1
|
Conway M, Oncul M, Allen K, Zhang Z, Johnston J. Perceptual constancy for an odor is acquired through changes in primary sensory neurons. SCIENCE ADVANCES 2024; 10:eado9205. [PMID: 39661686 PMCID: PMC11633753 DOI: 10.1126/sciadv.ado9205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The ability to consistently recognize an object despite variable sensory input is termed perceptual constancy. This ability is not innate; rather, it develops with experience early in life. We show that, when mice are naïve to an odor object, perceptual constancy is absent across increasing concentrations. The perceptual change coincides with a rapid reduction in activity from a single olfactory receptor channel that is most sensitive to the odor. This drop in activity is not a property of circuit interactions within the olfactory bulb; instead, it is due to a sensitivity mismatch of olfactory receptor neurons within the nose. We show that, after forming an association of this odor with food, the sensitivity of the receptor channel is matched to the odor object, preventing transmission failure and promoting perceptual stability. These data show that plasticity of the primary sensory organ enables learning of perceptual constancy.
Collapse
Affiliation(s)
- Mark Conway
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Merve Oncul
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kate Allen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Zongqian Zhang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jamie Johnston
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Lin TL, So EC, Wu SN. Exploring the Effects of Tomatidine ((3β, 5α, 22β, and 25β)-Spirosolan-3-ol) on Voltage-gated Na+ currents: Insights Into Its Ionic Mechanisms of Action on Current Magnitude, Gating, and Frequency Dependence. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:298-311. [PMID: 39641137 DOI: 10.4103/ejpi.ejpi-d-24-00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024]
Abstract
ABSTRACT Tomatidine, a major tomato glycoalkaloid, is effective for the prevention of skeletal muscle wasting and enhancing mitophagy. However, its effects on transmembrane ionic currents are not well explored. In this study, we explored the interactions between tomatidine and Na+ current. GH3 or Neuro-2a cells were used for recording the ion currents employing modified patch-clamp technique under whole-cell configuration. Tomatidine increased both the peak, (transient Na+ current [INa (T)]) and sustained (late Na+ current [INa (L)]) components of voltage-gated Na+ current (INa) in a concentration-dependent manner, with the concentration required for 50% stimulation values of 43.3 μM and 3.1 μM, respectively. The steady-state current-voltage relationship of INa (T) remained unchanged; however, the steady-state inactivation curve of INa (T) in the presence of 3 μM tomatidine was shifted to less depolarized potential by around 6 mV. Tomatidine enhanced the window INa (window Na+ current [INa (W)]), which were attenuated by the ranolazine (Ran) and carbamazepine (CBZ). During a train of depolarizing pulses, tomatidine slowed the exponential decay of INa (T), and this effect was reversed by Ran or dapagliflozin. Tomatidine increased both fast and slow recovery time constants from INa (T) block, affecting the recovery time course. Tomatidine increased the amplitude of persistent Na+ current in response to a sinusoidal waveform. In neuro-2a cells, tomatidine increased INa (T) amplitude and slowed its inactivation, with this effect being attenuated by Ran or CBZ. In conclusion, tomatidine enhanced magnitude and modified its gating behaviors.
