1
|
Kitchen NM, Dexheimer B, Yuk J, Maenza C, Ruelos PR, Kim T, Sainburg RL. The complementary dominance hypothesis: a model for remediating the 'good' hand in stroke survivors. J Physiol 2025; 603:663-683. [PMID: 38733166 PMCID: PMC11610521 DOI: 10.1113/jp285561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The complementary dominance hypothesis is a novel model of motor lateralization substantiated by decades of research examining interlimb differences in the control of upper extremity movements in neurotypical adults and hemisphere-specific motor deficits in stroke survivors. In contrast to earlier ideas that attribute handedness to the specialization of one hemisphere, our model proposes complementary motor control specializations in each hemisphere. The dominant hemisphere mediates optimal control of limb dynamics as required for smooth and efficient movements, whereas the non-dominant hemisphere mediates impedance control, important for countering unexpected mechanical conditions and achieving steady-state limb positions. Importantly, this model proposes that each hemisphere contributes its specialization to both arms (though with greater influence from either arm's contralateral hemisphere) and thus predicts that lesions to one hemisphere should produce hemisphere-specific motor deficits in not only the contralesional arm, but also the ipsilesional arm of stroke survivors - a powerful prediction now supported by a growing body of evidence. Such ipsilesional arm motor deficits vary with contralesional arm impairment, and thus individuals with little to no functional use of the contralesional arm experience both the greatest impairments in the ipsilesional arm, as well as the greatest reliance on it to serve as the main or sole manipulator for activities of daily living. Accordingly, we have proposed and tested a novel intervention that reduces hemisphere-specific ipsilesional arm deficits and thereby improves functional independence in stroke survivors with severe contralesional impairment.
Collapse
Affiliation(s)
- Nick M. Kitchen
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Brooke Dexheimer
- Department of Occupational TherapyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jisung Yuk
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Candice Maenza
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Paul R. Ruelos
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Taewon Kim
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Physical Medicine and Rehabilitation, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Robert L. Sainburg
- Department of Neurology, College of MedicinePennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of KinesiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Huck Institute of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Jayasinghe SAL. The role of cognitive load on interlimb differences in motor coordination in older adults. J Neurophysiol 2025; 133:60-68. [PMID: 39625449 DOI: 10.1152/jn.00167.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Although the dominant hand has been shown to have performance advantages over the nondominant hand, these interlimb differences have found to be dependent on task and biomechanical demands. The dynamic dominance hypothesis suggests that the left hemisphere is specialized for the control of intersegmental dynamics while the nondominant right hemisphere is specialized for postural control, in right-handers. In a real-world scenario, however, cognitive challenges might be expected to modulate these specialized behaviors. Therefore, we hypothesized that with increased cognitive load, lateralized motor control processes would become even more asymmetrical. We recruited 16 right-handed older adults (11 females, 5 males; 65.88 yr ± 1.99 SE) to perform 170 trials of a unilateral reaching task with each of their hands on the Kinereach system. In each trial, participants rapidly memorized pictorial instructions before identifying and reaching for the correct object on a screen. The complexity of the task increased over the course of the experiment. Our results demonstrated higher reaction times in the right than in the left hand (P = 0.0004). Movements became increasingly curved and erroneous with cognitive load, but interlimb differences in movement quality were absent. We found higher joint cocontraction in the right than in the left arm (P < 0.05), but these differences were unaffected by cognitive load. Hence, with the addition of a cognitive load, we observed asymmetries in reaction time but not in joint coordination or movement quality. This highlights the role of cognitive load in modulating limb/hemisphere specializations for control processes.NEW & NOTEWORTHY Although we know that motor control processes are lateralized to each hemisphere, the role of cognitive load on these specialized processes is undefined. We designed a unique task that incorporates a cognitive challenge to a typical reaching movement to examine how cognitive load affects limb asymmetries in motor control. In a group of typical older adults, we demonstrated interlimb asymmetries in reaction time but not in joint coordination or movement quality.
