1
|
Veale R, Takahashi M. Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience 2024; 545:86-110. [PMID: 38484836 DOI: 10.1016/j.neuroscience.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.
Collapse
Affiliation(s)
- Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
2
|
Marino RA, Munoz DP, Levy R. Role of Rostral Superior Colliculus in Gaze Stabilization during Visual Fixation. J Cogn Neurosci 2023; 35:180-199. [PMID: 36473104 DOI: 10.1162/jocn_a_01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visual fixation (i.e., holding gaze on a specific visual object or location of interest) has been shown to be influenced by activity in the rostral pole of the intermediate layers of the superior colliculus (SCi)-a sensory-motor integration nucleus in the midbrain involved in visual fixation and saccadic eye movement generation. Neurons in the rostral SCi discharge tonically during visual fixation and pause during saccades to locations beyond their foveal visual-sensory or saccadic-motor response fields. Injection of muscimol to deactivate rostral SCi neurons also leads to an increase in fixation instability. However, the precise role of rostral SCi activity for controlling visual fixation has not been established and is actively debated. Here, we address whether this activity reflects signals related to task demands (i.e., maintaining visual fixation) or foveal visual stimulus properties. Two non-human primates performed an oculomotor task that required fixation of a central fixation point (FP) of varying luminance at the start of each trial. During this fixation period, we measured fixational saccades (≤ 2° of the FP, including microsaccades) and fixation-error saccades (> 2° from the FP) in combination with activity from the rostral SCi. Fixation of the lowest FP luminance increased the latency (onset time relative to initial FP foveation) for both fixational and fixation-error saccades. Fifty percent of the rostral SCi neurons exhibited activity that opposed the change in FP luminance and correlated with delayed fixational saccades and increased fixation-error saccades. Twenty-two percent of rostral SCi neurons exhibited activity that followed the change in FP luminance and correlated with earlier fixational saccades and decreased fixation-error saccades. This suggests the rostral SCi contains both sensory-driven and task-related motor signals related to foveal sensory stimuli and visual fixation. This evidence supports a role for the rostral SCi in gaze stabilization and can help inform artificial computational models of vision.
Collapse
Affiliation(s)
| | | | - Ron Levy
- Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Naito R, Watanabe Y, Naito A, Sugasawa K, Nakata Y, Kamiyama T, Okiyama R, Yokochi F, Isozaki E, Yamasoba T, Takahashi K. Visual fixation suppression of caloric nystagmus in progressive supranuclear palsy - A comparison with Parkinson's disease. J Vestib Res 2023; 33:385-401. [PMID: 37599554 DOI: 10.3233/ves-210147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Impairment of visual fixation suppression (VS) in progressive supranuclear palsy (PSP) is not well documented. OBJECTIVE To evaluate the usefulness of impaired VS of caloric nystagmus as an index for differential diagnosis between PSP and Parkinson's disease (PD), which is often difficult, especially in the early stage. METHODS Subjects comprised 26 PSP patients and 26 PD patients clinically diagnosed at Tokyo Metropolitan Neurological Hospital. We retrospectively investigated VS of caloric nystagmus, horizontal pursuit, saccades, and horizontal optokinetic nystagmus recorded on direct-current-electronystagmography, and neuroradiological findings. RESULTS The median of the average VS% was 0% and 50.0% in PSP and PD patients, respectively. In PSP, VS was impaired even in the early stage of disease. We found a significant correlation between VS and velocity of saccades or maximum slow phase velocity of optokinetic nystagmus only in PSP patients. PSP patients with atrophy of the subthalamic nucleus or with decreased blood flow in the frontal lobe showed significantly more severe impairment of VS. CONCLUSIONS VS may be a useful biomarker to differentiate patients with PSP from those with PD. Cerebellar networks that connect with the cerebral cortex and basal ganglia may contribute to impaired VS of caloric nystagmus in PSP.
Collapse
Affiliation(s)
- Rie Naito
- Department of Neuro-Otology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yuki Watanabe
- Department of Neuro-Otology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Akira Naito
- Department of Neuro-Otology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Keiko Sugasawa
- Department of Neuro-Otology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuro-Radiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Tsutomu Kamiyama
- Department of Neuro-Radiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Fusako Yokochi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Eiji Isozaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicines, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| |
Collapse
|
4
|
Shinn M, Lee D, Murray JD, Seo H. Transient neuronal suppression for exploitation of new sensory evidence. Nat Commun 2022; 13:23. [PMID: 35013222 PMCID: PMC8748884 DOI: 10.1038/s41467-021-27697-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
In noisy but stationary environments, decisions should be based on the temporal integration of sequentially sampled evidence. This strategy has been supported by many behavioral studies and is qualitatively consistent with neural activity in multiple brain areas. By contrast, decision-making in the face of non-stationary sensory evidence remains poorly understood. Here, we trained monkeys to identify and respond via saccade to the dominant color of a dynamically refreshed bicolor patch that becomes informative after a variable delay. Animals’ behavioral responses were briefly suppressed after evidence changes, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to that frequently observed after stimulus onset but sensitive to stimulus strength. Generalized drift-diffusion models revealed consistency of behavior and neural activity with brief suppression of motor output, but not with pausing or resetting of evidence accumulation. These results suggest that momentary arrest of motor preparation is important for dynamic perceptual decision making. While evidence is constantly changing during real-world decisions, little is known about how the brain deals with such changes. Here, the authors show that the brain strategically suppresses motor output via the frontal eye fields in response to stimulus changes.
