We also utilized waveforms of joint torques calculated from experiments in freely walking animals. In all legs, forces applied to either the tarsus (foot) or proximal leg segment (trochanter) activated synergist muscles that generate substrate grip and support, but coupling of the depressor muscle to tarsal forces was weak in the front legs. Activation of trochanteral receptors using ramp and hold functions generated positive feedback to the depressor muscle in all legs when animals were induced to seek substrate grip. However, discharges of the synergist flexor muscle showed adaptation at moderate force levels. In contrast, application of forces using torque waveforms, which do not have a static hold phase, produced sustained discharges in muscle synergies with little adaptation. Firing frequencies reflected the magnitude of ground reaction forces, were graded to changes in force amplitude, and could also be modulated by transient force perturbations added to the waveforms. Comparison of synergist activation by torques and ramp and hold functions revealed a strong influence of force dynamics (dF/d t). These studies support the idea that force receptors can act to tune muscle synergies synchronously to the range of force magnitudes and dynamics that occur in each leg according to their specific use in behavior. NEW & NOTEWORTHY The effects of force receptors (campaniform sensilla) on leg muscles and synergies were characterized in stick insects using both ramp and hold functions and waveforms of joint torques calculated by inverse dynamics. Motor responses were sustained and showed reduced adaptation to the more "natural" and nonlinear torque stimuli. Calculation of the first derivative (dF/d t) of the torque waveforms demonstrated that this difference was correlated with the dynamic sensitivities of the system.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne , Cologne , Germany
| | - Sumaiya Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| |
Collapse
|
20
|
Interaction between hippocampal-prefrontal plasticity and thalamic-prefrontal activity. Sci Rep 2018; 8:1382. [PMID: 29358657 PMCID: PMC5778003 DOI: 10.1038/s41598-018-19540-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
The prefrontal cortex integrates a variety of cognition-related inputs, either unidirectional, e.g., from the hippocampal formation, or bidirectional, e.g., with the limbic thalamus. While the former is usually implicated in synaptic plasticity, the latter is better known for regulating ongoing activity. Interactions between these processes via prefrontal neurons are possibly important for linking mnemonic and executive functions. Our work further elucidates such dynamics using in vivo electrophysiology in rats. First, we report that electrical pulses into CA1/subiculum trigger late-onset (>400 ms) firing responses in the medial prefrontal cortex, which are increased after induction of long-term potentiation. Then, we show these responses to be attenuated by optogenetic control of the paraventricular/mediodorsal thalamic area. This suggests that recruitment and plasticity of the hippocampal-prefrontal pathway is partially related to the thalamic-prefrontal loop. When dysfunctional, this interaction may contribute to cognitive deficits, psychotic symptoms, and seizure generalization, which should motivate future studies combining behavioural paradigms and long-range circuit assessment.
Collapse
|
21
|
Buckley CL, Toyoizumi T. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback. PLoS Comput Biol 2018; 14:e1005926. [PMID: 29342146 PMCID: PMC5809098 DOI: 10.1371/journal.pcbi.1005926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/12/2018] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone. Animals actively exploring or interacting with their surroundings must process a cyclical flow of information from the environment through sensory receptors, the central nervous system, the musculoskeletal system and back to the environment. This closed-loop sensorimotor system is essential for an animal's ability to adapt and survive in complex environments. Importantly, closed loop feedback signals also regulate brainwide neural circuits for behavior. Specifically, the activity of coherent populations of neurons inform motor behaviours and in turn are influenced by sensory feedback signals mediated by the environment. We develop a theory that suggests that this feedback can explain the marked changes in large-scale neural dynamics and sensory processing (together referred to as brain state) that coincide with the onset of active behaviours. This feedback may contribute to flexible context dependent neural computations in brain systems.