Collapse
Affiliation(s)
- S A L Jayasinghe
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
3
|
Nichols TR. Neuromechanical Circuits of the Spinal Motor Apparatus. Compr Physiol 2024; 14:5789-5838. [PMID: 39699088 DOI: 10.1002/cphy.c240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances. These pathways include both monosynaptic and polysynaptic components. Autogenic, monosynaptic pathways serve to control the spring-like properties of muscles preserving the nonlinear relationship between stiffness and force. Intermuscular monosynaptic pathways compensate for inertial disparities between the inertial properties of limb segments and help to control inertial coupling between joints and axes of rotation. Reciprocal inhibition controls joint stiffness in conjunction with feedforward cocontraction commands. Excitatory force feedback becomes operational during locomotion and increases muscular stiffness to accommodate the higher inertial loads. Inhibitory force feedback is widely distributed among muscles. It is integrated with excitatory pathways from muscle spindles and Golgi tendon organs to determine limb stiffness and interjoint coordination during interactions with the environment. The intermuscular distribution of force feedback is variable and serves to modulate limb stiffness to meet the physical demands of different motor tasks. © 2024 American Physiological Society. Compr Physiol 14:5789-5838, 2024.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Smith CR, Baird JF, Buitendorp J, Horton H, Watkins M, Stewart JC. Implicit motor sequence learning using three-dimensional reaching movements with the non-dominant left arm. Exp Brain Res 2024; 242:2715-2726. [PMID: 39377917 PMCID: PMC11569025 DOI: 10.1007/s00221-024-06934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Interlimb differences in reach control could impact the learning of a motor sequence that requires whole-arm movements. The purpose of this study was to investigate the learning of an implicit, 3-dimensional whole-arm sequence task with the non-dominant left arm compared to the dominant right arm. Thirty-one right-hand dominant adults completed two consecutive days of practice of a motor sequence task presented in a virtual environment with either their dominant right or non-dominant left arm. Targets were presented one-at-a-time alternating between Random and Repeated sequences. Task performance was indicated by the time to complete the sequence (response time), and kinematic measures (hand path distance, peak velocity) were used to examine how movements changed over time. While the Left Arm group was slower than the Right Arm group at baseline, both groups significantly improved response time with practice with the Left Arm group demonstrating greater gains. The Left Arm group improved performance by decreasing hand path distance (straighter path to targets) while the Right Arm group improved performance through a smaller decrease in hand path distance combined with increasing peak velocity. Gains made during practice on Day 1 were retained on Day 2 for both groups. Overall, individuals reaching with the non-dominant left arm learned the whole-arm motor sequence task but did so through a different strategy than individuals reaching with the dominant right arm. The strategy adopted for the learning of movement sequences that require whole-arm movements may be impacted by differences in reach control between the nondominant and dominant arms.
Collapse
Affiliation(s)
- Charles R Smith
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jessica F Baird
- Johns Hopkins Trial Innovation Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joelle Buitendorp
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hannah Horton
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Macie Watkins
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jill C Stewart
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
5
|
Jayasinghe SAL, Sainburg RL, Sarlegna FR. Role of proprioception in corrective visually-guided movements: larger movement errors in both arms of a deafferented individual compared to control participants. Exp Brain Res 2024; 242:2329-2340. [PMID: 39110161 DOI: 10.1007/s00221-024-06901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
Proprioception plays an important role in both feedforward and feedback processes underlying movement control. This has been shown with individuals who suffered a profound proprioceptive loss and use vision to partially compensate for the sensory loss. The purpose of this study was to specifically examine the role of proprioception in feedback motor responses to visual perturbations by examining voluntary arm movements in an individual with a rare case of selective peripheral deafferentation (GL). We compared her left and right hand movements with those of age-matched female control participants (70.0 years ± 0.2 SEM) during a reaching task. Participants were asked to move their unseen hand, represented by a cursor on the screen, quickly and accurately to reach a visual target. A visual perturbation could be pseudorandomly applied, at movement onset, to either the target position (target jump) or the cursor position (cursor jump). Results showed that despite the continuous visual feedback that was provided, GL produced larger errors in final position accuracy compared to control participants, with her left nondominant hand being more erroneous after a cursor jump. We also found that the proprioceptively-deafferented individual produced less spatially efficient movements than the control group. Overall, these results provide evidence of a heavier reliance on proprioceptive feedback for movements of the nondominant hand relative to the dominant hand, supporting the view of a lateralization of the feedback processes underlying motor control.