Collapse
Affiliation(s)
- Maxwell Shinn
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA.,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA
| | - Daeyeol Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.,Kavli Discovery Neuroscience Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John D Murray
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA. .,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA. .,Department of Physics, Yale University, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
| | - Hyojung Seo
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA. .,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Izawa Y, Suzuki H. Suppressive control of optokinetic and vestibular nystagmus by the primate frontal eye field. J Neurophysiol 2020; 124:691-702. [DOI: 10.1152/jn.00015.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, electrical stimulation in the frontal eye field (FEF) suppressed the quick and slow phases of optokinetic and vestibular nystagmus at an intensity subthreshold for eliciting saccades. Furthermore, the activity of fixation neurons in the FEF was related to the suppression of optokinetic and vestibular nystagmus by visual fixation. This suggests that a common neuronal assembly in the FEF may contribute to the suppressive control of different functional classes of eye movements.
Collapse
Affiliation(s)
- Yoshiko Izawa
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hisao Suzuki
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Abstract
Opsoclonus/flutter (O/F) is a rare disorder of the saccadic system. Previously, we modeled O/F that developed in a patient following abuse of anabolic steroids. That model, as in all models of the saccadic system, generates commands to make a change in eye position. Recently, we saw a patient who developed a unique form of opsoclonus following a concussion. The patient had postsaccadic ocular flutter in both directions of gaze, and opsoclonus during fixation and pursuit in the left hemifield. A new model of the saccadic system is needed to account for this gaze-position dependent O/F. We started with our prior model, which contains two key elements, mutual inhibition between inhibitory burst neurons on both sides and a prolonged reactivation time of the omnipause neurons (OPNs). We included new inputs to the OPNs from the nucleus prepositus hypoglossi and the frontal eye fields, which contain position-dependent neurons. This provides a mechanism for delaying OPN reactivation, and creating a gaze-position dependence. A simplified pursuit system was also added, the output of which inhibits the OPNs, providing a mechanism for gaze-dependence during pursuit. The rest of the model continues to generate a command to change eye position.
Collapse
|
7
|
Brainstem neural circuits for fixation and generation of saccadic eye movements. PROGRESS IN BRAIN RESEARCH 2019; 249:95-104. [DOI: 10.1016/bs.pbr.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Izawa Y, Suzuki H. Motor action of the frontal eye field on the eyes and neck in the monkey. J Neurophysiol 2018. [PMID: 29513149 DOI: 10.1152/jn.00577.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal stimulation in the frontal eye field (FEF) evoked eye movements that were often accompanied by neck movements. Experiments were performed with concurrent recording of both movements in trained monkeys. We recorded neck forces under a head-restrained condition with a force-measuring system. With the system, we measured forces along the x-, y-, and z-axes and torque about the z-axis. Torque about the z-axis that represented yaw rotation of the head was significantly affected by stimulation. We found that stimulation generated two types of motor actions of the eyes and neck. In the first type, contraversive neck forces were evoked by stimulation of the medial part of the FEF, where contraversive saccadic eye movements with large amplitudes were evoked. When the stimulus intensity was increased, saccades were evoked in an all-or-none manner, whereas the amplitude of neck forces increased gradually. In the second type, contraversive neck forces were evoked by stimulation of the medial and caudal part of the FEF, where ipsiversive slow eye movements were evoked. The depth profiles of amplitudes of neck forces were almost parallel to those of eye movements in individual stimulation tracks. The present results suggest that the FEF is involved in the control of motor actions of the neck as well as the eyes. The FEF area associated with contraversive saccades and contraversive neck movements may contribute to a gaze shift process, whereas that associated with ipsiversive slow eye movements and contraversive neck movements may contribute to a visual stabilization process. NEW & NOTEWORTHY Focal stimulation in the frontal eye field (FEF) evoked eye and neck movements. We recorded neck forces under a head-restrained condition with a force-measuring system. Taking advantage of this approach, we could analyze slow eye movements that were dissociated from the vestibuloocular reflex. We found ipsiversive slow eye movements in combination with contraversive neck forces, suggesting that the FEF may be a source of a corollary discharge signal for compensatory eye movements during voluntary neck movements.