Collapse
Affiliation(s)
- Christopher L. Buckley
- Laboratory for Neural Computation and Adaptation, RIKEN Brain Science Institute, Saitama, Japan
- Department of Informatics and Engineering, University of Sussex, Falmer, United Kingdom
- * E-mail: (CLB); (TT)
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Brain Science Institute, Saitama, Japan
- * E-mail: (CLB); (TT)
| |
Collapse
|
22
|
Reschechtko S, Cuadra C, Latash ML. Force illusions and drifts observed during muscle vibration. J Neurophysiol 2018; 119:326-336. [PMID: 28978768 PMCID: PMC5866473 DOI: 10.1152/jn.00563.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 01/12/2023] Open
Abstract
We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with combined perception of kinematic-kinetic variables and suggest that vibration leads to consistent shifts of the referent coordinate and, possibly, of coactivation command to the effector.
Collapse
Affiliation(s)
- Sasha Reschechtko
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| | - Cristian Cuadra
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
- Escuela Kinesiologia, Facultad de Ciencias de la Rehabilitacion, Universidad Andres Bello , Viña del Mar , Chile
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
23
|
Latash ML. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold. Neuroscience 2017; 372:97-113. [PMID: 29277305 DOI: 10.1016/j.neuroscience.2017.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022]
Abstract
The main goal of this paper is to introduce the concept of iso-perceptual manifold for perception of body configuration and related variables (kinesthetic perception) and to discuss its relation to the equilibrium-point hypothesis and the concepts of reference coordinate and uncontrolled manifold. Hierarchical control of action is postulated with abundant transformations between sets of spatial reference coordinates for salient effectors at different levels. Iso-perceptual manifold is defined in the combined space of afferent and efferent variables as the subspace corresponding to a stable percept. Examples of motion along an iso-perceptual manifold (perceptually equivalent motion) are considered during various natural actions. Some combinations of afferent and efferent signals, in particular those implying a violation of body's integrity, give rise to variable percepts by artificial projection onto iso-perceptual manifolds. This framework is used to interpret unusual features of vibration-induced kinesthetic illusions and to predict new illusions not yet reported in the literature.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA; Moscow Institute of Physics and Technology, Russia.
| |
Collapse
|
24
|
Swan BD, Gasperson LB, Krucoff MO, Grill WM, Turner DA. Sensory percepts induced by microwire array and DBS microstimulation in human sensory thalamus. Brain Stimul 2017; 11:416-422. [PMID: 29126946 DOI: 10.1016/j.brs.2017.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microstimulation in human sensory thalamus (ventrocaudal, VC) results in focal sensory percepts in the hand and arm which may provide an alternative target site (to somatosensory cortex) for the input of prosthetic sensory information. Sensory feedback to facilitate motor function may require simultaneous or timed responses across separate digits to recreate perceptions of slip as well as encoding of intensity variations in pressure or touch. OBJECTIVES To determine the feasibility of evoking sensory percepts on separate digits with variable intensity through either a microwire array or deep brain stimulation (DBS) electrode, recreating "natural" and scalable percepts relating to the arm and hand. METHODS We compared microstimulation within ventrocaudal sensory thalamus through either a 16-channel microwire array (∼400 kΩ per channel) or a 4-channel DBS electrode (∼1.2 kΩ per contact) for percept location, size, intensity, and quality sensation, during thalamic DBS electrode placement in patients with essential tremor. RESULTS Percepts in small hand or finger regions were evoked by microstimulation through individual microwires and in 5/6 patients sensation on different digits could be perceived from stimulation through separate microwires. Microstimulation through DBS electrode contacts evoked sensations over larger areas in 5/5 patients, and the apparent intensity of the perceived response could be modulated with stimulation amplitude. The perceived naturalness of the sensation depended both on the pattern of stimulation as well as intensity of the stimulation. CONCLUSIONS Producing consistent evoked perceptions across separate digits within sensory thalamus is a feasible concept and a compact alternative to somatosensory cortex microstimulation for prosthetic sensory feedback. This approach will require a multi-element low impedance electrode with a sufficient stimulation range to evoke variable intensities of perception and a predictable spread of contacts to engage separate digits.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States