Collapse
Affiliation(s)
- Shanie A L Jayasinghe
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, USA.
| | - Robert L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Kinesiology, Pennsylvania State University, State College, University Park, PA, USA
| | | |
Collapse
|
6
|
Kanade-Mehta P, Bengtson M, Stoeckmann T, McGuire J, Ghez C, Scheidt RA. Spatial mapping of posture-dependent resistance to passive displacement of the hypertonic arm post-stroke. J Neuroeng Rehabil 2023; 20:163. [PMID: 38041164 PMCID: PMC10693118 DOI: 10.1186/s12984-023-01285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Muscles in the post-stroke arm commonly demonstrate abnormal reflexes that result in increased position- and velocity-dependent resistance to movement. We sought to develop a reliable way to quantify mechanical consequences of abnormal neuromuscular mechanisms throughout the reachable workspace in the hemiparetic arm post-stroke. METHODS Survivors of hemiparetic stroke (HS) and neurologically intact (NI) control subjects were instructed to relax as a robotic device repositioned the hand of their hemiparetic arm between several testing locations that sampled the arm's passive range of motion. During transitions, the robot induced motions at either the shoulder or elbow joint at three speeds: very slow (6°/s), medium (30°/s), and fast (90°/s). The robot held the hand at the testing location for at least 20 s after each transition. We recorded and analyzed hand force and electromyographic activations from selected muscles spanning the shoulder and elbow joints during and after transitions. RESULTS Hand forces and electromyographic activations were invariantly small at all speeds and all sample times in NI control subjects but varied systematically by transport speed during and shortly after movement in the HS subjects. Velocity-dependent resistance to stretch diminished within 2 s after movement ceased in the hemiparetic arms. Hand forces and EMGs changed very little from 2 s after the movement ended onward, exhibiting dependence on limb posture but no systematic dependence on movement speed or direction. Although each HS subject displayed a unique field of hand forces and EMG responses across the workspace after movement ceased, the magnitude of steady-state hand forces was generally greater near the outer boundaries of the workspace than in the center of the workspace for the HS group but not the NI group. CONCLUSIONS In the HS group, electromyographic activations exhibited abnormalities consistent with stroke-related decreases in the stretch reflex thresholds. These observations were consistent across repeated testing days. We expect that the approach described here will enable future studies to elucidate stroke's impact on the interaction between the neural mechanisms mediating control of upper extremity posture and movement during goal-directed actions such as reaching and pointing with the arm and hand.
Collapse
Affiliation(s)
- Priyanka Kanade-Mehta
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Engineering Hall, Rm 342, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Maria Bengtson
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Engineering Hall, Rm 342, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Tina Stoeckmann
- Department of Physical Therapy, Marquette University, Milwaukee, USA
| | - John McGuire
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, USA
| | - Claude Ghez
- Department of Neuroscience, Neurology, and Physiology, Columbia University Medical Center, New York, USA
| | - Robert A Scheidt
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Engineering Hall, Rm 342, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA.
| |
Collapse
|
7
|
Chiyohara S, Furukawa JI, Noda T, Morimoto J, Imamizu H. Proprioceptive short-term memory in passive motor learning. Sci Rep 2023; 13:20826. [PMID: 38012253 PMCID: PMC10682388 DOI: 10.1038/s41598-023-48101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
A physical trainer often physically guides a learner's limbs to teach an ideal movement, giving the learner proprioceptive information about the movement to be reproduced later. This instruction requires the learner to perceive kinesthetic information and store the instructed information temporarily. Therefore, (1) proprioceptive acuity to accurately perceive the taught kinesthetics and (2) short-term memory to store the perceived information are two critical functions for reproducing the taught movement. While the importance of proprioceptive acuity and short-term memory has been suggested for active motor learning, little is known about passive motor learning. Twenty-one healthy adults (mean age 25.6 years, range 19-38 years) participated in this study to investigate whether individual learning efficiency in passively guided learning is related to these two functions. Consequently, learning efficiency was significantly associated with short-term memory capacity. In particular, individuals who could recall older sensory stimuli showed better learning efficiency. However, no significant relationship was observed between learning efficiency and proprioceptive acuity. A causal graph model found a direct influence of memory on learning and an indirect effect of proprioceptive acuity on learning via memory. Our findings suggest the importance of a learner's short-term memory for effective passive motor learning.
