1
|
Guevara CA, Alloo K, Gupta S, Thomas R, del Valle P, Magee AR, Benson DL, Huntley GW. Parkinson's LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress. Front Behav Neurosci 2024; 18:1445184. [PMID: 39328984 PMCID: PMC11425082 DOI: 10.3389/fnbeh.2024.1445184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Anxiety is a psychiatric non-motor symptom of Parkinson's that can appear in the prodromal period, prior to significant loss of midbrain dopamine neurons and motor symptoms. Parkinson's-related anxiety affects females more than males, despite the greater prevalence of Parkinson's in males. How stress, anxiety and Parkinson's are related and the basis for a sex-specific impact of stress in Parkinson's are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 (Lrrk2 G2019S) and Lrrk2 WT control mice. In humans, LRRK2 G2019S significantly elevates the risk of late-onset Parkinson's. To assess within-sex differences between Lrrk2 G2019S and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby Lrrk2 G2019S and Lrrk2 WT control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male Lrrk2 G2019S mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on Lrrk2 G2019S mice while significantly increasing latency to feed in Lrrk2 WT control mice. Female Lrrk2 G2019S mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female Lrrk2 G2019S mice was generally lower compared to stressed Lrrk2 WT mice, except for the nucleus accumbens of male Lrrk2 G2019S mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the Lrrk2 G2019S mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in some, but not all stress-related brain regions.
Collapse
Affiliation(s)
- Christopher A. Guevara
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kumayl Alloo
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Swati Gupta
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
| | - Romario Thomas
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
| | - Pamela del Valle
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George W. Huntley
- Nash Family Department of Neuroscience, New York, NY, United States
- Friedman Brain Institute, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Wang S, Baumert R, Séjourné G, Bindu DS, Dimond K, Sakers K, Vazquez L, Moore J, Tan CX, Takano T, Rodriguez MP, Soderling SH, La Spada AR, Eroglu C. Astrocytic LRRK2 Controls Synaptic Connectivity via Regulation of ERM Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes, a major glial cell type of the brain, regulate synapse numbers and function. However, whether astrocyte dysfunction can cause synaptic pathologies in neurological disorders such as Parkinson's Disease (PD) is unknown. Here, we investigated the impact of the most common PD-linked mutation in the leucine-rich repeat kinase 2 (LRRK2) gene (G2019S) on the synaptic functions of astrocytes. We found that both in human and mouse cortex, the LRRK2 G2019S mutation causes astrocyte morphology deficits and enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), which are important components of perisynaptic astrocyte processes. Reducing ERM phosphorylation in LRRK2 G2019S mouse astrocytes restored astrocyte morphology and corrected excitatory synaptic deficits. Using an in vivo BioID proteomic approach, we found Ezrin, the most abundant astrocytic ERM protein, interacts with the Autophagy-Related 7 (Atg7), a master regulator of catabolic processes. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in the LRRK2 G2019S astrocytes. Importantly, Atg7 function is required to maintain proper astrocyte morphology. These studies reveal an astrocytic molecular mechanism that could serve as a therapeutic target in PD.