Collapse
Affiliation(s)
- Tso-Lin Lin
- Department of Paediatrics, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Edmund Cheung So
- Department of Anaesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Anaesthesiology, University of Hong Kong, Hong Kong
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Medical Education and Research, An Nan Hospital, China Medical University, Tainan, Taiwan
| |
Collapse
|
3
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Marchese-Rojas M, Islas ÁA, Mancilla-Simbro C, Millan-PerezPeña L, León JS, Salinas-Stefanon EM. Inhibition of the Human Neuronal Sodium Channel Na v1.9 by Arachidonyl-2-Chloroethylamide, An Analogue of Anandamide in a hNa v1.9/rNa v1.4 Chimera, An Experimental and in Silico Study. Neuroscience 2023; 511:39-52. [PMID: 36156289 DOI: 10.1016/j.neuroscience.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
Cannabinoids regulate analgesia, which has aroused much interest in identifying new pharmacological therapies in the management of refractory pain. Voltage-gated Na+ channels (Navs) play an important role in inflammatory and neuropathic pain. In particular, Nav1.9 is involved in nociception and the understanding of its pharmacology has lagged behind because it is difficult to express in heterologous systems. Here, we utilized the chimeric channel hNav1.9_C4, that comprises the extracellular and transmembrane domains of hNav1.9, co-expressed with the ß1 subunit on CHO-K1 cells to characterize the electrophysiological effects of ACEA, a synthetic surrogate of the endogenous cannabinoid anandamide. ACEA induced a tonic block, decelerated the fast inactivation, markedly shifted steady-state inactivation in the hyperpolarized direction, decreasing the window current and showed use-dependent block, with a high affinity for the inactivated state (ki = 0.84 µM). Thus, we argue that ACEA possess a local anaesthetic-like profile. To provide a mechanistic understanding of its mode of action at the molecular level, we combined induced fit docking with Monte Carlo simulations and electrostatic complementarity. In agreement with the experimental evidence, our computer simulations revealed that ACEA binds Tyr1599 of the local anaesthetics binding site of the hNav1.9, contacting residues that bind cannabinol (CBD) in the NavMs channel. ACEA adopted a conformation remarkably similar to the crystallographic conformation of anandamide on a non-homologous protein, obstructing the Na+ permeation pathway below the selectivity filter to occupy a highly conserved binding pocket at the intracellular side. These results describe a mechanism of action, possibly involved in cannabinoid analgesia.
Collapse
Affiliation(s)
- Mario Marchese-Rojas
- Laboratory of Biophysics, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Ángel A Islas
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Mexico; Laboratory of Computational Molecular Simulations, Department of Pharmacy, Benemérita Universidad Autónoma de Puebla, Mexico.
| | - Claudia Mancilla-Simbro
- Laboratory of Biophysics, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Mexico
| | | | - Jorge S León
- Laboratory of Biophysics, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Mexico
| | | |
Collapse
|
5
|
The Evidence for Effective Inhibition of INa Produced by Mirogabalin ((1R,5S,6S)-6-(aminomethyl)-3-ethyl-bicyclo [3.2.0] hept-3-ene-6-acetic acid), a Known Blocker of Ca V Channels. Int J Mol Sci 2022; 23:ijms23073845. [PMID: 35409204 PMCID: PMC8998350 DOI: 10.3390/ijms23073845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mirogabalin (MGB, Tarlige®), an inhibitor of the α2δ-1 subunit of voltage-gated Ca2+ (CaV) channels, is used as a way to alleviate peripheral neuropathic pain and diabetic neuropathy. However, to what extent MGB modifies the magnitude, gating, and/or hysteresis of various types of plasmalemmal ionic currents remains largely unexplored. In pituitary tumor (GH3) cells, we found that MGB was effective at suppressing the peak (transient, INa(T)) and sustained (late, INa(L)) components of the voltage-gated Na+ current (INa) in a concentration-dependent manner, with an effective IC50 of 19.5 and 7.3 μM, respectively, while the KD value calculated on the basis of minimum reaction scheme was 8.2 μM. The recovery of INa(T) inactivation slowed in the presence of MGB, although the overall current-voltage relation of INa(T) was unaltered; however, there was a leftward shift in the inactivation curve of the current. The magnitude of the window (INa(W)) or resurgent INa (INa(R)) evoked by the respective ascending or descending ramp pulse (Vramp) was reduced during cell exposure to MGB. MGB-induced attenuation in INa(W) or INa(R) was reversed by the further addition of tefluthrin, a pyrethroid insecticide known to stimulate INa. MGB also effectively lessened the strength of voltage-dependent hysteresis of persistent INa in response to the isosceles triangular Vramp. The cumulative inhibition of INa(T), evoked by pulse train stimulation, was enhanced in its presence. Taken together, in addition to the inhibition of CaV channels, the NaV channel attenuation produced by MGB might have an impact in its analgesic effects occurring in vivo.