| | - Lynne B Gasperson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Warren M Grill
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
25
|
Ichinose A, Sano Y, Osumi M, Sumitani M, Kumagaya SI, Kuniyoshi Y. Somatosensory Feedback to the Cheek During Virtual Visual Feedback Therapy Enhances Pain Alleviation for Phantom Arms. Neurorehabil Neural Repair 2017; 31:717-725. [DOI: 10.1177/1545968317718268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Patients who suffer from phantom limb pain can perceive tactile stimuli applied to the cheek on their affected side as if it were coming from their phantom limb, a phenomenon called “referred sensation.” Objectives. To investigate the analgesic effect produced by tactile feedback provided to the cheek during neurorehabilitation using visual feedback. Methods. Nine participants with phantom upper limb pain performed virtual reality neurorehabilitation exercises in which they repeatedly touched a target object with a virtual representation of their affected limb. We applied tactile feedback to their cheek when their virtual affected limb touched a virtual object (Cheek Condition). We also included 2 control conditions where tactile feedback was either applied to their intact hand (Intact Hand Condition) or not applied at all (No Stimulus Condition). We evaluated pain intensity on an 11-point rating scale and pain quality using the short-form McGill Pain Questionnaire before and after each rehabilitation condition. Results. The median pain-reduction rate in the Cheek Condition (33.3 ± 24.4%) was significantly higher than in the Intact Hand Condition (16.7 ± 12.3%) and the No Stimulus Condition (12.5 ± 13.5%; P < .05). Even patients who did not feel referred sensations reported significant pain reduction after the Cheek Condition. Conclusions. The analgesic effect of neurorehabilitative visual feedback during phantom limb movement is significantly improved by applying somatosensory feedback to the cheek on the affected side. Further studies are needed to extend these findings to objective pain measures and to elucidate the neural mechanisms that underlie the analgesic effect.
Collapse
Affiliation(s)
| | - Yuko Sano
- The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Zhang L, Turpin NA, Feldman AG. Threshold position control of anticipation in humans: a possible role of corticospinal influences. J Physiol 2017; 595:5359-5374. [PMID: 28560812 DOI: 10.1113/jp274309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sudden unloading of preloaded wrist muscles elicits motion to a new wrist position. Such motion is prevented if subjects unload muscles using the contralateral arm (self-unloading). Corticospinal influences originated from the primary motor cortex maintain tonic influences on motoneurons of wrist muscles before sudden unloading but modify these influences prior to the onset and until the end of self-unloading. Results are interpreted based on the previous finding that intentional actions are caused by central, particularly corticospinal, shifts in the spatial thresholds at which wrist motoneurons are activated, thus predetermining the attractor point at which the neuromuscular periphery achieves mechanical balance with environment forces. By maintaining or shifting the thresholds, descending systems let body segments go to the equilibrium position in the respective unloading tasks without the pre-programming of kinematics or muscle activation patterns. The study advances the understanding of how motor actions in general, and anticipation in particular, are controlled. ABSTRACT The role of corticospinal (CS) pathways in anticipatory motor actions was evaluated using transcranial magnetic stimulation (TMS) of the primary motor cortex projecting to motoneurons (MNs) of wrist muscles. Preloaded wrist flexors were suddenly unloaded by the experimenter or by the subject using the other hand (self-unloading). After sudden unloading, the wrist joint involuntarily flexed to a new position. In contrast, during self-unloading the wrist remained almost motionless, implying that an anticipatory postural adjustment occurred. In the self-unloading task, anticipation was manifested by a decrease in descending facilitation of pre-activated flexor MNs starting ∼72 ms before changes in the background EMG activity. Descending facilitation of extensor MNs began to increase ∼61 ms later. Conversely, these influences remained unchanged before sudden unloading, implying the absence of anticipation. We also tested TMS responses during EMG silent periods produced by brief muscle shortening, transiently resulting in similar EMG levels before the onset and after the end of self-unloading. We found reduced descending facilitation of flexor MNs after self-unloading. To explain why the wrist excursion was minimized in self-unloading due to these changes in descending influences, we relied on previous demonstrations that descending systems pre-set the threshold positions of body segments at which muscles begin to be activated, thus predetermining the equilibrium point to which the system is attracted. Based on this notion, a more consistent explanation of the kinematic, EMG and descending patterns in the two types of unloading is proposed compared to the alternative notion of direct pre-programming of kinematic and/or EMG patterns.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Nicolas A Turpin
