1
|
Situ P, Begley C, Simpson T. The roles of neural adaptation and sensitization in contact lens discomfort. Ocul Surf 2024; 34:132-139. [PMID: 39047906 DOI: 10.1016/j.jtos.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To investigate the roles of neural adaptation and sensitization in contact lens discomfort (CLD). METHODS Cooling stimuli (20 °C) were applied to the cornea in a group comprising 24 symptomatic and 25 asymptomatic contact lens (CL) wearers as well as 15 non-CL wearing controls, using a computerized Belmonte esthesiometer. The adaptation paradigm consisted of 20 repetitive stimuli at threshold, sub- and supra-threshold levels. The sensitization paradigm involved five levels of suprathreshold stimuli ranging between 1x to 2x threshold. Following each stimulus, participants rated the sensation magnitude regarding intensity, coolness and irritation. Measurements were taken with habitual CL (BL_CL), after 2 weeks of no-CL (No_CL) and after restarting habitual CL wear (ReSt_CL). RESULTS The symptomatic subjects exhibited a lower threshold but reported enhanced sensations during the adaptation and sensitization paradigm, compared to the asymptomatic and control groups (all p ≤ 0.021). At the BL_CL and ReSt_CL visits, they showed increased ratings to repeated subthreshold stimuli (p = 0.025) and greater irritation during the sensitization paradigm (p ≤ 0.032). Ratings in asymptomatic and control groups were relatively unchanged over time (p ≥ 0.181). Logistic regression revealed a link between the augmented sensory responses and increased likelihood with CLD. CONCLUSION The maladaptive sensory responses seen in CLD subjects, with reduced adaptation and heightened sensitization to ocular surface stimulation, suggest an imbalance between sensitization and adaptation in CLD. As CLD may represent a reversible subcategory of dry eye, it can serve as a human dry eye model for studying the neurosensory effect of ocular surface stimulation.
Collapse
Affiliation(s)
- Ping Situ
- School of Optometry, Indiana University, Bloomington, IN, USA.
| | - Carolyn Begley
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Trefford Simpson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Pizzano M, Vereertbrugghen A, Cernutto A, Sabbione F, Keitelman IA, Shiromizu CM, Vera Aguilar D, Fuentes F, Giordano MN, Trevani AS, Galletti JG. Transient Receptor Potential Vanilloid-1 Channels Facilitate Axonal Degeneration of Corneal Sensory Nerves in Dry Eye. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:810-827. [PMID: 38325553 DOI: 10.1016/j.ajpath.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.
Collapse
Affiliation(s)
- Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene A Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina M Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Mirta N Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía S Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Velasco E, Zaforas M, Acosta MC, Gallar J, Aguilar J. Ocular surface information seen from the somatosensory thalamus and cortex. J Physiol 2024; 602:1405-1426. [PMID: 38457332 DOI: 10.1113/jp285008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Neuroscience in Physiotherapy (NiP), Independent Research Group, Elche, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Marta Zaforas
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - Juan Aguilar
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
- Grupo de Investigación Multidisciplinar en Cuidados, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
4
|
Lambiase A, Mallone F, Sacchetti M, Segatto M, Colardo M, Di Martino V, Bruscolini A. Patients with neurotrophic keratitis demonstrate alterations in ocular surface expression of transient receptor potential (TRP) channels. Ocul Surf 2023; 30:295-297. [PMID: 37939847 DOI: 10.1016/j.jtos.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Affiliation(s)
| | - Fabiana Mallone
- University of Rome La Sapienza Department of Organs of Sense, Italy
| | - Marta Sacchetti
- University of Rome La Sapienza Department of Organs of Sense, Italy
| | | | | | | | - Alice Bruscolini
- University of Rome La Sapienza Department of Organs of Sense, Italy
| |
Collapse
|
5
|
Benzalkonium chloride, a common ophthalmic preservative, compromises rat corneal cold sensitive nerve activity. Ocul Surf 2022; 26:88-96. [DOI: 10.1016/j.jtos.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022]
|
6
|
Corneal nerves and their role in dry eye pathophysiology. Exp Eye Res 2022; 222:109191. [PMID: 35850173 DOI: 10.1016/j.exer.2022.109191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
As the cornea is densely innervated, its nerves are integral not only to its structure but also to its pathophysiology. Corneal integrity depends on a protective tear film that is maintained by corneal sensation and the reflex arcs that control tearing and blinking. Furthermore, corneal nerves promote epithelial growth and local immunoregulation. Thus, corneal nerves constitute pillars of ocular surface homeostasis. Conversely, the abnormal tear film in dry eye favors corneal epithelial and nerve damage. The ensuing corneal nerve dysfunction contributes to dry eye progression, ocular pain and discomfort, and other neuropathic symptoms. Recent evidence from clinical studies and animal models highlight the significant but often overlooked neural dimension of dry eye pathophysiology. Herein, we review the anatomy and physiology of corneal nerves before exploring their role in the mechanisms of dry eye disease.