Collapse
|
6
|
Lin W, Zhang WW, Lyu N, Cao H, Xu WD, Zhang YQ. Growth Differentiation Factor-15 Produces Analgesia by Inhibiting Tetrodotoxin-Resistant Nav1.8 Sodium Channel Activity in Rat Primary Sensory Neurons. Neurosci Bull 2021; 37:1289-1302. [PMID: 34076854 PMCID: PMC8423960 DOI: 10.1007/s12264-021-00709-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a member of the transforming growth factor-β superfamily. It is widely distributed in the central and peripheral nervous systems. Whether and how GDF-15 modulates nociceptive signaling remains unclear. Behaviorally, we found that peripheral GDF-15 significantly elevated nociceptive response thresholds to mechanical and thermal stimuli in naïve and arthritic rats. Electrophysiologically, we demonstrated that GDF-15 decreased the excitability of small-diameter dorsal root ganglia (DRG) neurons. Furthermore, GDF-15 concentration-dependently suppressed tetrodotoxin-resistant sodium channel Nav1.8 currents, and shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction. GDF-15 also reduced window currents and slowed down the recovery rate of Nav1.8 channels, suggesting that GDF-15 accelerated inactivation and slowed recovery of the channel. Immunohistochemistry results showed that activin receptor-like kinase-2 (ALK2) was widely expressed in DRG medium- and small-diameter neurons, and some of them were Nav1.8-positive. Blockade of ALK2 prevented the GDF-15-induced inhibition of Nav1.8 currents and nociceptive behaviors. Inhibition of PKA and ERK, but not PKC, blocked the inhibitory effect of GDF-15 on Nav1.8 currents. These results suggest a functional link between GDF-15 and Nav1.8 in DRG neurons via ALK2 receptors and PKA associated with MEK/ERK, which mediate the peripheral analgesia of GDF-15.
Collapse
Affiliation(s)
- Wei Lin
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Wen Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning Lyu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Hong Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wen-Dong Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Lankford CK, Laird JG, Inamdar SM, Baker SA. A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision. Front Cell Neurosci 2020; 14:595523. [PMID: 33250719 PMCID: PMC7676898 DOI: 10.3389/fncel.2020.595523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning’s of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons—rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.
Collapse
Affiliation(s)
- Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Carbamazepine conquers spinal GAP43 deficiency and sciatic Nav1.5 upregulation in diabetic mice: novel mechanisms in alleviating allodynia and hyperalgesia. Arch Pharm Res 2020; 43:724-734. [PMID: 32676893 DOI: 10.1007/s12272-020-01249-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
This work tested the role of carbamazepine in alleviating alloxan-induced diabetic neuropathy and the enhancement of spinal plasticity. Mice were randomized into four groups: normal, control, carbamazepine (25-mg/kg) and carbamazepine (50-mg/kg). Nine weeks after induction of diabetes, symptoms of neuropathy were confirmed and carbamazepine (or vehicle) was given every other day for five weeks. After completing the treatment period, mice were sacrificed and the pathologic features in the spinal cord and the sciatic nerves were determined. The spinal cords were evaluated for synaptic plasticity (growth associated protein-43, GAP43), microglia cell expression (by CD11b) and astrocyte expression (glial fibrillary acidic protein, GFAP). Further, sciatic nerve expression of Nav1.5 was measured. Results revealed that carbamazepine 50 mg/kg prolonged the withdrawal threshold of von-Frey filaments and increased the hot plate jumping time. Carbamazepine improved the histopathologic pictures of the sciatic nerves and spinal cords. Spinal cord of carbamazepine-treated groups had enhanced expression of GAP43 but lower content of CD11b and GFAP. Furthermore, specimens from the sciatic nerve indicated low expression of Nav1.5. In conclusion, this work provided evidence, for the first time, that the preventive effect of carbamazepine against diabetic neuropathy involves correction of spinal neuronal plasticity and glia cell expression.