Collapse
Affiliation(s)
- Yoshiko Izawa
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo , Japan
| | - Hisao Suzuki
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
9
|
Frontal Eye Field Inactivation Reduces Saccade Preparation in the Superior Colliculus but Does Not Alter How Preparatory Activity Relates to Saccades of a Given Latency. eNeuro 2018; 5:eN-NWR-0024-18. [PMID: 29766038 PMCID: PMC5952303 DOI: 10.1523/eneuro.0024-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
A neural correlate for saccadic reaction times (SRTs) in the gap saccade task is the level of low-frequency activity in the intermediate layers of the superior colliculus (iSC) just before visual target onset: greater levels of such preparatory iSC low-frequency activity precede shorter SRTs. The frontal eye fields (FEFs) are one likely source of iSC preparatory activity, since FEF preparatory activity is also inversely related to SRT. To better understand the FEF’s role in saccade preparation, and the way in which such preparation relates to SRT, in two male rhesus monkeys, we compared iSC preparatory activity across unilateral reversible cryogenic inactivation of the FEF. FEF inactivation increased contralesional SRTs, and lowered ipsilesional iSC preparatory activity. FEF inactivation also reduced rostral iSC activity during the gap period. Importantly, the distributions of SRTs generated with or without FEF inactivation overlapped, enabling us to conduct a novel population-level analyses examining iSC preparatory activity just before generation of SRT-matched saccades. When matched for SRTs, we observed no change during FEF inactivation in the relationship between iSC preparatory activity and SRT-matched saccades across a range of SRTs, even for the occasional express saccade. Thus, while our results emphasize that the FEF has an overall excitatory influence on preparatory activity in the iSC, the communication between the iSC and downstream oculomotor brainstem is unaltered for SRT-matched saccades.
Collapse
|
10
|
Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner. J Neurosci 2017; 37:2234-2257. [PMID: 28119401 PMCID: PMC5338763 DOI: 10.1523/jneurosci.1984-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/04/2022] Open
Abstract
The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul while monkeys performed saccade tasks toward instructed and freely chosen targets. Timing of stimulation was varied, starting before, at, or after onset of target(s). Stimulation affected saccade properties and target selection in a time-dependent manner. Stimulation starting before but overlapping with target onset shortened saccadic reaction times (RTs) for ipsiversive (to the stimulation site) target locations, whereas stimulation starting at and after target onset caused systematic delays for both ipsiversive and contraversive locations. Similarly, stimulation starting before the onset of bilateral targets increased ipsiversive target choices, whereas stimulation after target onset increased contraversive choices. Properties of dPul neurons and stimulation effects were consistent with an overall contraversive drive, with varying outcomes contingent upon behavioral demands. RT and choice effects were largely congruent in the visually-guided task, but stimulation during memory-guided saccades, while influencing RTs and errors, did not affect choice behavior. Together, these results show that the dPul plays a primary role in action planning as opposed to visual processing, that it exerts its strongest influence on spatial choices when decision and action are temporally close, and that this choice effect can be dissociated from motor effects on saccade initiation and execution. SIGNIFICANCE STATEMENT Despite a recent surge of interest, the core function of the pulvinar, the largest thalamic complex in primates, remains elusive. This understanding is crucial given the central role of the pulvinar in current theories of integrative brain functions supporting cognition and goal-directed behaviors, but electrophysiological and causal interference studies of dorsal pulvinar (dPul) are rare. Building on our previous studies that pharmacologically suppressed dPul activity for several hours, here we used transient electrical microstimulation at different periods while monkeys performed instructed and choice eye movement tasks, to determine time-specific contributions of pulvinar to saccade generation and decision making. We show that stimulation effects depend on timing and behavioral state and that effects on choices can be dissociated from motor effects.
Collapse
|
11
|
Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 2014; 8:66. [PMID: 25202241 PMCID: PMC4141567 DOI: 10.3389/fnint.2014.00066] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023] Open
Abstract
The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed.
Collapse
Affiliation(s)
- Marine Vernet
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Romain Quentin
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Lorena Chanes
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Andres Mitsumasu
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Antoni Valero-Cabré
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France ; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, School of Medicine, Boston University Boston, MA, USA ; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia Barcelona, Spain
| |
Collapse
|
12
|
Izawa Y, Suzuki H. Activity of fixation neurons in the monkey frontal eye field during smooth pursuit eye movements. J Neurophysiol 2014; 112:249-62. [DOI: 10.1152/jn.00816.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded the activity of fixation neurons in the frontal eye field (FEF) in trained monkeys and analyzed their activity during smooth pursuit eye movements. Fixation neurons were densely located in the area of the FEF in the caudal part of the arcuate gyrus facing the inferior arcuate sulcus where focal electrical stimulation suppressed the generation of saccades and smooth pursuit in bilateral directions at an intensity lower than the threshold for eliciting electrically evoked saccades. Whereas fixation neurons discharged tonically during fixation, they showed a variety of discharge patterns during smooth pursuit, ranging from a decrease in activity to an increase in activity. Of these, more than two-thirds were found to show a reduction in activity during smooth pursuit in the ipsilateral and bilateral directions. The reduction in activity of fixation neurons began at pursuit initiation and continued during pursuit maintenance. When catch-up saccades during the initiation of pursuit were eliminated by a step-ramp target routine, the reduced activity of fixation neurons remained. The reduction in activity during pursuit was not dependent on the activity during fixation without a target. Based on these results, we discuss the role of the FEF at maintaining fixation in relation to various other brain areas. We suggest that fixation neurons in the FEF contribute to the suppression of smooth pursuit. These results suggest that FEF fixation neurons are part of a more generalized visual fixation system through which suppressive control is exerted on smooth pursuit, as well as saccades.