Collapse
|
7
|
Sullivan C, Lee J, Bushey W, Demers D, Dinsdale S, Lowe K, Olmeda J, Meng ID. Evidence for a phenotypic switch in corneal afferents after lacrimal gland excision. Exp Eye Res 2022; 218:109005. [PMID: 35240196 PMCID: PMC9993327 DOI: 10.1016/j.exer.2022.109005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/22/2022] [Accepted: 02/19/2022] [Indexed: 01/07/2023]
Abstract
Dry eye is a common cause of ocular pain. The aim of this study was to investigate corneal innervation, ongoing pain, and alterations in corneal afferent phenotypes in a mouse model of severe aqueous tear deficiency. Chronic dry eye was produced by ipsilateral excision of the extra- and intraorbital lacrimal glands in male and female mice. Tearing was measured using a phenol thread and corneal epithelial damage assessed using fluorescein. Changes in corneal ongoing ocular pain was evaluated by measuring palpebral opening ratio. Corneal axons were visualized using Nav1.8-Cre;tdTomato reporter mice. Immunohistochemistry was performed to characterize somal expression of calcitonin gene-related peptide (CGRP), the capsaicin sensitive transient receptor potential vanilloid 1 (TRPV1), and activating transcription factor-3 (ATF-3) in tracer labeled corneal neurons following lacrimal gland excision (LGE). LGE decreased tearing, created severe epithelial damage, and decreased palpebral opening, indicative of chronic ocular irritation, over the 28-day observation period. Corneal axon terminals exhibited an acute decrease in density after LGE, followed by a regenerative process over the course of 28 days that was greater in male animals. Corneal neurons expressing CGRP, TRPV1, and ATF3 increased following injury, corresponding to axonal injury and regeneration processes observed during the same period. CGRP and TRPV1 expression was notably increased in IB4-positive cells following LGE. These results indicate that dry eye-induced damage to corneal afferents can result in alterations in IB4-positive neurons that may enhance neuroprotective mechanisms to create resiliency after chronic injury.
Collapse
Affiliation(s)
- Cara Sullivan
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Jun Lee
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Department of Complete Denture Prosthodontics, School of Dentistry, Nihon University, Tokyo, 101-8310, Japan
| | - William Bushey
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA
| | - Danielle Demers
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Samantha Dinsdale
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Katy Lowe
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Jessica Olmeda
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA
| | - Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, 04005, USA; Graduate Studies in Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA.
| |
Collapse
|
8
|
Réaux-Le-Goazigo A, Beliard B, Delay L, Rahal L, Claron J, Renaudin N, Rivals I, Thibaut M, Nouhoum M, Deffieux T, Tanter M, Pezet S. Ultrasound localization microscopy and functional ultrasound imaging reveal atypical features of the trigeminal ganglion vasculature. Commun Biol 2022; 5:330. [PMID: 35393515 PMCID: PMC8989975 DOI: 10.1038/s42003-022-03273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
The functional imaging within the trigeminal ganglion (TG) is highly challenging due to its small size and deep localization. This study combined a methodological framework able to dive into the rat trigeminal nociceptive system by jointly providing 1) imaging of the TG blood vasculature at microscopic resolution, and 2) the measurement of hemodynamic responses evoked by orofacial stimulations in anesthetized rats. Despite the small number of sensory neurons within the TG, functional ultrasound imaging was able to image and quantify a strong and highly localized hemodynamic response in the ipsilateral TG, evoked not only by mechanical or chemical stimulations of corneal nociceptive fibers, but also by cutaneous mechanical stimulations of the ophthalmic and maxillary orofacial regions using a von Frey hair. The in vivo quantitative imaging of the TG’s vasculature using ultrasound localization microscopy combined with in toto labelling reveals particular features of the vascularization of the area containing the sensory neurons, that are likely the origin of this strong vaso-trigeminal response. This innovative imaging approach opens the path for future studies on the mechanisms underlying changes in trigeminal local blood flow and evoked hemodynamic responses, key mechanisms for the understanding and treatment of debilitating trigeminal pain conditions. Visualisation of rat trigeminal ganglia activation during ophthalmic or maxillary nociceptive stimulations shows atypical tortuous vascularisation and a somatotopic hemodynamic response.
