1
|
Koh B, Kim YE, Park SB, Kim SS, Lee J, Jo JH, Lee K, Bae DH, Kim TY, Cho SH, Bae MA, Kang D, Kim KY. Unraveling the Molecular Landscape of SCN1A Gene Knockout in Cerebral Organoids: A Multiomics Approach Utilizing Proteomics, Lipidomics, and Transcriptomics. ACS OMEGA 2024; 9:39804-39816. [PMID: 39346820 PMCID: PMC11425820 DOI: 10.1021/acsomega.4c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
This study investigates the impact of sodium channel protein type 1 subunit alpha (SCN1A) gene knockout (SCN1A KO) on brain development and function using cerebral organoids coupled with a multiomics approach. From comprehensive omics analyses, we found that SCN1A KO organoids exhibit decreased growth, dysregulated neurotransmitter levels, and altered lipidomic, proteomic, and transcriptomic profiles compared to controls under matrix-free differentiation conditions. Neurochemical analysis reveals reduced levels of key neurotransmitters, and lipidomic analysis highlights changes in ether phospholipids and sphingomyelin. Furthermore, quantitative profiling of the SCN1A KO organoid proteome shows perturbations in cholesterol metabolism and sodium ion transportation, potentially affecting synaptic transmission. These findings suggest dysregulation of cholesterol metabolism and sodium ion transport, with implications for synaptic transmission. Overall, these insights shed light on the molecular mechanisms underlying SCN1A-associated disorders, such as Dravet syndrome, and offer potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Young Eun Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Seong Soon Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jangjae Lee
- Chemical Platform Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Hyeon Jo
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - KyungJin Lee
- Department of Microbiology, CHA University School of Medicine, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
- ORGANOIDSCIENCES, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sung-Hee Cho
- Chemical Platform Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Dukjin Kang
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
2
|
O'Neill N, Sylantyev S. The Functional Role of Spontaneously Opening GABA A Receptors in Neural Transmission. Front Mol Neurosci 2019; 12:72. [PMID: 30983968 PMCID: PMC6447609 DOI: 10.3389/fnmol.2019.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Ionotropic type of γ-aminobutyric acid receptors (GABAARs) produce two forms of inhibitory signaling: phasic inhibition generated by rapid efflux of neurotransmitter GABA into the synaptic cleft with subsequent binding to GABAARs, and tonic inhibition generated by persistent activation of extrasynaptic and/or perisynaptic GABAARs by GABA continuously present in the extracellular space. It is widely accepted that phasic and tonic GABAergic inhibition is mediated by receptor groups of distinct subunit composition and modulated by different cytoplasmic mechanisms. Recently, however, it has been demonstrated that spontaneously opening GABAARs (s-GABAARs), which do not need GABA binding to enter an active state, make a significant input into tonic inhibitory signaling. Due to GABA-independent action mode, s-GABAARs promise new safer options for therapy of neural disorders (such as epilepsy) devoid of side effects connected to abnormal fluctuations of GABA concentration in the brain. However, despite the potentially important role of s-GABAARs in neural signaling, they still remain out of focus of neuroscience studies, to a large extent due to technical difficulties in their experimental research. Here, we summarize present data on s-GABAARs functional properties and experimental approaches that allow isolation of s-GABAARs effects from those of conventional (GABA-dependent) GABAARs.
Collapse
Affiliation(s)
- Nathanael O'Neill
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
4
|
|
5
|
Meis S, Endres T, Munsch T, Lessmann V. Presynaptic Regulation of Tonic Inhibition by Neuromodulatory Transmitters in the Basal Amygdala. Mol Neurobiol 2018; 55:8509-8521. [PMID: 29560580 DOI: 10.1007/s12035-018-0984-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023]
Abstract
Tonic inhibition mediated by ambient levels of GABA that activate extrasynaptic GABAA receptors emerges as an essential factor that tunes neuronal network excitability in vitro and shapes behavioral responses in vivo. To address the role of neuromodulatory transmitter systems on this type of inhibition, we employed patch clamp recordings in mouse amygdala slice preparations. Our results show that the current amplitude of tonic inhibition (Itonic) in projection neurons of the basal amygdala (BA) is increased by preincubation with the neurosteroid THDOC, while the benzodiazepine diazepam is ineffective. This suggests involvement of THDOC sensitive δ subunit containing GABAA receptors in mediating tonic inhibition. Moreover, we provide evidence that the neuromodulatory transmitters NE, 5HT, and ACh strongly enhance spontaneous IPSCs as well as Itonic in the BA. As the increase in frequency, amplitude, and charge of sIPSCs by these neuromodulatory transmitters strongly correlated with the amplitude of Itonic, we conclude that spill-over of synaptic GABA leads to activation of Itonic and thereby to dampening of amygdala excitability. Since local injection of THDOC, as a positive modulator of tonic inhibition, into the BA interfered with the expression of contextual fear memory, our results point to a prominent role of Itonic in fear learning.