Collapse
Affiliation(s)
- Yoshiko Izawa
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hisao Suzuki
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Peel TR, Johnston K, Lomber SG, Corneil BD. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field. J Neurophysiol 2013; 111:415-33. [PMID: 24155010 DOI: 10.1152/jn.00398.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inactivation permits direct assessment of the functional contribution of a given brain area to behavior. Previous inactivation studies of the frontal eye field (FEF) have either used large permanent ablations or reversible pharmacological techniques that only inactivate a small volume of tissue. Here we evaluated the impact of large, yet reversible, FEF inactivation on visually guided, delayed, and memory-guided saccades, using cryoloops implanted in the arcuate sulcus. While FEF inactivation produced the expected triad of contralateral saccadic deficits (increased reaction time, decreased accuracy and peak velocity) and performance errors (neglect or misdirected saccades), we also found consistent increases in reaction times of ipsiversive saccades in all three tasks. In addition, FEF inactivation did not increase the proportion of premature saccades to ipsilateral targets, as was predicted on the basis of pharmacological studies. Consistent with previous studies, greater deficits accompanied saccades toward extinguished visual cues. Our results attest to the functional contribution of the FEF to saccades in both directions. We speculate that the comparative effects of different inactivation techniques relate to the volume of inactivated tissue within the FEF. Larger inactivation volumes may reveal the functional contribution of more sparsely distributed neurons within the FEF, such as those related to ipsiversive saccades. Furthermore, while focal FEF inactivation may disinhibit the mirroring site in the other FEF, larger inactivation volumes may induce broad disinhibition in the other FEF that paradoxically prolongs oculomotor processing via increased competitive interactions.
Collapse
Affiliation(s)
- Tyler R Peel
- The Brain and Mind Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Kunimatsu J, Tanaka M. Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field. Eur J Neurosci 2012; 36:3258-68. [DOI: 10.1111/j.1460-9568.2012.08242.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Valero-Cabre A, Wattiez N, Monfort M, François C, Rivaud-Péchoux S, Gaymard B, Pouget P. Frontal non-invasive neurostimulation modulates antisaccade preparation in non-human primates. PLoS One 2012; 7:e38674. [PMID: 22701691 PMCID: PMC3368878 DOI: 10.1371/journal.pone.0038674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/10/2012] [Indexed: 11/29/2022] Open
Abstract
A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes.
Collapse
Affiliation(s)
- Antoni Valero-Cabre
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
- Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- * E-mail: (PP); (AVC)
| | - Nicolas Wattiez
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Morgane Monfort
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Chantal François
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Sophie Rivaud-Péchoux
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Bertrand Gaymard
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
| | - Pierre Pouget
- Université Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Möelle (ICM), Paris, France
- * E-mail: (PP); (AVC)
| |
Collapse
|
16
|
Shinoda Y, Sugiuchi Y, Takahashi M, Izawa Y. Neural substrate for suppression of omnipause neurons at the onset of saccades. Ann N Y Acad Sci 2011; 1233:100-6. [PMID: 21950982 DOI: 10.1111/j.1749-6632.2011.06171.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yoshikazu Shinoda
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
17
|
Izawa Y, Suzuki H, Shinoda Y. Suppression of smooth pursuit eye movements induced by electrical stimulation of the monkey frontal eye field. J Neurophysiol 2011; 106:2675-87. [PMID: 21849604 DOI: 10.1152/jn.00182.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was performed to characterize the properties of the suppression of smooth pursuit eye movement induced by electrical stimulation of the frontal eye field (FEF) in trained monkeys. At the stimulation sites tested, we first determined the threshold for generating electrically evoked saccades (Esacs). We then examined the suppressive effects of stimulation on smooth pursuit at intensities that were below the threshold for eliciting Esacs. We observed that FEF stimulation induced a clear deceleration of pursuit at pursuit initiation and also during the maintenance of pursuit at subthreshold intensities. The suppression of pursuit occurred even in the absence of catch-up saccades during pursuit, indicating that suppression influenced pursuit per se. We mapped the FEF area that was associated with the suppressive effect of stimulation on pursuit. In a wide area in the FEF, suppressive effects were observed for ipsiversive, but not contraversive, pursuit. In contrast, we observed the bilateral suppression of both ipsiversive and contraversive pursuit in a localized area in the FEF. This area coincided with the area in which we have previously shown that stimulation suppressed the generation of saccades in bilateral directions and also where fixation neurons that discharged during fixation were concentrated. On the basis of these results, we compared the FEF suppression of pursuit with that of saccades with regard to several physiological properties and then discussed the role of the FEF in the suppression of both pursuit and saccades, and particularly in the maintenance of visual fixation.
Collapse
Affiliation(s)
- Yoshiko Izawa
- Dept. of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental Univ., 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan 113-8519.
| | | | | |
Collapse
|
18
|
Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Exp Brain Res 2011; 212:143-52. [PMID: 21544509 DOI: 10.1007/s00221-011-2710-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly used to perturb targeted human brain sites non-invasively, to test for causal effects on performance of cognitive tasks. TMS might also be used in non-human primates to complement invasive work and compare with human studies. Here, we targeted the frontal eye fields (FEF) in two macaques with a continuous theta-burst (cTBS) protocol, testing the impact on visually guided saccades. After unilateral cTBS over the FEF in either hemisphere, a small (mean 7 ms) but highly consistent decrease in saccadic reaction times (RTs) was observed. Lower latencies arose for saccades both contra- and ipsilateral to the stimulated FEF after cTBS. These results provide the first demonstration that TMS can be used to affect saccadic behavior in non-human primates. The unexpectedly bilateral impact on RTs may reflect an impact on 'fixation' neurons in the FEF and/or transcallosal modulation of both FEFs induced by unilateral cTBS. In either case, this study demonstrates a clear behavioral effect induced by TMS in awake behaving monkeys performing a cognitive task. This opens new opportunities for investigating the causal roles of targeted brain areas in behavior, for measuring physiological consequences of TMS in the primate brain, and ultimately for human-monkey comparisons.