Collapse
Affiliation(s)
| | - Benoit Beliard
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Lauriane Delay
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Line Rahal
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Noémi Renaudin
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, 10 rue Vauquelin, 75005, Paris, France
| | - Miguel Thibaut
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mohamed Nouhoum
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.,Iconeus, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Sophie Pezet
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
9
|
Hamity MV, Kolker SJ, Hegarty DM, Blum C, Langmack L, Aicher SA, Hammond DL. Nicotinamide Riboside Alleviates Corneal and Somatic Hypersensitivity Induced by Paclitaxel in Male Rats. Invest Ophthalmol Vis Sci 2022; 63:38. [PMID: 35084430 PMCID: PMC8802023 DOI: 10.1167/iovs.63.1.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Patients receiving chemotherapy may experience ocular discomfort and dry eye-like symptoms; the latter may be neuropathic in nature. This study assessed corneal and somatic hypersensitivity in male rats treated with paclitaxel and whether it was relieved by nicotinamide riboside (NR). Methods Corneal sensitivity to tactile and chemical stimulation, basal tear production, and sensitivity of the hindpaw to tactile and cool stimuli were assessed before and after paclitaxel in the absence and presence of sustained treatment with 500 mg/kg per os NR. Corneal nerve density and hindpaw intraepidermal nerve fiber (IENF) density were also examined. Results Paclitaxel-treated rats developed corneal hypersensitivity to tactile stimuli, enhanced sensitivity to capsaicin but not hyperosmolar saline, and increased basal tear production. Corneal nerve density visualized with anti-β-tubulin or calcitonin gene-related peptide (CGRP) was unaffected. Paclitaxel induced tactile and cool hypersensitivity of the hindpaw and a loss of nonpeptidergic hindpaw IENFs visualized with anti-protein gene product (PGP) 9.5 and CGRP. NR reversed tactile hypersensitivity of the cornea without suppressing tear production or chemosensitivity; it did not alter corneal afferent density. NR also reversed tactile and cool hypersensitivity of the hindpaw without reversing the loss of hindpaw IENFs. Conclusions These findings suggest that paclitaxel may be a good translational model for chemotherapy-induced ocular discomfort and that NR may be useful for its relief. The ability of NR to relieve somatic tactile hypersensitivity independent of changes in sensory nerve innervation suggests that reversal of terminal arbor degeneration is not critical to the actions of NR.
Collapse
Affiliation(s)
- Marta V. Hamity
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Sandra J. Kolker
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Deborah M. Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Christopher Blum
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Lucy Langmack
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
| | - Sue A. Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Donna L. Hammond
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
10
|
Puja G, Sonkodi B, Bardoni R. Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain. Front Pharmacol 2021; 12:764396. [PMID: 34916942 PMCID: PMC8669969 DOI: 10.3389/fphar.2021.764396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound morphological and functional changes, leading to peripheral and central pain sensitization. Several studies using animal models of inflammatory and neuropathic ocular pain have provided insight about the mechanisms involved in these maladaptive changes. Recently, the advent of new techniques such as optogenetics or genetic neuronal labelling has allowed the investigation of identified circuits involved in nociception, both at the spinal and trigeminal level. In this review, we will describe some of the mechanisms that contribute to the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent advances in the discovery of molecular and cellular mechanisms contributing to peripheral and central pain sensitization of the trigeminal pathways will be also presented.