Collapse
Affiliation(s)
- Shiyi Wang
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Ryan Baumert
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Gabrielle Séjourné
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Dhanesh Sivadasan Bindu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neonatology, Children’s Mercy Hospital, Kansas City, MO, USA
| | - Kylie Dimond
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kristina Sakers
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Leslie Vazquez
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Jessica Moore
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Tetsuya Takano
- Division of Molecular Systems for Brain Function, Kyushu University Institute for Advanced Study, Medical Institute of Bioregulation, Japan
- Japan Science and Technology Agency, PRESTO, Japan
| | - Maria Pia Rodriguez
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Scott H. Soderling
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Albert R. La Spada
- The Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, CA, USA
- UCI Center for Neurotherapeutics, University of California, Irvine, CA, USA
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Guevara CA, Alloo K, Gupta S, Thomas R, Del Valle P, Magee AR, Benson DL, Huntley GW. Parkinson's LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597647. [PMID: 38895277 PMCID: PMC11185622 DOI: 10.1101/2024.06.05.597647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Anxiety is a psychiatric non-motor symptom of Parkinson's that can appear in the prodromal period, prior to significant loss of brainstem dopamine neurons and motor symptoms. Parkinson's-related anxiety affects females more than males, despite the greater prevalence of Parkinson's in males. How stress, anxiety and Parkinson's are related and the basis for a sex-specific impact of stress in Parkinson's are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 ( Lrrk2 G2019S ) and Lrrk2 WT control mice. In humans, LRRK2 G2019S significantly elevates the risk of late-onset Parkinson's. To assess within-sex differences between Lrrk2 G2019S and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby Lrrk2 G2019S and Lrrk2 WT control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male Lrrk2 G2019S mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on Lrrk2 G2019S mice while significantly increasing latency to feed in Lrrk2 WT control mice. Female Lrrk2 G2019S mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female Lrrk2 G2019S mice was generally lower compared to stressed Lrrk2 WT mice, except for the nucleus accumbens of male Lrrk2 G2019S mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the Lrrk2 G2019S mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in stress-related brain regions.
Collapse
|
4
|
Valderhaug VD, Ramstad OH, van de Wijdeven R, Heiney K, Nichele S, Sandvig A, Sandvig I. Micro-and mesoscale aspects of neurodegeneration in engineered human neural networks carrying the LRRK2 G2019S mutation. Front Cell Neurosci 2024; 18:1366098. [PMID: 38644975 PMCID: PMC11026646 DOI: 10.3389/fncel.2024.1366098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been widely linked to Parkinson's disease, where the G2019S variant has been shown to contribute uniquely to both familial and sporadic forms of the disease. LRRK2-related mutations have been extensively studied, yet the wide variety of cellular and network events related to these mutations remain poorly understood. The advancement and availability of tools for neural engineering now enable modeling of selected pathological aspects of neurodegenerative disease in human neural networks in vitro. Our study revealed distinct pathology associated dynamics in engineered human cortical neural networks carrying the LRRK2 G2019S mutation compared to healthy isogenic control neural networks. The neurons carrying the LRRK2 G2019S mutation self-organized into networks with aberrant morphology and mitochondrial dynamics, affecting emerging structure-function relationships both at the micro-and mesoscale. Taken together, the findings of our study points toward an overall heightened metabolic demand in networks carrying the LRRK2 G2019S mutation, as well as a resilience to change in response to perturbation, compared to healthy isogenic controls.
Collapse
Affiliation(s)
- Vibeke Devold Valderhaug
- Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rosanne van de Wijdeven
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Kristine Heiney
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, NTNU, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science and Communication, Østfold University College, Halden, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurology and Clinical Neurophysiology, St Olav’s Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Del Valle P, Baxter MG, Huntley GW, Benson DL. Development and cadherin-mediated control of prefrontal corticostriatal projections in mice. iScience 2023; 26:108002. [PMID: 37854688 PMCID: PMC10579443 DOI: 10.1016/j.isci.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Action-outcome associations depend on prefrontal cortex (PFC) projections to the dorsal striatum. To assess how these projections form, we measured PFC axon patterning, synapse formation, and functional maturation in the postnatally developing mouse striatum. Using Hotspot analysis, we show that PFC axons form an adult-like pattern of clustered terminations in the first postnatal week that remains largely stable thereafter. PFC-striatal synaptic strength is adult-like by P21, while excitatory synapse density increases until adulthood. We then tested how the targeted deletion of a candidate adhesion/guidance protein, Cadherin-8 (Cdh8), from corticostriatal neurons regulates pathway development. Mutant mice showed diminished PFC axon targeting and reduced spontaneous glutamatergic synaptic activity in the dorsal striatum. They also exhibited impaired behavioral performance in action-outcome learning. The data show that PFC-striatal axons form striatal territories through an early, directed growth model and they highlight essential contributions of Cdh8 to the anatomical and functional features critical for the formation of action-outcome associations.