Collapse
|
9
|
Mazzone A, Strege PR, Gibbons SJ, Alcaino C, Joshi V, Haak AJ, Tschumperlin DJ, Bernard CE, Cima RR, Larson DW, Chua HK, Graham RP, El Refaey M, Mohler PJ, Hayashi Y, Ordog T, Calder S, Du P, Farrugia G, Beyder A. microRNA overexpression in slow transit constipation leads to reduced Na V1.5 current and altered smooth muscle contractility. Gut 2020; 69:868-876. [PMID: 31757880 PMCID: PMC7147984 DOI: 10.1136/gutjnl-2019-318747] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study was designed to evaluate the roles of microRNAs (miRNAs) in slow transit constipation (STC). DESIGN All human tissue samples were from the muscularis externa of the colon. Expression of 372 miRNAs was examined in a discovery cohort of four patients with STC versus three age/sex-matched controls by a quantitative PCR array. Upregulated miRNAs were examined by quantitative reverse transcription qPCR (RT-qPCR) in a validation cohort of seven patients with STC and age/sex-matched controls. The effect of a highly differentially expressed miRNA on a custom human smooth muscle cell line was examined in vitro by RT-qPCR, electrophysiology, traction force microscopy, and ex vivo by lentiviral transduction in rat muscularis externa organotypic cultures. RESULTS The expression of 13 miRNAs was increased in STC samples. Of those miRNAs, four were predicted to target SCN5A, the gene that encodes the Na+ channel NaV1.5. The expression of SCN5A mRNA was decreased in STC samples. Let-7f significantly decreased Na+ current density in vitro in human smooth muscle cells. In rat muscularis externa organotypic cultures, overexpression of let-7f resulted in reduced frequency and amplitude of contraction. CONCLUSIONS A small group of miRNAs is upregulated in STC, and many of these miRNAs target the SCN5A-encoded Na+ channel NaV1.5. Within this set, a novel NaV1.5 regulator, let-7f, resulted in decreased NaV1.5 expression, current density and reduced motility of GI smooth muscle. These results suggest NaV1.5 and miRNAs as novel diagnostic and potential therapeutic targets in STC.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter R Strege
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J Gibbons
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Constanza Alcaino
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Vikram Joshi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl E Bernard
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert R Cima
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David W Larson
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Heidi K Chua
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mona El Refaey
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J Mohler
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yujiro Hayashi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan Calder
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gianrico Farrugia
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Zhou Y, Pan P, Tan ZY, Ji YH. Voltage-gated Sodium Channels in Sensory Information Processing. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:273-278. [DOI: 10.2174/1871527317666180627114849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/04/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Objective & Background:
Voltage-gated sodium channels (VGSCs) and potassium channels
are critical in the generation of action potentials in the nervous system. VGSCs and potassium
channels play important roles in the five fundamental senses of vision, audition, olfaction, taste and
touch. Dysfunctional VGSCs are associated with clinical sensory symptoms, such as hyperpselaphesia,
parosphresia, and so on.
Conclusion:
This short review highlights the recent advances in the study of VGSCs in sensory information
processing and discusses the potential role of VGSCs to serve as pharmacological targets for
the treatment of sensory system diseases.