Collapse
Affiliation(s)
- S Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - T Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - T Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - V Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
6
|
Liu ZP, He QH, Pan HQ, Xu XB, Chen WB, He Y, Zhou J, Zhang WH, Zhang JY, Ying XP, Han RW, Li BM, Gao TM, Pan BX. Delta Subunit-Containing Gamma-Aminobutyric Acid A Receptor Disinhibits Lateral Amygdala and Facilitates Fear Expression in Mice. Biol Psychiatry 2017; 81:990-1002. [PMID: 27591789 DOI: 10.1016/j.biopsych.2016.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Maintaining gamma-aminobutyric acidergic (GABAergic) inhibition in the amygdala within a physiological range is critical for the appropriate expression of emotions such as fear and anxiety. The synaptic GABA type A receptor (GABAAR) is generally known to mediate the primary component of amygdala inhibition and prevent inappropriate expression of fear. However, little is known about the contribution of the extrasynaptic GABAAR to amygdala inhibition and fear. METHODS By using mice expressing green fluorescent protein in interneurons (INs) and lacking the δ subunit-containing GABAAR (GABAA(δ)R), which is exclusively situated in the extrasynaptic membrane, we systematically investigated the role of GABAA(δ)R in regulating inhibition in the lateral amygdala (LA) and fear learning using the combined approaches of immunohistochemistry, electrophysiology, and behavior. RESULTS In sharp contrast to the established role of synaptic GABAAR in mediating LA inhibition, we found that either pharmacological or physiological recruitment of GABAA(δ)R resulted in the weakening of GABAergic transmission onto projection neurons in LA while leaving the glutamatergic transmission unaltered, suggesting disinhibition by GABAA(δ)R. The disinhibition arose from IN-specific expression of GABAA(δ)R with its activation decreasing the input resistance of local INs and suppressing their activation. Genetic deletion of GABAA(δ)R attenuated its role in suppressing LA INs and disinhibiting LA. Importantly, the GABAA(δ)R facilitated long-term potentiation in sensory afferents to LA and permitted the expression of learned fear. CONCLUSIONS Our findings suggest that GABAA(δ)R serves as a brake rather than a mediator of GABAergic inhibition in LA. The disinhibition by GABAA(δ)R may help to prevent excessive suppression of amygdala activity and thus ensure the expression of emotion.
Collapse
Affiliation(s)
- Zhi-Peng Liu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Qing-Hai He
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province; Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou
| | - Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Xiao-Bin Xu
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Wen-Bing Chen
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Ye He
- Medical Experiment Center, Nanchang University, Nanchang
| | - Jin Zhou
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Jun-Yu Zhang
- Department of Biotechnology, School of Life Sciences, Nanchang University, Nanchang
| | - Xiao-Ping Ying
- Department of Neurology, the 2nd Affiliated Hospital, , Nanchang University, Nanchang
| | - Ren-Wen Han
- Institute of Translational Medicine, Nanchang University, Nanchang
| | - Bao-Ming Li
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province; Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang; Department of Neurology, the 2nd Affiliated Hospital, , Nanchang University, Nanchang; Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Jiangxi, China.