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| | - Anatol G Feldman
- Center for Interdisciplinary Research in Rehabilitation (CRIR), Institut de réadaptation Gingras-Lindsay de Montréal and Jewish Rehabilitation Hospital, Laval, Quebec, Canada.,Department of Neuroscience, University of Montréal, Quebec, Canada
| |
Collapse
|
27
|
Chouinard PA, Peel HJ, Landry O. Eye-Tracking Reveals that the Strength of the Vertical-Horizontal Illusion Increases as the Retinal Image Becomes More Stable with Fixation. Front Hum Neurosci 2017; 11:143. [PMID: 28392764 PMCID: PMC5364142 DOI: 10.3389/fnhum.2017.00143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
The closer a line extends toward a surrounding frame, the longer it appears. This is known as a framing effect. Over 70 years ago, Teodor Künnapas demonstrated that the shape of the visual field itself can act as a frame to influence the perceived length of lines in the vertical-horizontal illusion. This illusion is typically created by having a vertical line rise from the center of a horizontal line of the same length creating an inverted T figure. We aimed to determine if the degree to which one fixates on a spatial location where the two lines bisect could influence the strength of the illusion, assuming that the framing effect would be stronger when the retinal image is more stable. We performed two experiments: the visual-field and vertical-horizontal illusion experiments. The visual-field experiment demonstrated that the participants could discriminate a target more easily when it was presented along the horizontal vs. vertical meridian, confirming a framing influence on visual perception. The vertical-horizontal illusion experiment determined the effects of orientation, size and eye gaze on the strength of the illusion. As predicted, the illusion was strongest when the stimulus was presented in either its standard inverted T orientation or when it was rotated 180° compared to other orientations, and in conditions in which the retinal image was more stable, as indexed by eye tracking. Taken together, we conclude that the results provide support for Teodor Künnapas' explanation of the vertical-horizontal illusion.
Collapse
Affiliation(s)
- Philippe A Chouinard
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University Melbourne, VIC, Australia
| | - Hayden J Peel
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University Melbourne, VIC, Australia
| | - Oriane Landry
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University Melbourne, VIC, Australia
| |
Collapse
|
28
|
Catching on it early: Bodily and brain anticipatory mechanisms for excellence in sport. PROGRESS IN BRAIN RESEARCH 2017; 234:53-67. [DOI: 10.1016/bs.pbr.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Feldman AG, Levin MF. Spatial control of reflexes, posture and movement in normal conditions and after neurological lesions. J Hum Kinet 2016; 52:21-34. [PMID: 28149391 PMCID: PMC5260515 DOI: 10.1515/hukin-2015-0191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 11/24/2022] Open
Abstract
Control of reflexes is usually associated with central modulation of their sensitivity (gain) or phase-dependent inhibition and facilitation of their influences on motoneurons (reflex gating). Accumulated empirical findings show that the gain modulation and reflex gating are secondary, emergent properties of central control of spatial thresholds at which reflexes become functional. In this way, the system pre-determines, in a feedforward and task-specific way, where, in a spatial domain or a frame of reference, muscles are allowed to work without directly prescribing EMG activity and forces. This control strategy is illustrated by considering reflex adaptation to repeated muscle stretches in healthy subjects, a process associated with implicit learning and generalization. It has also been shown that spasticity, rigidity, weakness and other neurological motor deficits may have a common source - limitations in the range of spatial threshold control elicited by neural lesions.
Collapse
Affiliation(s)
- Anatol G. Feldman
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada
| | - Mindy F. Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada
| |
Collapse
|