Collapse
Affiliation(s)
- You Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Ping Pan
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Meredith FL, Rennie KJ. Regional and Developmental Differences in Na + Currents in Vestibular Primary Afferent Neurons. Front Cell Neurosci 2018; 12:423. [PMID: 30487736 PMCID: PMC6246661 DOI: 10.3389/fncel.2018.00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/04/2023] Open
Abstract
The vestibular system relays information about head position via afferent nerve fibers to the brain in the form of action potentials. Voltage-gated Na+ channels in vestibular afferents drive the initiation and propagation of action potentials, but their expression during postnatal development and their contributions to firing in diverse mature afferent populations are unknown. Electrophysiological techniques were used to determine Na+ channel subunit types in vestibular calyx-bearing afferents at different stages of postnatal development. We used whole cell patch clamp recordings in thin slices of gerbil crista neuroepithelium to investigate Na+ channels and firing patterns in central zone (CZ) and peripheral zone (PZ) afferents. PZ afferents are exclusively dimorphic, innervating type I and type II hair cells, whereas CZ afferents can form dimorphs or calyx-only terminals which innervate type I hair cells alone. All afferents expressed tetrodotoxin (TTX)-sensitive Na+ currents, but TTX-sensitivity varied with age. During the fourth postnatal week, 200–300 nM TTX completely blocked sodium currents in PZ and CZ calyces. By contrast, in immature calyces [postnatal day (P) 5–11], a small component of peak sodium current remained in 200 nM TTX. Application of 1 μM TTX, or Jingzhaotoxin-III plus 200 nM TTX, abolished sodium current in immature calyces, suggesting the transient expression of voltage-gated sodium channel 1.5 (Nav1.5) during development. A similar TTX-insensitive current was found in early postnatal crista hair cells (P5–9) and constituted approximately one third of the total sodium current. The Nav1.6 channel blocker, 4,9-anhydrotetrodotoxin, reduced a component of sodium current in immature and mature calyces. At 100 nM 4,9-anhydrotetrodotoxin, peak sodium current was reduced on average by 20% in P5–14 calyces, by 37% in mature dimorphic PZ calyces, but by less than 15% in mature CZ calyx-only terminals. In mature PZ calyces, action potentials became shorter and broader in the presence of 4,9-anhydrotetrodotoxin implicating a role for Nav1.6 channels in firing in dimorphic afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
12
|
Liu J, Liu D, Liu JJ, Zhao C, Yao S, Hong L. Blocking the Nav1.5 channel using eicosapentaenoic acid reduces migration and proliferation of ovarian cancer cells. Int J Oncol 2018; 53:855-865. [PMID: 29901108 DOI: 10.3892/ijo.2018.4437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Activity of the voltage-gated Nav1.5 sodium channel has been reported to be involved in cell proliferation, cancer invasion and gene expression. In addition, eicosapentaenoic acid (EPA) has recently been suggested to inhibit ovarian cancer cell growth and suppress tumor metastasis. The present study aimed to explore the association between EPA, the Nav1.5 sodium channel and ovarian cancer cells. Using patch-clamp technique and RNA interference approaches, sodium currents were recorded in epithelial ovarian cancer cells, and it was confirmed that the Nav1.5 channel carried the sodium currents. Furthermore, EPA effectively inhibited sodium currents in a dose-dependent manner, shifted the steady-state inactivation curve of sodium currents to the hyperpolarizing direction and reduced sodium window currents. In addition, EPA induced a shift in the inactivation curve in a dose-dependent manner. Inhibition of the sodium channel, either by EPA or by Nav1.5 knockdown, attenuated ovarian cancer cell migration and proliferation. To the best of our knowledge, the present study is the first to conduct sodium current recording in ovarian cancer cells, and revealed that EPA may inhibit Nav1.5-mediated ovarian cancer cell migration and growth. These findings not only present a potential prognostic biomarker for ovarian cancer, but also provide a strategy towards the development of novel pharmacological treatments for patients with ovarian cancer.