| |
Collapse
|
7
|
Ciarlone SL, Wang X, Rogawski MA, Weeber EJ. Effects of the synthetic neurosteroid ganaxolone on seizure activity and behavioral deficits in an Angelman syndrome mouse model. Neuropharmacology 2016; 116:142-150. [PMID: 27986596 DOI: 10.1016/j.neuropharm.2016.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder characterized by severe developmental delay, motor impairments, and epilepsy. GABAergic dysfunction is believed to contribute to many of the phenotypic deficits seen in AS. We hypothesized that restoration of inhibitory tone mediated by extrasynaptic GABAA receptors could provide therapeutic benefit. Here, we report that ganaxolone, a synthetic neurosteroid that acts as a positive allosteric modulator of synaptic and extrasynaptic GABAA receptors, was anxiolytic, anticonvulsant, and improved motor deficits in the Ube3a-deficient mouse model of AS when administered by implanted mini-pump for 3 days or 4 weeks. Treatment for 4 weeks also led to recovery of spatial working memory and hippocampal synaptic plasticity deficits. This study demonstrates that ganaxolone ameliorates many of the behavioral abnormalities in the adult AS mouse, and tolerance did not occur to the therapeutic effects of the drug. The results support clinical studies to investigate ganaxolone as a symptomatic treatment for AS.
Collapse
Affiliation(s)
- Stephanie L Ciarlone
- USF Health Byrd Alzheimer's Institute, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Xinming Wang
- USF Health Byrd Alzheimer's Institute, Tampa, FL, USA
| | - Michael A Rogawski
- Departments of Neurology and Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Edwin J Weeber
- USF Health Byrd Alzheimer's Institute, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
8
|
Kazdoba TM, Hagerman RJ, Zolkowska D, Rogawski MA, Crawley JN. Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism. Psychopharmacology (Berl) 2016; 233:309-23. [PMID: 26525567 PMCID: PMC4703522 DOI: 10.1007/s00213-015-4115-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Abnormalities in excitatory/inhibitory neurotransmission are hypothesized to contribute to autism spectrum disorder (ASD) etiology. BTBR T (+) Itpr3 (tf) /J (BTBR), an inbred mouse strain, displays social deficits and repetitive self-grooming, offering face validity to ASD diagnostic symptoms. Reduced GABAergic neurotransmission in BTBR suggests that GABAA receptor positive allosteric modulators (PAMs) could improve ASD-relevant BTBR phenotypes. The neuroactive steroid ganaxolone acts as a PAM, displaying anticonvulsant properties in rodent epilepsy models and an anxiolytic-like profile in the elevated plus-maze. OBJECTIVES We evaluated ganaxolone in BTBR and C57BL/6J mice in standardized assays for sociability and repetitive behaviors. Open field and anxiety-related behaviors were tested as internal controls and for comparison with the existing neuroactive steroid literature. RESULTS Ganaxolone improved aspects of social approach and reciprocal social interactions in BTBR, with no effect on repetitive self-grooming, and no detrimental effects in C57BL/6J. Ganaxolone increased overall exploratory activity in BTBR and C57BL/6J in the open field, social approach, and elevated plus-maze, introducing a confound for the interpretation of social improvements. Allopregnanolone and diazepam similarly increased total entries in the elevated plus-maze, indicating that behavioral activation may be a general property of GABAA receptor PAMs in these strains. CONCLUSIONS Ganaxolone shows promise for improving sociability. In addition, ganaxolone, as well as other GABAA receptor PAMs, enhanced overall BTBR activity. The translational implications of specific sociability improvements and nonspecific behavioral activation by ganaxolone in the BTBR model remain to be determined. Future studies to explore whether PAMs provide a novel profile with unique benefits for ASD treatment will be worthwhile.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| | - Randi J Hagerman
- MIND Institute, Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dorota Zolkowska
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michael A Rogawski
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
9
|
Sosulina L, Strippel C, Romo-Parra H, Walter AL, Kanyshkova T, Sartori SB, Lange MD, Singewald N, Pape HC. Substance P excites GABAergic neurons in the mouse central amygdala through neurokinin 1 receptor activation. J Neurophysiol 2015; 114:2500-8. [PMID: 26334021 DOI: 10.1152/jn.00883.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/19/2015] [Indexed: 11/22/2022] Open
Abstract
Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at -101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K(+) conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar(9),Met(O2)(11)]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala.
Collapse
Affiliation(s)
- L Sosulina
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany; Neuronal Networks Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - C Strippel
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - H Romo-Parra
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - A L Walter
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - T Kanyshkova
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - S B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - M D Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, and Centre for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Insbruck, Austria; and
| | - H-C Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany;
| |
Collapse
|