Collapse
Affiliation(s)
- Shinya Chiyohara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
| | - Jun-Ichiro Furukawa
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
- Man-Machine Collaboration Research Team, Guardian Robot Project, RIKEN, Kyoto, Japan
| | - Tomoyuki Noda
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
| | - Jun Morimoto
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan.
- Man-Machine Collaboration Research Team, Guardian Robot Project, RIKEN, Kyoto, Japan.
- Graduate School of Informatics, Kyoto University, Kyoto, Japan.
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International (ATR), Keihanna Science City, Kyoto, 619-0288, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Research Into Artifacts, Center for Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8656, Japan
| |
Collapse
|
8
|
Monfredini CFP, Coelho DB, Marcori AJ, Teixeira LA. Control of interjoint coordination in the performance of manual circular movements can explain lateral specialization. Hum Mov Sci 2023; 90:103102. [PMID: 37236120 DOI: 10.1016/j.humov.2023.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Between-arm performance asymmetry can be seen in different arm movements requiring specific interjoint coordination to generate the desired hand trajectory. In the current investigation, we assessed between-arm asymmetry of shoulder-elbow coordination and its stability in the performance of circular movements. Participants were 16 healthy right-handed university students. The task consisted of performing cyclic circular movements with either the dominant right arm or the nondominant left arm at movement frequencies ranging from 40% of maximum to maximum frequency in steps of 15%. Kinematic analysis of shoulder and elbow motions was performed through an optoelectronic system in the three-dimensional space. Results showed that as movement frequency increased circularity of left arm movements diminished, taking an elliptical shape, becoming significantly different from the right arm at higher movement frequencies. Shoulder-elbow coordination was found to be asymmetric between the two arms across movement frequencies, with lower shoulder-elbow angle coefficients and higher relative phase for the left compared to the right arm. Results also revealed greater variability of left arm movements in all variables assessed, an outcome observed from low to high movement frequencies. From these findings, we propose that specialization of the left cerebral hemisphere for motor control resides in its higher capacity to generate appropriate and stable interjoint coordination leading to the planned hand trajectory.
Collapse
Affiliation(s)
| | - Daniel Boari Coelho
- University of São Paulo, Human Motor Systems Laboratory, São Paulo, Brazil; Biomedical Engineering, Federal University of ABC, São Paulo, Brazil.
| | | | | |
Collapse
|
9
|
Dexheimer B, Przybyla A, Murphy TE, Akpinar S, Sainburg R. Reaction time asymmetries provide insight into mechanisms underlying dominant and non-dominant hand selection. Exp Brain Res 2022; 240:2791-2802. [PMID: 36066589 PMCID: PMC10130955 DOI: 10.1007/s00221-022-06451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Handedness is often thought of as a hand "preference" for specific tasks or components of bimanual tasks. Nevertheless, hand selection decisions depend on many factors beyond hand dominance. While these decisions are likely influenced by which hand might show performance advantages for the particular task and conditions, there also appears to be a bias toward the dominant hand, regardless of performance advantage. This study examined the impact of hand selection decisions and workspace location on reaction time and movement quality. Twenty-six neurologically intact participants performed targeted reaching across the horizontal workspace in a 2D virtual reality environment, and we compared reaction time across two groups: those selecting which hand to use on a trial-by-trial basis (termed the choice group) and those performing the task with a preassigned hand (the no-choice group). Along with reaction time, we also compared reach performance for each group across two ipsilateral workspaces: medial and lateral. We observed a significant difference in reaction time between the hands in the choice group, regardless of workspace. In contrast, both hands showed shorter but similar reaction times and differences between the lateral and medial workspaces in the no-choice group. We conclude that the shorter reaction times of the dominant hand under choice conditions may be due to dominant hand bias in the selection process that is not dependent upon interlimb performance differences.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Terrence E Murphy
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Selcuk Akpinar
- Department of Physical Education and Sport, Nevsehir Bektas Veli University, Nevsehir, Turkey
| | - Robert Sainburg
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.,Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
10
|