Collapse
Affiliation(s)
- Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jasmine J Liu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chang Zhao
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Wang J, Ou SW, Bai YF, Wang YJ, Xu ZQD, Luan GM. Downregulation of adult and neonatal Nav1.5 in the dorsal root ganglia and axon of peripheral sensory neurons of rats with spared nerve injury. Int J Mol Med 2018; 41:2225-2232. [PMID: 29393394 DOI: 10.3892/ijmm.2018.3446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 01/18/2018] [Indexed: 11/06/2022] Open
Abstract
Previous studies demonstrated that Nav1.5 splice variants, including Nav1.5a and Nav1.5c, were expressed in dorsal root ganglia (DRG) neurons. However, since nine Nav1.5 isoforms have been identified, whether other Nav1.5 splice variants, especially the neonatal Nav1.5 splice variant, express in the DRG neurons is still unknown. In this study, we systematically investigated the expression of adult and neonatal Nav1.5 isoforms in the DRG neurons and axon of peripheral sensory neurons of rats with spared nerve injury (SNI) by RT-PCR, DNA sequencing, restriction enzyme digestion, immunohistochemistry and immunofluorescence methods. The results demonstrated that both adult and neonatal Nav1.5 isoforms were expressed in the DRG neurons, but their expression ratio was ~2.5:1. In SNI rat models, the expression of both adult and neonatal Nav1.5 decreased by approximately a half in both mRNA and protein levels. In contrast, the expression of protein kinase C (PKC)-γ, one of the negative modulators for sodium currents, increased by ~1-fold. Taken together, this study first confirmed the expression of both adult and neonatal Nav1.5 isoforms in the DRG neurons and axon of peripheral sensory neurons of rat, but their expression level decreased in pain models. The upregulation of PKC-γ may directly or indirectly downregulate the expression of Nav1.5 isoforms in SNI rat models, which may further involve in the pathological process of neuropathic pain.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Shao-Wu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Yun-Fei Bai
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Capital Medical University, Beijing 100069, P.R. China
| | - Yun-Jie Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Zhi-Qing David Xu
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Capital Medical University, Beijing 100069, P.R. China
| | - Guo-Ming Luan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
14
|
Wang J, Ou SW, Zhang ZY, Qiu B, Wang YJ. Molecular expression of multiple Nav1.5 splice variants in the frontal lobe of the human brain. Int J Mol Med 2017; 41:915-923. [PMID: 29207052 PMCID: PMC5752160 DOI: 10.3892/ijmm.2017.3286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/22/2017] [Indexed: 11/29/2022] Open
Abstract
Voltage-gated sodium channels serve an essential role in the initiation and propagation of action potentials for central neurons. Previous studies have demonstrated that two novel variants of Nav1.5, designated Nav1.5e and Nav1.5f, were expressed in the human brain cortex. To date, nine distinct sodium channel isoforms of Nav1.5 have been identified. In the present study, the expression of Nav1.5 splice variants in the frontal lobe of the human brain cortex was systematically investigated. The results demonstrated that wild Nav1.5 and its splice variants, Nav1.5c and Nav1.5e, were expressed in the frontal lobe of the human brain cortex. Nav1.5a, Nav1.5b and Nav1.5d splice variants were not detected. However, the expression level of different Nav1.5 variants was revealed to vary. The expression ratio of wild Nav1.5 vs. Nav1.5c and Nav1.5e was approximately 5:1 and 1:5, respectively. Immunochemistry results revealed that Nav1.5 immunoreactivity was predominantly in neuronal cell bodies and processes, including axons and dendrites, whereas little immunoreactivity was detected in the glial components. These results revealed that a minimum of four Nav1.5 splice variants are expressed in the frontal lobe of the human brain cortex. This indicates that the previously reported tetrodotoxin-resistant sodium current was a compound product of different Nav1.5 variants. The present study revealed that Nav1.5 channels have a more abundant expression in the human brain than previously considered. It also provided further insight into the complexity and functional significance of Nav1.5 channels in human brain neurons.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shao-Wu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Yong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Qiu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Jie Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
16
|
Resch JM, Fenselau H, Madara JC, Wu C, Campbell JN, Lyubetskaya A, Dawes BA, Tsai LT, Li MM, Livneh Y, Ke Q, Kang PM, Fejes-Tóth G, Náray-Fejes-Tóth A, Geerling JC, Lowell BB. Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling. Neuron 2017; 96:190-206.e7. [PMID: 28957668 DOI: 10.1016/j.neuron.2017.09.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/10/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTSHSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTSHSD2 neuron activation, identify the circuit by which NTSHSD2 neurons drive appetite, and uncover an interaction between the NTSHSD2 circuit and ATII signaling. NTSHSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Nav1.5 channels. Remarkably, NTSHSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTSHSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTSHSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.