Collapse
|
19
|
Krebs MO, Bourdel MC, Cherif ZR, Bouhours P, Lôo H, Poirier MF, Amado I. Deficit of inhibition motor control in untreated patients with schizophrenia: further support from visually guided saccade paradigms. Psychiatry Res 2010; 179:279-84. [PMID: 20483461 DOI: 10.1016/j.psychres.2009.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 05/27/2009] [Accepted: 07/07/2009] [Indexed: 10/19/2022]
Abstract
In addition to classical delusional, negative, and cognitive deficit, schizophrenia has consistently been associated with impairments in saccadic eye movements, e.g., an increased error rate in the antisaccade task. We hypothesized that a deficit in inhibitory control is a core defect in untreated patients with schizophrenia leading to impairment in different oculomotor paradigms. Ten drug-free or drug-naïve patients with schizophrenia were matched in age and gender to 11 healthy controls with no psychoactive substance use or abuse. They were explored using reflexive saccades with unpredictable targets with or without the gap procedure, predictive saccades and a fixation/distracter paradigm. Patients with schizophrenia displayed shorter latency in reflexive and predictive saccades. In the GAP condition, patients made more anticipatory saccades, fewer regular saccades, and had a shorter latency of express saccades than controls. In addition, patients had an increased error rate in the fixation/distracters task. Altogether, these results provide new evidence of reduced prefrontal inhibitory regulation of subcortical and brainstem systems involved in the control of saccades.
Collapse
Affiliation(s)
- Marie Odile Krebs
- Université Paris Descartes, Faculté de médecine Paris Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Watanabe M, Munoz DP. Saccade reaction times are influenced by caudate microstimulation following and prior to visual stimulus appearance. J Cogn Neurosci 2010; 23:1794-807. [PMID: 20666599 DOI: 10.1162/jocn.2010.21554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Several cognitive models suggest that saccade RTs are controlled flexibly not only by mechanisms that accumulate sensory evidence after the appearance of a sensory stimulus (poststimulus mechanisms) but also by mechanisms that preset the saccade control system before the sensory event (prestimulus mechanisms). Consistent with model predictions, neurons in structures tightly related to saccade initiation, such as the superior colliculus and FEF, have poststimulus and prestimulus activities correlated with RTs. It has been hypothesized that the BG influence the saccade initiation process by controlling both poststimulus and prestimulus activities of superior colliculus and FEF neurons. To examine this hypothesis directly, we delivered electrical microstimulation to the caudate nucleus, the input stage of the oculomotor BG, while monkeys performed a prosaccade (look toward a visual stimulus) and antisaccade (look away from the stimulus) paradigm. Microstimulation applied after stimulus appearance (poststimulus microstimulation) prolonged RTs regardless of saccade directions (contra/ipsi) or task instructions (pro/anti). In contrast, microstimulation applied before stimulus appearance (prestimulus microstimulation) shortened RTs, although the effects were limited to several task conditions. The analysis of RT distributions using the linear approach to threshold with ergodic rate model revealed that poststimulus microstimulation prolonged RTs by reducing the rate of rise to the threshold for saccade initiation, whereas fitting results for prestimulus microstimulation were inconsistent across different task conditions. We conclude that both poststimulus and prestimulus activities of caudate neurons are sufficient to control saccade RTs.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
21
|
Yang SN. Effects of gaze-contingent text changes on fixation duration in reading. Vision Res 2009; 49:2843-55. [DOI: 10.1016/j.visres.2009.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022]
|
22
|
Izawa Y, Suzuki H, Shinoda Y. Response properties of fixation neurons and their location in the frontal eye field in the monkey. J Neurophysiol 2009; 102:2410-22. [PMID: 19675294 DOI: 10.1152/jn.00234.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation of the frontal eye field (FEF) has recently been reported to suppress the generation of saccades, which supports the idea that the FEF plays a role in maintaining attentive fixation. This study analyzed the activity of fixation neurons that discharged during fixation in the FEF in relation to visual fixation and saccades in trained monkeys. The neural activity of fixation neurons increased at the start of fixation and was maintained during fixation. When a fixation spot of light disappeared during steady fixation, different fixation neurons exhibited different categories of response, ranging from a decrease in activity to an increase in activity, indicating that there is a continuum of fixation neurons, from neurons with foveal visual-related activity to neurons with activity that is related to the motor act of fixating. Fixation neurons usually showed a decrease in their firing rate before the onset of visually guided saccades (Vsacs) and memory-guided saccades in any direction. The reduction in activity of fixation neurons nearly coincided with, or occurred slightly before, the increase in the activity of saccade-related movement neurons in the FEF in the same monkey. Although fixation neurons were scattered in the FEF, about two thirds of fixation neurons were concentrated in a localized area in the FEF at which electrical stimulation induced strong suppression of the initiation of Vsacs bilaterally. These results suggest that fixation neurons in the FEF are part of a suppression mechanism that could control the maintenance of fixation and the initiation of saccades.