Marchesi G, De Luca A, Squeri V, De Michieli L, Vallone F, Pilotto A, Leo A, Casadio M, Canessa A. A Lifespan Approach to Balance in Static and Dynamic Conditions: The Effect of Age on Balance Abilities. Front Neurol 2022; 13:801142. [PMID: 35265025 PMCID: PMC8899125 DOI: 10.3389/fneur.2022.801142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Postural control is a complex sensorimotor skill that is fundamental to our daily life. The abilities to maintain and recover balance degrade with age. However, the time decay of balance performance with age is not well understood. In this study, we aim at quantifying the age-dependent changes in standing balance under static and dynamic conditions. We tested 272 healthy subjects with ages ranging from 20 to 90. Subjects maintained the upright posture while standing on the robotic platform hunova®. In the evaluation of static balance, subjects stood on the fixed platform both with eyes open (EO) and eyes closed (EC). In the dynamic condition, subjects stood with eyes open on the moving foot platform that provided three different perturbations: (i) an inclination proportional to the center of pressure displacements, (ii) a pre-defined predictable motion, and (iii) an unpredictable and unexpected tilt. During all these tests, hunova® measured the inclination of the platform and the displacement of the center of pressure, while the trunk movements were recorded with an accelerometer placed on the sternum. To quantify balance performance, we computed spatio-temporal parameters typically used in clinical environments from the acceleration measures: mean velocity, variability of trunk motion, and trunk sway area. All subjects successfully completed all the proposed exercises. Their motor performance in the dynamic balance tasks quadratically changed with age. Also, we found that the reliance on visual feedback is not age-dependent in static conditions. All subjects well-tolerated the proposed protocol independently of their age without experiencing fatigue as we chose the timing of the evaluations based on clinical needs and routines. Thus, this study is a starting point for the definition of robot-based assessment protocols aiming at detecting the onset of age-related standing balance deficits and allowing the planning of tailored rehabilitation protocols to prevent falls in older adults.
Collapse
Affiliation(s)
- Giorgia Marchesi
- Spinal Cord Italian Lab (SCIL), Unità Spinale Unipolare, Santa Corona Hospital, Pietra Ligure, Italy.,Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | | | | | | | - Francesco Vallone
- Department of Geriatric Care, Orthogeriatrics and Rehabilitation, Galliera Hospital, Genoa, Italy
| | - Alberto Pilotto
- Department of Geriatric Care, Orthogeriatrics and Rehabilitation, Galliera Hospital, Genoa, Italy
| | - Alessandra Leo
- Unità Spinale Unipolare, Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maura Casadio
- Spinal Cord Italian Lab (SCIL), Unità Spinale Unipolare, Santa Corona Hospital, Pietra Ligure, Italy.,Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Andrea Canessa
- Spinal Cord Italian Lab (SCIL), Unità Spinale Unipolare, Santa Corona Hospital, Pietra Ligure, Italy.,Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Schaffer JE, Sarlegna FR, Sainburg RL. A rare case of deafferentation reveals an essential role of proprioception in bilateral coordination. Neuropsychologia 2021; 160:107969. [PMID: 34310971 PMCID: PMC9055994 DOI: 10.1016/j.neuropsychologia.2021.107969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Loss of proprioception has been shown to produce deficits in intralimb coordination and in the ability to stabilize limb posture in the absence of visual feedback. However, the role of proprioceptive signals in the feedforward and feedback control of interlimb coordination remains unclear. To address this issue, we examined bimanual coordination in a deafferented participant (DP) with large-fiber sensory neuropathy, which resulted in the loss of proprioception and touch in both arms, and in age-matched control participants. The task required participants to move a single virtual bar with both hands to a rectangular target with horizontal orientation. The participants received visual feedback of the virtual bar, but not of the hand positions along the bar-axis. Although the task required symmetrical movement between the arms, there were significant differences in the trajectories of the dominant and non-dominant hands in the deafferented participant, and thus more final errors and impaired coordination compared to controls. Deafferentation was also associated with an asymmetric deficit in stabilizing the hand at the end of motion, where the dominant arm showed more drift than the non-dominant arm. While the findings with DP may reflect a unique adaptation to deafferentation, they suggest that 1) Bilateral coordination depends on proprioceptive feedback, and 2) Postural stability at the end of motion can be specified through feedforward mechanisms, in the absence of proprioceptive feedback, but this process appears to be asymmetric, with better stability in the non-dominant arm.