Collapse
Affiliation(s)
- Jon M Resch
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Henning Fenselau
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chen Wu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John N Campbell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian A Dawes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Monica M Li
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yoav Livneh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qingen Ke
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Géza Fejes-Tóth
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Anikó Náray-Fejes-Tóth
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Wang J, Ou SW, Bai YF, Wang YJ, Xu ZQD, Luan GM. Multiple Nav1.5 isoforms are functionally expressed in the brain and present distinct expression patterns compared with cardiac Nav1.5. Mol Med Rep 2017; 16:719-729. [PMID: 28560448 PMCID: PMC5482195 DOI: 10.3892/mmr.2017.6654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/08/2017] [Indexed: 02/01/2023] Open
Abstract
It has previously been demonstrated that there are various voltage gated sodium channel (Nav) 1.5 splice variants expressed in brain tissue. A total of nine Nav1.5 isoforms have been identified, however, the potential presence of further Nav1.5 variants expressed in brain neurons remains to be elucidated. The present study systematically investigated the expression of various Nav1.5 splice variants and their associated electrophysiological properties in the rat brain tissue, via biochemical analyses and whole-cell patch clamp recording. The results demonstrated that adult Nav1.5 was expressed in the rat, in addition to the neonatal Nav1.5, Nav1.5a and Nav1.5f isoforms. Further studies indicated that the expression level ratio of neonatal Nav1.5 compared with adult Nav1.5 decreased from 1:1 to 1:3 with age development from postnatal (P) day 0 to 90. This differed from the ratios observed in the developing rat hearts, in which the expression level ratio decreased from 1:4 to 1:19 from P0 to 90. The immunohistochemistry results revealed that Nav1.5 immunoreactivity was predominantly observed in neuronal cell bodies and processes, whereas decreased immunoreactivity was detected in the glial components. Electrophysiological analysis of Nav1.5 in the rat brain slices revealed that an Na current was detected in the presence of 300 nM tetrodotoxin (TTX), however this was inhibited by ~1 µM TTX. The TTX-resistant Na current was activated at −40 mV and reached the maximum amplitude at 0 mV. The results of the present study demonstrated that neonatal and adult Nav1.5 were expressed in the rat brain and electrophysiological analysis further confirmed the functional expression of Nav1.5 in brain neurons.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital of Capital Medical University, Beijing 100093, P.R. China
| | - Shao-Wu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Fei Bai
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing 100069, P.R. China
| | - Yun-Jie Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing 100069, P.R. China
| | - Guo-Ming Luan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital of Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
18
|
Bolz F, Kasper S, Bufe B, Zufall F, Pyrski M. Organization and Plasticity of Sodium Channel Expression in the Mouse Olfactory and Vomeronasal Epithelia. Front Neuroanat 2017; 11:28. [PMID: 28420967 PMCID: PMC5376585 DOI: 10.3389/fnana.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
To understand the molecular basis of neuronal excitation in the mammalian olfactory system, we conducted a systematic analysis of the organization of voltage-gated sodium (Nav) channel subunits in the main olfactory epithelium (MOE) and vomeronasal organ (VNO) of adult mice. We also analyzed changes in Nav channel expression during development in these two systems and during regeneration of the MOE. Quantitative PCR shows that Nav1.7 is the predominant isoform in both adult MOE and VNO. We detected pronounced immunoreactivity for Nav1.7 and Nav1.3 in axons of olfactory and vomeronasal sensory neurons (VSNs). Analysis of Nav1.2 and Nav1.6 revealed an unexpected subsystem-specific distribution. In the MOE, these Nav channels are absent from olfactory sensory neurons (OSNs) but present in non-neuronal olfactory cell types. In the VNO, Nav1.2 and Nav1.6 are confined to VSNs, with Nav1.2-immunoreactive somata solely present in the basal layer of the VNO. The subcellular localization of Nav1.3 and Nav1.7 in OSNs can change dramatically during periods of heightened plasticity in the MOE. During the first weeks of development and during regeneration of the olfactory epithelium following chemical lesion, expression of Nav1.3 and Nav1.7 is transiently enhanced in the somata of mature OSNs. Our results demonstrate a highly complex organization of Nav channel expression in the mouse olfactory system, with specific commonalities but also differences between the MOE and the VNO. On the basis of their subcellular localization, Nav1.3 and Nav1.7 should play major roles in action potential propagation in both MOE and VNO, whereas Nav1.2 and Nav1.6 are specific to the function of VSNs. The plasticity of Nav channel expression in OSNs during early development and recovery from injury could reflect important physiological requirements in a variety of activity-dependent mechanisms.