Collapse
Affiliation(s)
- Giulia Puja
- Department of Life Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| | - Balazs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| |
Collapse
|
11
|
Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021; 12:773871. [PMID: 34899333 PMCID: PMC8652213 DOI: 10.3389/fphar.2021.773871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.
Collapse
Affiliation(s)
- Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
12
|
Capsazepine decreases corneal pain syndrome in severe dry eye disease. J Neuroinflammation 2021; 18:111. [PMID: 33975636 PMCID: PMC8114509 DOI: 10.1186/s12974-021-02162-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED. Methods Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests. Results First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED. Conclusion These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.
Collapse
|
13
|
Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, Réaux-Le Goazigo A. Morphological and Functional Changes of Corneal Nerves and Their Contribution to Peripheral and Central Sensory Abnormalities. Front Cell Neurosci 2020; 14:610342. [PMID: 33362474 PMCID: PMC7758484 DOI: 10.3389/fncel.2020.610342] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
The cornea is the most densely innervated and sensitive tissue in the body. The cornea is exclusively innervated by C- and A-delta fibers, including mechano-nociceptors that are triggered by noxious mechanical stimulation, polymodal nociceptors that are excited by mechanical, chemical, and thermal stimuli, and cold thermoreceptors that are activated by cooling. Noxious stimulations activate corneal nociceptors whose cell bodies are located in the trigeminal ganglion (TG) and project central axons to the trigeminal brainstem sensory complex. Ocular pain, in particular, that driven by corneal nerves, is considered to be a core symptom of inflammatory and traumatic disorders of the ocular surface. Ocular surface injury affecting corneal nerves and leading to inflammatory responses can occur under multiple pathological conditions, such as chemical burn, persistent dry eye, and corneal neuropathic pain as well as after some ophthalmological surgical interventions such as photorefractive surgery. This review depicts the morphological and functional changes of corneal nerve terminals following corneal damage and dry eye disease (DED), both ocular surface conditions leading to sensory abnormalities. In addition, the recent fundamental and clinical findings of the importance of peripheral and central neuroimmune interactions in the development of corneal hypersensitivity are discussed. Next, the cellular and molecular changes of corneal neurons in the TG and central structures that are driven by corneal nerve abnormalities are presented. A better understanding of the corneal nerve abnormalities as well as neuroimmune interactions may contribute to the identification of a novel therapeutic targets for alleviating corneal pain.
Collapse
Affiliation(s)
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, Paris, France.,CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | | | | |
Collapse
|
14
|
Fakih D, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. TRPM8: A Therapeutic Target for Neuroinflammatory Symptoms Induced by Severe Dry Eye Disease. Int J Mol Sci 2020; 21:E8756. [PMID: 33228217 PMCID: PMC7699525 DOI: 10.3390/ijms21228756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.
Collapse
Affiliation(s)
- Darine Fakih
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- R&D Department, Laboratoires Théa, 12 rue Louis Biérot, F-63000 Clermont-Ferrand, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, F-75012 Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| |
Collapse
|
15
|
Lacrimal gland excision in male and female mice causes ocular pain and anxiety-like behaviors. Sci Rep 2020; 10:17225. [PMID: 33057056 PMCID: PMC7560880 DOI: 10.1038/s41598-020-73945-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Lacrimal gland excision (LGE) induced dry eye produces more severe corneal damage in female mice, yet signs of LGE-induced ocular pain and anxiety in male and female mice have not been characterized. Excision of either the extraorbital gland (single LGE), or both the extraorbital and intraorbital glands (double LGE) was performed in male and female C57BL/6J mice to induce moderate and severe dry eye. Ongoing pain was assessed by quantifying palpebral opening and evoked nociceptive responses after corneal application of capsaicin and menthol. The open-field and plus maze were used to assess anxiety. Single LGE caused a reduction in palpebral opening and an increase in capsaicin and menthol-evoked responses only in female mice. Furthermore, single LGE produced signs of increased anxiety in female but not male mice. Overall, female mice appear more susceptible to signs of ocular pain, irritation, and anxiety in response to aqueous tear deficiency.
Collapse
|