Collapse
Affiliation(s)
- Roxana E. Mesías
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yosif Zaki
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren G. Friedman
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ayan Hussein
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen Therrien
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Gupta S, Guevara CA, Tielemans A, Huntley GW, Benson DL. Parkinson's-linked LRRK2-G2019S derails AMPAR trafficking, mobility and composition in striatum with cell-type and subunit specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562231. [PMID: 37905106 PMCID: PMC10614818 DOI: 10.1101/2023.10.13.562231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Parkinson's (PD) is a multi-factorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal based cognitive function are common, appear early and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of AMPA-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2 G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs to favor incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D 1 R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD. SIGNIFICANCE STATEMENT Mutations in LRRK2 are common genetic risks for PD. Lrrk2 G2019S mice fail to exhibit long-term potentiation at corticostriatal synapses and show significant deficits in frontal-striatal based cognitive tasks. While LRRK2 has been implicated generally in protein trafficking, whether G2019S derails AMPAR trafficking at synapses on striatal neurons (SPNs) is unknown. We show that surface GluA1-AMPARs fail to internalize and instead accumulate excessively within and outside synapses. This effect is selective to D 1 R SPNs and negatively impacts synapse strengthening as GluA1-AMPARs fail to increase at the surface in response to potentiation and show limited surface mobility. Thus, LRRK2-G2019S narrows the effective range of plasticity mechanisms, supporting the idea that cognitive symptoms reflect an imbalance in AMPAR trafficking mechanisms within cell-type specific projections.
Collapse
|
7
|
Domenicale C, Magnabosco S, Morari M. Modeling Parkinson's disease in LRRK2 rodents. Neuronal Signal 2023; 7:NS20220040. [PMID: 37601008 PMCID: PMC10432857 DOI: 10.1042/ns20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD). Sporadic PD and LRRK2 PD share main clinical and neuropathological features, namely hypokinesia, degeneration of nigro-striatal dopamine neurons and α-synuclein aggregates in the form of Lewy bodies. Animals harboring the most common LRRK2 mutations, i.e. p.G2019S and p.R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathogenic mechanisms. Disappointingly, however, LRRK2 rodents did not consistently phenocopy hypokinesia and nigro-striatal degeneration, or showed Lewy body-like aggregates. Instead, LRRK2 rodents manifested non-motor signs and dysregulated transmission at dopaminergic and non-dopaminergic synapses that are reminiscent of behavioral and functional network changes observed in the prodromal phase of the disease. LRRK2 rodents also manifested greater susceptibility to different parkinsonian toxins or stressors when subjected to dual-hit or multiple-hit protocols, confirming LRRK2 mutations as genetic risk factors. In conclusion, LRRK2 rodents represent a unique tool to identify the molecular mechanisms through which LRRK2 modulates the course and clinical presentations of PD and to study the interplay between genetic, intrinsic and environmental protective/risk factors in PD pathogenesis.
Collapse
Affiliation(s)
- Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Magnabosco
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Valle PD, Baxter MG, Huntley GW, Benson DL. Development of prefrontal corticostriatal connectivity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532475. [PMID: 36993639 PMCID: PMC10054964 DOI: 10.1101/2023.03.14.532475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rational decision making is grounded in learning to associate actions with outcomes, a process that depends on projections from prefrontal cortex to dorsomedial striatum. Symptoms associated with a variety of human pathological conditions ranging from schizophrenia and autism to Huntington's and Parkinson's disease point toward functional deficits in this projection, but its development is not well understood, making it difficult to investigate how perturbations in development of this circuitry could contribute to pathophysiology. We applied a novel strategy based on Hotspot Analysis to assess the developmental progression of anatomical positioning of prefrontal cortex to striatal projections. Corticostriatal axonal territories established at P7 expand in concert with striatal growth but remain largely unchanged in positioning through adulthood, indicating they are generated by directed, targeted growth and not modified extensively by postnatal experience. Consistent with these findings, corticostriatal synaptogenesis increased steadily from P7 to P56, with no evidence for widescale pruning. As corticostriatal synapse density increased over late postnatal ages, the strength of evoked PFC input onto dorsomedial striatal projection neurons also increased, but spontaneous glutamatergic synaptic activity was stable. Based on its pattern of expression, we asked whether the adhesion protein, Cdh8, influenced this progression. In mice lacking Cdh8 in PFC corticostriatal projection neurons, axon terminal fields in dorsal striatum shifted ventrally. Corticostriatal synaptogenesis was unimpeded, but spontaneous EPSC frequency declined and mice failed to learn to associate an action with an outcome. Collectively these findings show that corticostriatal axons grow to their target zone and are restrained from an early age, do not undergo postnatal synapse pruning as the most dominant models predict, and that a relatively modest shift in terminal arbor positioning and synapse function has an outsized, negative impact on corticostriatal-dependent behavior.