Collapse
Affiliation(s)
- Florian Bolz
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Stephanie Kasper
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Bernd Bufe
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| |
Collapse
|
19
|
Finger TE, Bartel DL, Shultz N, Goodson NB, Greer CA. 5HTR3A-driven GFP labels immature olfactory sensory neurons. J Comp Neurol 2017; 525:1743-1755. [PMID: 28152579 DOI: 10.1002/cne.24180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The ionotropic serotonin receptor, 5-HT3 , is expressed by many developing neurons within the central nervous system. Since the olfactory epithelium continues to generate new olfactory sensory neurons (OSNs) throughout life, we investigated the possibility that 5-HT3 is expressed in the adult epithelium. Using a transgenic mouse in which the promoter for the 5-HT3a subunit drives expression of green fluorescent protein (GFP), we assessed the expression of this marker in the olfactory epithelium of adult mice. Both the native 5-HT3a mRNA and GFP are expressed within globose basal cells of the olfactory and vomeronasal epithelium in adult mice. Whereas the 5-HT3a mRNA disappears relatively quickly after final cell division, the GFP label persists for about 5 days, thereby labeling immature OSNs in both the main olfactory system and vomeronasal organ. The GFP-labeled cells include both proliferative globose basal cells as well as immature OSNs exhibiting the hallmarks of ongoing differentiation including GAP43, PGP9.5, but the absence of olfactory marker protein. Some of the GFP-labeled OSNs show characteristics of more mature yet still developing OSNs including the presence of cilia extending from the apical knob and expression of NaV1.5, a component of the transduction cascade. These findings suggest that 5-HT3a is indicative of a proliferative or developmental state, regardless of age, and that the 5-HT3A GFP mice may prove useful for future studies of neurogenesis in the olfactory epithelium. J. Comp. Neurol. 525:1743-1755, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas E Finger
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado
| | - Dianna L Bartel
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado.,Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Nicole Shultz
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Noah B Goodson
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado
| | - Charles A Greer
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut.,Interdepartmental Neuroscience Graduate Program, Yale University, New Haven, Connecticut
| |
Collapse
|
20
|
Estacion M, Waxman SG. Nonlinear effects of hyperpolarizing shifts in activation of mutant Na v1.7 channels on resting membrane potential. J Neurophysiol 2017; 117:1702-1712. [PMID: 28148645 DOI: 10.1152/jn.00898.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 01/16/2023] Open
Abstract
The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the "late" current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study.NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized.
Collapse
Affiliation(s)
- Mark Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and.,Rehabilitation Research Center, Department of Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and .,Rehabilitation Research Center, Department of Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
21
|
Dionne VE. Spontaneously active NaV1.5 sodium channels may underlie odor sensitivity. J Neurophysiol 2016; 116:776-83. [PMID: 27193318 DOI: 10.1152/jn.00114.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/14/2016] [Indexed: 01/24/2023] Open
Abstract
The olfactory system is remarkably sensitive to airborne odor molecules, but precisely how very low odor concentrations bordering on just a few molecules per olfactory sensory neuron can trigger graded changes in firing is not clear. This report reexamines signaling in olfactory sensory neurons in light of the recent account of NaV1.5 sodium channel-mediated spontaneous firing. Using a model of spontaneous channel activity, the study shows how even submillivolt changes in membrane potential elicited by odor are expected to cause meaningful changes in NaV1.5-dependent firing. The results suggest that the random window currents of NaV1.5 channels may underpin not only spontaneous firing in olfactory sensory neurons but the cellular response to odor as well, thereby ensuring the robustness and sensitivity of signaling that is especially important for low odor concentrations.
Collapse
|