Collapse
Affiliation(s)
- Yoshiko Izawa
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Tokyo, Japan.
| | | | | |
Collapse
|
23
|
Discharge of pursuit neurons in the caudal part of the frontal eye fields during cross-axis vestibular-pursuit training in monkeys. Exp Brain Res 2009; 195:229-40. [PMID: 19337727 DOI: 10.1007/s00221-009-1775-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 03/12/2009] [Indexed: 10/20/2022]
Abstract
Previous studies in monkeys have shown that pursuit training during orthogonal whole body rotation results in task-dependent, predictive pursuit eye movements. We examined whether pursuit neurons in the frontal eye fields (FEF) are involved in predictive pursuit induced by vestibular-pursuit training. Two monkeys were rotated horizontally at 20 degrees/s for 0.5 s either rightward or leftward with random inter-trial intervals. This chair motion trajectory was synchronized with orthogonal target motion at 20 degrees/s for 0.5 s either upward or downward. Monkeys were rewarded for pursuing the target. Vertical pursuit eye velocities and discharge of 23 vertical pursuit neurons to vertical target motion were compared before training and during the last 5 min of the 25-45 min training. The latencies of discharge modulation of 61% of the neurons (14/23) shortened after vestibular-pursuit training in association with a shortening of pursuit latency. However, their discharge modulation occurred after 100 ms following the onset of pursuit eye velocity. Only four neurons (4/23 = 17%) discharged before the eye movement onset. A significant change was not observed in eye velocity and FEF pursuit neuron discharge during pursuit alone after training without vestibular stimulation. Vestibular stimulation alone without a target after training induced no clear response. These results suggest that the adaptive change in response to pursuit prediction was induced by vestibular inputs in the presence of target pursuit. FEF pursuit neurons are unlikely to be involved in the initial stage of generating predictive eye movements. We suggest that they may participate in the maintenance of predictive pursuit.
Collapse
|
24
|
Winograd-Gurvich C, Fitzgerald PB, Georgiou-Karistianis N, Millist L, White O. Inhibitory control and spatial working memory: a saccadic eye movement study of negative symptoms in schizophrenia. Psychiatry Res 2008; 157:9-19. [PMID: 17897722 DOI: 10.1016/j.psychres.2007.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 09/04/2006] [Accepted: 02/03/2007] [Indexed: 11/24/2022]
Abstract
The negative symptoms of schizophrenia are perhaps the most unremitting and burdensome features of the disorder. Negative symptoms have been associated with distinct motor, cognitive and neuropathological impairments, possibly stemming from prefrontal dysfunction. Eye movement paradigms can be used to investigate basic sensorimotor functions, as well as higher order cognitive aspects of motor control such as inhibition and spatial working memory - functions subserved by the prefrontal cortex. This study investigated inhibitory control and spatial working memory in the saccadic system of 21 patients with schizophrenia (10 with high negative symptoms scores and 11 with low negative symptom scores) and 14 healthy controls. Tasks explored suppression of reflexive saccades during qualitatively different tasks, the generation of express and anticipatory saccades, and the ability to respond to occasional, unpredictable ("oddball") targets that occurred during a sequence of well-learned, reciprocating saccades between horizontal targets. Spatial working memory was assessed using a single and a two-step memory-guided task (involving a visually-guided saccade during the delay period). Results indicated significant increases in response suppression errors, as well as increased response selection impairments, during the oddball task, in schizophrenia patients with prominent negative symptoms. The variability of memory-guided saccade accuracy was also increased in patients with prominent negative symptom scores. Collectively, these findings provide further support for the proposed association between prefrontal dysfunction and negative symptoms.
Collapse
Affiliation(s)
- Caroline Winograd-Gurvich
- Experimental Neuropsychology Research Unit, School of Psychology, Psychiatry and Psychological Medicine, Monash University, Clayton, Victoria, 3800, Australia.
| | | | | | | | | |
Collapse
|
25
|
Shinoda Y, Sugiuchi Y, Izawa Y, Takahashi M. Neural circuits for triggering saccades in the brainstem. PROGRESS IN BRAIN RESEARCH 2008; 171:79-85. [PMID: 18718285 DOI: 10.1016/s0079-6123(08)00611-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Here we review the functional anatomy of brainstem circuits important for triggering saccades. Whereas the rostral part of the superior colliculus (SC) is considered to be involved in visual fixation, the caudal part of the SC plays an important role in generation of saccades. We determined the neural connections from the rostral and caudal parts of the SC to inhibitory burst neurons (IBNs) and omnipause neurons (OPNs) in the nucleus raphe interpositus. To reveal the neural mechanisms of triggering saccadic eye movements, we analysed the effects of stimulation of the SC on intracellular potentials recorded from IBNs and OPNs in anaesthetized cats. Our studies show that IBNs receive monosynaptic excitation from the contralateral caudal SC, and disynaptic inhibition from the ipsilateral caudal SC, via contralateral IBNs. Further, IBNs receive disynaptic inhibition from the rostral part of the SC, on either side, via OPNs. Intracellular recording revealed that OPNs receive excitation from the rostral parts of the bilateral SCs, and disynaptic inhibition from the caudal SC mainly via IBNs. The neural connections determined in this study are consistent with the notion that the "fixation zone" is localized in the rostral SC, and suggest that IBNs, which receive monosynaptic excitation from the caudal "saccade zone," may inhibit tonic activity of OPNs and thereby trigger saccades.