Collapse
|
9
|
Hussein A, Guevara CA, Valle PD, Gupta S, Benson DL, Huntley GW. Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. Neuroscientist 2023; 29:97-116. [PMID: 33966533 PMCID: PMC9338765 DOI: 10.1177/10738584211011979] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD. Moreover, while it has long been recognized that inflammation is a prominent component of PD, recent studies demonstrate that brain-immune signaling crosstalk has significant modulatory effects on brain cell and synaptic function in the context of psychiatric symptoms. This review provides a focused update on such progress in understanding the neurobiology of PD-related non-motor psychiatric and cognitive symptoms.
Collapse
Affiliation(s)
- Ayan Hussein
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swati Gupta
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Iron-induced cytotoxicity mediated by endolysosomal TRPML1 channels is reverted by TFEB. Cell Death Dis 2022; 13:1047. [PMID: 36522443 PMCID: PMC9755144 DOI: 10.1038/s41419-022-05504-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Increased brain iron content has been consistently reported in sporadic Parkinson's disease (PD) patients, and an increase in cytosolic free iron is known to cause oxidative stress and cell death. However, whether iron also accumulates in susceptible brain areas in humans or in mouse models of familial PD remains unknown. In addition, whilst the lysosome functions as a critical intracellular iron storage organelle, little is known about the mechanisms underlying lysosomal iron release and how this process is influenced by lysosome biogenesis and/or lysosomal exocytosis. Here, we report an increase in brain iron content also in PD patients due to the common G2019S-LRRK2 mutation as compared to healthy age-matched controls, whilst differences in iron content are not observed in G2019S-LRRK2 knockin as compared to control mice. Chemically triggering iron overload in cultured cells causes cytotoxicity via the endolysosomal release of iron which is mediated by TRPML1. TFEB expression reverts the iron overload-associated cytotoxicity by causing lysosomal exocytosis, which is dependent on a TRPML1-mediated increase in cytosolic calcium levels. Therefore, approaches aimed at increasing TFEB levels, or pharmacological TRPML1 activation in conjunction with iron chelation may prove beneficial against cell death associated with iron overload conditions such as those associated with PD.
Collapse
|
11
|
Neuronal Firing and Glutamatergic Synapses in the Substantia Nigra Pars Reticulata of LRRK2-G2019S Mice. Biomolecules 2022; 12:biom12111635. [DOI: 10.3390/biom12111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are frequent causes of familial Parkinson’s Disease (PD), an increasingly prevalent neurodegenerative disease that affects basal ganglia circuitry. The cellular effects of the G2019S mutation in the LRRK2 gene, the most common pathological mutation, have not been thoroughly investigated. In this study we used middle-aged mice carrying the LRRK2-G2019S mutation (G2019S mice) to identify potential alterations in the neurophysiological properties and characteristics of glutamatergic synaptic transmission in basal ganglia output neurons, i.e., substantia nigra pars reticulata (SNr) GABAergic neurons. We found that the intrinsic membrane properties and action potential properties were unaltered in G2019S mice compared to wild-type (WT) mice. The spontaneous firing frequency was similar, but we observed an increased regularity in the firing of SNr neurons recorded from G2019S mice. We examined the short-term plasticity of glutamatergic synaptic transmission, and we found an increased paired-pulse depression in G2019S mice compared to WT mice, indicating an increased probability of glutamate release in SNr neurons from G2019S mice. We measured synaptic transmission mediated by NMDA receptors and we found that the kinetics of synaptic responses mediated by these receptors were unaltered, as well as the contribution of the GluN2B subunit to these responses, in SNr neurons of G2019S mice compared to WT mice. These results demonstrate an overall maintenance of basic neurophysiological and synaptic characteristics, and subtle changes in the firing pattern and in glutamatergic synaptic transmission in basal ganglia output neurons that precede neurodegeneration of dopaminergic neurons in the LRRK2-G2019S mouse model of late-onset PD.