Collapse
Affiliation(s)
- Jacob E Schaffer
- the Pennsylvania State University, Department of Kinesiology, United States.
| | | | - Robert L Sainburg
- the Pennsylvania State University, Department of Kinesiology, United States; Penn State Milton S. Hershey College of Medicine, Department of Neurology, United States
| |
Collapse
|
12
|
|
13
|
Jayasinghe SAL, Maenza C, Good DC, Sainburg RL. Deficits in Performance on a Mechanically Coupled Asymmetrical Bilateral Task in Chronic Stroke Survivors with Mild Unilateral Paresis. Symmetry (Basel) 2021; 13:1366. [PMID: 38332947 PMCID: PMC10852351 DOI: 10.3390/sym13081366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Typical upper limb-mediated activities of daily living involve coordination of both arms, often requiring distributed contributions to mechanically coupled tasks, such as stabilizing a loaf of bread with one hand while slicing with the other. We sought to examine whether mild paresis in one arm results in deficits in performance on a bilateral mechanically coupled task. We designed a virtual reality-based task requiring one hand to stabilize against a spring load that varies with displacement of the other arm. We recruited 15 chronic stroke survivors with mild hemiparesis and 7 age-matched neurologically intact adults. We found that stroke survivors produced less linear reaching movements and larger initial direction errors compared to controls (p < 0.05), and that contralesional hand performance was less linear than that of ipsilesional hand. We found a hand × group interaction (p < 0.05) for peak acceleration of the stabilizing hand, such that the dominant right hand of controls stabilized less effectively than the nondominant left hand while stroke survivors showed no differences between the hands. Our results indicate that chronic stroke survivors with mild hemiparesis show significant deficits in reaching aspects of bilateral coordination, but no deficits in stabilizing against a movement-dependent spring load in this task.
Collapse
Affiliation(s)
- Shanie A. L. Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Candice Maenza
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Kinesiology, Pennsylvania State University, State College, PA 16802, USA
| | - David C. Good
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Robert L. Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Kinesiology, Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
14
|
Parry R, Sarlegna FR, Jarrassé N, Roby-Brami A. Anticipation and compensation for somatosensory deficits in object handling: evidence from a patient with large fiber sensory neuropathy. J Neurophysiol 2021; 126:575-590. [PMID: 34232757 DOI: 10.1152/jn.00517.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the contributions of feedforward and feedback processes on grip force regulation and object orientation during functional manipulation tasks. One patient with massive somatosensory loss resulting from large fiber sensory neuropathy and 10 control participants were recruited. Three experiments were conducted: 1) perturbation to static holding; 2) discrete vertical movement; and 3) functional grasp and place. The availability of visual feedback was also manipulated to assess the nature of compensatory mechanisms. Results from experiment 1 indicated that both the deafferented patient and controls used anticipatory grip force adjustments before self-induced perturbation to static holding. The patient exhibited increased grip response time, but the magnitude of grip force adjustments remained correlated with perturbation forces in the self-induced and external perturbation conditions. In experiment 2, the patient applied peak grip force substantially in advance of maximum load force. Unlike controls, the patient's ability to regulate object orientation was impaired without visual feedback. In experiment 3, the duration of unloading, transport, and release phases were longer for the patient, with increased deviation of object orientation at phase transitions. These findings show that the deafferented patient uses distinct modes of anticipatory control according to task constraints and that responses to perturbations are mediated by alternative afferent information. The loss of somatosensory feedback thus appears to impair control of object orientation, whereas variation in the temporal organization of functional tasks may reflect strategies to mitigate object instability associated with changes in movement dynamics.NEW & NOTEWORTHY This study evaluates the effects of sensory neuropathy on the scaling and timing of grip force adjustments across different object handling tasks (i.e., holding, vertical movement, grasping, and placement). In particular, these results illustrate how novel anticipatory and online control processes emerge to compensate for the loss of somatosensory feedback. In addition, we provide new evidence on the role of somatosensory feedback for regulating object orientation during functional prehensile movement.