Collapse
Affiliation(s)
- Yoshikazu Shinoda
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | |
Collapse
|
26
|
Kuwajima M, Sawaguchi T. Involvement of the lateral prefrontal cortex in conditional suppression of gaze shift. Neurosci Res 2007; 59:431-45. [PMID: 17905458 DOI: 10.1016/j.neures.2007.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 11/30/2022]
Abstract
Conditional execution and suppression of gaze shift are important in everyday life. To examine the possible involvement of the lateral prefrontal cortex (LPFC) in this process, we induced a local and reversible inactivation by injecting muscimol into 66 sites within the LPFC of monkeys and examined muscimol's effect on their performance in an oculomotor Go/No-Go task. This task required a subject to execute (Go) or suppress (No-Go) its gaze toward a target location in response to an instructional visual cue. Local injection of muscimol into 22 regions of the LPFC resulted in significant increases in the number of error saccades toward a few specific target locations during No-Go trials, whereas there were no error saccades in the Go trials. The onset latency of error saccades in No-Go trials was significantly longer than that of correct saccades in Go trials, but their velocity and amplitude were similar to those of correct saccades in Go trials. Go correct saccades appeared intact after the injections. These findings provide evidence that different regions of the LPFC are involved in the conditional suppression of gaze shift toward a few specific target locations, which may occur through a top-down suppressive mechanism.
Collapse
Affiliation(s)
- Mariko Kuwajima
- Laboratory of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | |
Collapse
|
27
|
Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 2007; 10:240-8. [PMID: 17237780 DOI: 10.1038/nn1830] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/12/2006] [Indexed: 11/09/2022]
Abstract
Human behavior is mostly composed of habitual actions that require little conscious control. Such actions may become invalid if the environment changes, at which point individuals need to switch behavior by overcoming habitual actions that are otherwise triggered automatically. It is unknown how the brain controls this type of behavioral switching. Here we show that the presupplementary motor area (pre-SMA) in the medial frontal cortex has a function in switching from automatic to volitionally controlled action in rhesus macaque monkeys. We found that a group of pre-SMA neurons was selectively activated when subjects successfully switched to a controlled alternative action. Electrical stimulation in the pre-SMA replaced automatic incorrect responses with slower correct responses. A further test suggested that the pre-SMA enabled switching by first suppressing an automatic unwanted action and then boosting a controlled desired action. Our data suggest that the pre-SMA resolves response conflict so that the desired action can be selected.
Collapse
Affiliation(s)
- Masaki Isoda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
28
|
McPeek RM. Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades. J Neurophysiol 2006; 96:2699-711. [PMID: 16885521 PMCID: PMC1876735 DOI: 10.1152/jn.00564.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccades in the presence of distractors show significant trajectory curvature. Based on previous work in the superior colliculus (SC), we speculated that curvature arises when a movement is initiated before competition between the target and distractor goals has been fully resolved. To test this hypothesis, we recorded frontal eye field (FEF) activity for curved and straight saccades in search. In contrast to the SC, activity in FEF is normally poorly correlated with saccade dynamics. However, the FEF, like the SC, is involved in target selection. Thus if curvature is caused by incomplete target selection, we expect to see its neural correlates in the FEF. We found that saccades that curve toward a distractor are accompanied by an increase in perisaccadic activity of FEF neurons coding the distractor location, and saccades that curve away are accompanied by a decrease in activity. In contrast, for FEF neurons coding the target location, there is no significant difference in activity between curved and straight saccades. To establish that the distractor-related activity is causally related to saccade curvature, we applied microstimulation to sites in the FEF before saccades to targets presented without distractors. The stimulation was subthreshold for evoking saccades and the temporal structure of the stimulation train resembled the activity recorded for curved saccades. The resulting movements curved toward the location coded by the stimulation site. These results support the idea that saccade curvature results from incomplete suppression of distractor-related activity during target selection.
Collapse
Affiliation(s)
- Robert M McPeek
- The Smith-Kettlewell Eye Research Inst., 2318 Fillmore St., San Francisco, CA 94115, USA.
| |
Collapse
|
29
|
Nyffeler T, Wurtz P, Lüscher HR, Hess CW, Senn W, Pflugshaupt T, von Wartburg R, Lüthi M, Müri RM. Extending lifetime of plastic changes in the human brain. Eur J Neurosci 2006; 24:2961-6. [PMID: 17156218 DOI: 10.1111/j.1460-9568.2006.05154.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of the brain to adjust to changing environments and to recover from damage rests on its remarkable capacity to adapt through plastic changes of underlying neural networks. We show here with an eye movement paradigm that a lifetime of plastic changes can be extended to several hours by repeated applications of theta burst transcranial magnetic stimulation to the frontal eye field of the human cortex. The results suggest that repeated application of the same stimulation protocol consolidates short-lived plasticity into long-lasting changes.