Collapse
|
12
|
Hussein A, Tielemans A, Baxter MG, Benson DL, Huntley GW. Cognitive deficits and altered cholinergic innervation in young adult male mice carrying a Parkinson's disease Lrrk2 G2019S knockin mutation. Exp Neurol 2022; 355:114145. [PMID: 35732218 PMCID: PMC9338764 DOI: 10.1016/j.expneurol.2022.114145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023]
Abstract
Impaired executive function is a common and debilitating non-motor symptom of idiopathic and hereditary Parkinson's disease (PD), but there is little understanding of the underlying pathophysiological mechanisms and circuits. The G2019S mutation in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) greatly increases risk for late-onset PD, and non-manifesting LRRK2G2019S carriers can also exhibit early and significant cognitive impairment. Here, we subjected young adult male mice carrying a Lrrk2G2019S knockin mutation to touchscreen-based operant tasks that measure attention, goal-directed learning and cognitive flexibility, all of which rely on frontal-striatal connectivity and are strongly modulated by cholinergic innervation. In a visuospatial attention task, mutant mice exhibited significantly more omissions and longer response latencies than controls that could not be attributed to deficits in motivation, visual sensory perception per se or locomotion, thereby suggesting impairments in divided attention and/or action-selection as well as generally slower information processing speed. Pretreating mice with the acetylcholinesterase inhibitor donepezil normalized both higher omission rates and longer response latencies in the mutants, but did not affect any performance metric in controls. Strikingly, cholinergic fiber density in cortical areas PL/IL and DMS (dorsomedial striatum) was significantly sparser in mutants than in controls, while further behavioral interrogation of the mutants revealed significant impairments in action-outcome associations but preserved cognitive flexibility. These data suggest that the Lrrk2G2019S mutation negatively impacts cholinergic innervation anatomically and functionally by young adulthood, impairing corticostriatal network function in ways that may contribute to early PD-associated executive function deficits.
Collapse
|
13
|
LRRK2 at Striatal Synapses: Cell-Type Specificity and Mechanistic Insights. Cells 2022; 11:cells11010169. [PMID: 35011731 PMCID: PMC8750662 DOI: 10.3390/cells11010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease with a similar clinical presentation and progression to idiopathic Parkinson’s disease, and common variation is linked to disease risk. Recapitulation of the genotype in rodent models causes abnormal dopamine release and increases the susceptibility of dopaminergic neurons to insults, making LRRK2 a valuable model for understanding the pathobiology of Parkinson’s disease. It is also a promising druggable target with targeted therapies currently in development. LRRK2 mRNA and protein expression in the brain is highly variable across regions and cellular identities. A growing body of work has demonstrated that pathogenic LRRK2 mutations disrupt striatal synapses before the onset of overt neurodegeneration. Several substrates and interactors of LRRK2 have been identified to potentially mediate these pre-neurodegenerative changes in a cell-type-specific manner. This review discusses the effects of pathogenic LRRK2 mutations in striatal neurons, including cell-type-specific and pathway-specific alterations. It also highlights several LRRK2 effectors that could mediate the alterations to striatal function, including Rabs and protein kinase A. The lessons learned from improving our understanding of the pathogenic effects of LRRK2 mutations in striatal neurons will be applicable to both dissecting the cell-type specificity of LRRK2 function in the transcriptionally diverse subtypes of dopaminergic neurons and also increasing our understanding of basal ganglia development and biology. Finally, it will inform the development of therapeutics for Parkinson’s disease.