Collapse
Affiliation(s)
- Ross Parry
- LINP2 - Laboratoire Interdisciplinaire en Neurosciences, Physiologie et Psychologie: Activité Physique, Santé et Apprentissages, UPL, Université Paris Nanterre, Nanterre, France.,ISIR (Institute of Intelligent systems and robotics), Sorbonne Université UMR CNRS 7222, AGATHE team INSERM U 1150, Paris, France
| | | | - Nathanaël Jarrassé
- ISIR (Institute of Intelligent systems and robotics), Sorbonne Université UMR CNRS 7222, AGATHE team INSERM U 1150, Paris, France
| | - Agnès Roby-Brami
- ISIR (Institute of Intelligent systems and robotics), Sorbonne Université UMR CNRS 7222, AGATHE team INSERM U 1150, Paris, France
| |
Collapse
|
15
|
Dexheimer B, Sainburg R. When the non-dominant arm dominates: the effects of visual information and task experience on speed-accuracy advantages. Exp Brain Res 2021; 239:655-665. [PMID: 33388816 PMCID: PMC8063124 DOI: 10.1007/s00221-020-06011-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Speed accuracy trade-off, the inverse relationship between movement speed and task accuracy, is a ubiquitous feature of skilled motor performance. Many previous studies have focused on the dominant arm, unimanual performance in both simple tasks, such as target reaching, and complex tasks, such as overarm throwing. However, while handedness is a prominent feature of human motor performance, the effect of limb dominance on speed-accuracy relationships is not well-understood. Based on previous research, we hypothesize that dominant arm skilled performance should depend on visual information and prior task experience, and that the non-dominant arm should show greater skill when no visual information nor prior task information is available. Forty right-handed young adults reached to 32 randomly presented targets across a virtual reality workspace with either the left or the right arm. Half of the participants received no visual feedback about hand position throughout each reach. Sensory information and task experience were lowest during the first cycle of exposure (32 reaches) in the no-vision condition, in which visual information about motion was not available. Under this condition, we found that the left arm group showed greater skill, measured in terms of position error normalized to speed, and by error variability. However, as task experience and sensory information increased, the right arm group showed substantial improvements in speed-accuracy relations, while the left arm group maintained, but did not improve, speed-accuracy relations throughout the task. These differences in performance between dominant and non-dominant arm groups during the separate stages of the task are consistent with complimentary models of lateralization, which propose different proficiencies of each hemisphere for different features of control. Our results are incompatible with global dominance models of handedness that propose dominant arm advantages under all performance conditions.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA.
| | - Robert Sainburg
- Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
- Department of Neurology, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
16
|
Jayasinghe SA, Sarlegna FR, Scheidt RA, Sainburg RL. Somatosensory deafferentation reveals lateralized roles of proprioception in feedback and adaptive feedforward control of movement and posture. CURRENT OPINION IN PHYSIOLOGY 2021; 19:141-147. [PMID: 36569335 PMCID: PMC9788652 DOI: 10.1016/j.cophys.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proprioception provides crucial information necessary for determining limb position and movement, and plausibly also for updating internal models that might underlie the control of movement and posture. Seminal studies of upper-limb movements in individuals living with chronic, large fiber deafferentation have provided evidence for the role of proprioceptive information in the hypothetical formation and maintenance of internal models to produce accurate motor commands. Vision also contributes to sensorimotor functions but cannot fully compensate for proprioceptive deficits. More recent work has shown that posture and movement control processes are lateralized in the brain, and that proprioception plays a fundamental role in coordinating the contributions of these processes to the control of goal-directed actions. In fact, the behavior of each limb in a deafferented individual resembles the action of a controller in isolation. Proprioception, thus, provides state estimates necessary for the nervous system to efficiently coordinate multiple motor control processes.
Collapse
Affiliation(s)
- Shanie A.L. Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, U.S.A
| | | | - Robert A. Scheidt
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, U.S.A.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Robert L. Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, U.S.A.,Department of Kinesiology, Pennsylvania State University, State College, PA, U.S.A
| |
Collapse
|