Collapse
Affiliation(s)
- Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Isoda M. Context-dependent stimulation effects on saccade initiation in the presupplementary motor area of the monkey. J Neurophysiol 2005; 93:3016-22. [PMID: 15703225 DOI: 10.1152/jn.01176.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although evidence suggests that the contribution of the presupplementary motor area (pre-SMA) to voluntary motor control is effector-nonselective, the question of how electrical stimulation of the pre-SMA affects eye movements remains unanswered. To address this issue, stimulus effects of the pre-SMA of monkeys on saccade initiation were investigated during performance of a visually guided saccade task with an instructed delay period. This report describes two major findings. First, when stimuli with currents of < or =80 microA were applied before the presentation of a go signal, the reaction time (RT) of an upcoming saccade shortened with comparable effects on ipsi- and contraversive saccades. Second, stimuli that were delivered after the go signal lengthened the RT; this resulted in greater effects on ipsiversive saccades. In addition, the stimulation yielded a mild impairment of saccade accuracy, particularly when the stimulation was delivered after the go signal. By themselves, however, these stimuli did not directly elicit eye movements. Therefore the stimulus effects appeared only in the context of the behavioral task and were dependent on the phase of the task. These findings provide additional support for the hypothesis that the involvement of the pre-SMA in motor control can be linked to either eye or arm motor system dependent on behavioral context.
Collapse
Affiliation(s)
- Masaki Isoda
- Department of Physiology, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
31
|
Sugiuchi Y, Izawa Y, Takahashi M, Na J, Shinoda Y. Physiological Characterization of Synaptic Inputs to Inhibitory Burst Neurons From the Rostral and Caudal Superior Colliculus. J Neurophysiol 2005; 93:697-712. [PMID: 15653784 DOI: 10.1152/jn.00502.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal superior colliculus (SC) contains movement neurons that fire during saccades and the rostral SC contains fixation neurons that fire during visual fixation, suggesting potentially different functions for these 2 regions. To study whether these areas might have different projections, we characterized synaptic inputs from the rostral and caudal SC to inhibitory burst neurons (IBNs) in anesthetized cats. We recorded intracellular potentials from neurons in the IBN region and identified them as IBNs based on their antidromic activation from the contralateral abducens nucleus and short-latency excitation from the contralateral caudal SC and/or single-cell morphology. IBNs received disynaptic inhibition from the ipsilateral caudal SC and disynaptic inhibition from the rostral SC on both sides. Stimulation of the contralateral IBN region evoked monosynaptic inhibition in IBNs, which was enhanced by preconditioning stimulation of the ipsilateral caudal SC. A midline section between the IBN regions eliminated inhibition from the ipsilateral caudal SC, but inhibition from the rostral SC remained unaffected, indicating that the latter inhibition was mediated by inhibitory interneurons other than IBNs. A transverse section of the brain stem rostral to the pause neuron (PN) region eliminated inhibition from the rostral SC, suggesting that this inhibition is mediated by PNs. These results indicate that the most rostral SC inhibits bilateral IBNs, most likely via PNs, and the more caudal SC exerts monosynaptic excitation on contralateral IBNs and antagonistic inhibition on ipsilateral IBNs via contralateral IBNs. The most rostral SC may play roles in maintaining fixation by inhibition of burst neurons and facilitating saccadic initiation by releasing their inhibition.
Collapse
Affiliation(s)
- Y Sugiuchi
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
32
|
Izawa Y, Suzuki H, Shinoda Y. Suppression of visually and memory-guided saccades induced by electrical stimulation of the monkey frontal eye field. I. Suppression of ipsilateral saccades. J Neurophysiol 2004; 92:2248-60. [PMID: 15381744 DOI: 10.1152/jn.01021.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When a saccade occurs to an interesting object, visual fixation holds its image on the fovea and suppresses saccades to other objects. Electrical stimulation of the frontal eye field (FEF) has been reported to elicit saccades, and recently also to suppress saccades. This study was performed to characterize properties of the suppression of visually guided (Vsacs) and memory-guided saccades (Msacs) induced by electrical stimulation of the FEF in trained monkeys. For any given stimulation site, we determined the threshold for electrically evoked saccades (Esacs) at < or =50 microA and then examined suppressive effects of stimulation at the same site on Vsacs and Msacs. FEF stimulation suppressed the initiation of both Vsacs and Msacs during and about 50 ms after stimulation at stimulus intensities lower than those for eliciting Esacs, but did not affect the vector of these saccades. Suppression occurred for ipsiversive but not contraversive saccades, and more strongly for saccades with larger amplitudes and those with initial eye positions shifted more in the saccadic direction. The most effective stimulation timing for suppression was about 50 ms before saccade onset, which suggests that suppression occurred in the efferent pathway for generating Vsacs at the premotor rather than the motoneuronal level, most probably in the superior colliculus and/or the paramedian pontine reticular formation. Suppression sites of ipsilateral saccades were distributed over the classical FEF where saccade-related movement neurons were observed. The results suggest that the FEF may play roles in not only generating contraversive saccades but also maintaining visual fixation by suppressing ipsiversive saccades.
Collapse
Affiliation(s)
- Yoshiko Izawa
- Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | |
Collapse
|