Collapse
|
14
|
Pischedda F, Piccoli G. LRRK2 at the pre-synaptic site: A 16-years perspective. J Neurochem 2021; 157:297-311. [PMID: 33206398 DOI: 10.1111/jnc.15240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder and is clinically characterized by bradykinesia, rigidity, and resting tremor. Missense mutations in the leucine-rich repeat protein kinase-2 gene (LRRK2) are a recognized cause of inherited Parkinson's disease. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence indicates that LRRK2 orchestrates diverse aspects of membrane trafficking, such as membrane fusion and vesicle formation and transport along actin and tubulin tracks. In the present review, we focus on the special relation between LRRK2 and synaptic vesicles. LRRK2 binds and phosphorylates key actors within the synaptic vesicle cycle. Accordingly, alterations in dopamine and glutamate transmission have been described upon LRRK2 manipulations. However, the different modeling strategies and phenotypes observed require a critical approach to decipher the outcome of LRRK2 at the pre-synaptic site.
Collapse
Affiliation(s)
- Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| |
Collapse
|
15
|
Chen C, Soto G, Dumrongprechachan V, Bannon N, Kang S, Kozorovitskiy Y, Parisiadou L. Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations. eLife 2020; 9:58997. [PMID: 33006315 PMCID: PMC7609054 DOI: 10.7554/elife.58997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson’s disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose toward disease. Here, R1441C and G2019S knock-in mice enabled thorough evaluation of dendritic spines and synapses on pathway-identified SPNs. Biochemical synaptic preparations and super-resolution imaging revealed increased levels and altered organization of glutamatergic AMPA receptors in LRRK2 mutants. Relatedly, decreased frequency of miniature excitatory post-synaptic currents accompanied changes in dendritic spine nano-architecture, and single-synapse currents, evaluated using two-photon glutamate uncaging. Overall, LRRK2 mutations reshaped synaptic structure and function, an effect exaggerated in R1441C dSPNs. These data open the possibility of new neuroprotective therapies aimed at SPN synapse function, prior to disease onset. Parkinson’s disease is caused by progressive damage to regions of the brain that regulate movement. This leads to a loss in nerve cells that produce a signaling molecule called dopamine, and causes patients to experience shakiness, slow movement and stiffness. When dopamine is released, it travels to a part of the brain known as the striatum, where it is received by cells called spiny projection neurons (SPNs), which are rich in a protein called LRRK2. Mutations in this protein have been shown to cause the motor impairments associated with Parkinson’s disease. SPNs send signals to other regions of the brain either via a ‘direct’ route, which promotes movement, or an ‘indirect’ route, which suppresses movement. Previous studies suggest that mutations in the gene for LRRK2 influence the activity of these pathways even before dopamine signaling has been lost. Yet, it remained unclear how different mutations independently affected each pathway. To investigate this further, Chen et al. studied two of the mutations most commonly found in the human gene for LRRK2, known as G2019S and R1441C. This involved introducing one of these mutations in to the genetic code of mice, and using fluorescent proteins to mark single SPNs in either the direct or indirect pathway. The experiments showed that both mutations disrupted the connections between SPNs in the direct and indirect pathway, which altered the activity of nerve cells in the striatum. Chen et al. found that individual connections were more strongly affected by the R1441C mutation. Further experiments showed that this was caused by the re-organization of a receptor protein in the nerve cells of the direct pathway, which increased how SPNs responded to inputs from other nerve cells. These findings suggest that LRRK2 mutations disrupt neural activity in the striatum before dopamine levels become depleted. This discovery could help researchers identify new therapies for treating the early stages of Parkinson’s disease before the symptoms of dopamine loss arise.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Giulia Soto
- Department of Neurobiology, Northwestern University, Chicago, United States
| | | | - Nicholas Bannon
- Department of Neurobiology, Northwestern University, Chicago, United States
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | | | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
16
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|