1
|
Franken TP, Joris PX, Smith PH. Distinct cell classes in the superior paraolivary nucleus (SPN) region in the gerbil auditory brainstem revealed by in vivo physiological and anatomical characterization. Hear Res 2025; 458:109202. [PMID: 39914279 DOI: 10.1016/j.heares.2025.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 03/06/2025]
Abstract
The superior para-olivary nucleus (SPN or SPON) is a prominent nucleus in the superior olivary complex of the auditory brainstem. The cellular composition of the nucleus reportedly differs between species, but a prominent recurring feature is the unusual characteristic to not respond during a sound but at its offset. Blocking glycine has shown that sound-induced inhibition is the mechanism, but the time course of the responsible synaptic events has not been directly measured in vivo. We obtained intracellular recordings in the Mongolian gerbil (meriones unguiculatus) with patch electrodes containing biocytin, and retrieved 12 labeled neurons with large dendritic trees within and around the SPN region. We found that these neurons could be categorized into three classes that show consistency along multiple dimensions like ultrastructure, spontaneous activity, and responses to current injection and a variety of ipsi- and contralateral sounds. Fast cells fire at onset of depolarizing current, generate short-latency rebound spikes to sound or hyperpolarizing current, and show dense synaptic coverage. Slow cells show sparse synaptic coverage, sustained responses to depolarization, and inhibition with a slow time course to hyperpolarizing current or sound. Uninhibited cells form a third class which profoundly differ in their responses to sound, lacking rebound spiking. We propose that fast cells project to the inferior colliculus, and slow cells to the cochlear nucleus.
Collapse
Affiliation(s)
- T P Franken
- Laboratory of Auditory Neurophysiology, University of Leuven, Herestraat 49 bus 1021, B-3000, Leuven, Belgium; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - P X Joris
- Laboratory of Auditory Neurophysiology, University of Leuven, Herestraat 49 bus 1021, B-3000, Leuven, Belgium
| | - P H Smith
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Room 5505 WIMR-II, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Radulovic T, Rajaram E, Ebbers L, Pagella S, Winklhofer M, Kopp-Scheinpflug C, Nothwang HG, Milenkovic I, Hartmann AM. Serine 937 phosphorylation enhances KCC2 activity and strengthens synaptic inhibition. Sci Rep 2023; 13:21660. [PMID: 38066086 PMCID: PMC10709408 DOI: 10.1038/s41598-023-48884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The potassium chloride cotransporter KCC2 is crucial for Cl- extrusion from mature neurons and thus key to hyperpolarizing inhibition. Auditory brainstem circuits contain well-understood inhibitory projections and provide a potent model to study the regulation of synaptic inhibition. Two peculiarities of the auditory brainstem are (i) posttranslational activation of KCC2 during development and (ii) extremely negative reversal potentials in specific circuits. To investigate the role of the potent phospho-site serine 937 therein, we generated a KCC2 Thr934Ala/Ser937Asp double mutation, in which Ser937 is replaced by aspartate mimicking the phosphorylated state, and the neighbouring Thr934 arrested in the dephosphorylated state. This double mutant showed a twofold increased transport activity in HEK293 cells, raising the hypothesis that auditory brainstem neurons show lower [Cl-]i. and increased glycinergic inhibition. This was tested in a mouse model carrying the same KCC2 Thr934Ala/Ser937Asp mutation by the use of the CRISPR/Cas9 technology. Homozygous KCC2 Thr934Ala/Ser937Asp mice showed an earlier developmental onset of hyperpolarisation in the auditory brainstem. Mature neurons displayed stronger glycinergic inhibition due to hyperpolarized ECl-. These data demonstrate that phospho-regulation of KCC2 Ser937 is a potent way to interfere with the excitation-inhibition balance in neural circuits.
Collapse
Affiliation(s)
- Tamara Radulovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ezhilarasan Rajaram
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Lena Ebbers
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Michael Winklhofer
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Ivan Milenkovic
- Division of Physiology School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
3
|
Lee J, Clause A, Kandler K. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus. J Neurosci 2023; 43:7766-7779. [PMID: 37734946 PMCID: PMC10648534 DOI: 10.1523/jneurosci.0920-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON. In this study, we investigated the development of MNTB-SPON connections in mice of both sexes from shortly after birth to three weeks of age, which encompasses the time before and after hearing onset. Individual axon reconstructions and electrophysiological analysis of MNTB-SPON connectivity demonstrate a dramatic increase in the number of MNTB axonal boutons in the SPON before hearing onset. However, this proliferation was not accompanied by changes in the strength of MNTB-SPON connections or by changes in the structural or functional topographic precision. However, following hearing onset, the spread of single-axon boutons along the tonotopic axis increased, indicating an unexpected decrease in the tonotopic precision of the MNTB-SPON pathway. These results provide new insight into the development and organization of inhibition to SPON neurons and the regulation of developmental plasticity in diverging inhibitory pathways.SIGNIFICANCE STATEMENT The superior paraolivary nucleus (SPON) is a prominent auditory brainstem nucleus involved in the early detection of sound gaps and rhythmic oscillations. The ability of SPON neurons to fire at the offset of sound depends on strong and precise synaptic inhibition provided by glycinergic neurons in the medial nucleus of the trapezoid body (MNTB). Here, we investigated the anatomic and physiological maturation of MNTB-LSO connectivity in mice before and after the onset of hearing. We observed a period of bouton proliferation without accompanying changes in topographic precision before hearing onset. This was followed by bouton elimination and an unexpected decrease in the tonotopic precision after hearing onset. These results provide new insight into the development of inhibition to the SPON.
Collapse
Affiliation(s)
- Jongwon Lee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Amanda Clause
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
4
|
Chokr SM, Milinkeviciute G, Cramer KS. Synapse Maturation and Developmental Impairment in the Medial Nucleus of the Trapezoid Body. Front Integr Neurosci 2022; 16:804221. [PMID: 35221938 PMCID: PMC8863736 DOI: 10.3389/fnint.2022.804221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Sound localization requires rapid interpretation of signal speed, intensity, and frequency. Precise neurotransmission of auditory signals relies on specialized auditory brainstem synapses including the calyx of Held, the large encapsulating input to principal neurons in the medial nucleus of the trapezoid body (MNTB). During development, synapses in the MNTB are established, eliminated, and strengthened, thereby forming an excitatory/inhibitory (E/I) synapse profile. However, in neurodevelopmental disorders such as autism spectrum disorder (ASD), E/I neurotransmission is altered, and auditory phenotypes emerge anatomically, molecularly, and functionally. Here we review factors required for normal synapse development in this auditory brainstem pathway and discuss how it is affected by mutations in ASD-linked genes.
Collapse
|