1
|
Chen Y, Liu Y, Song Y, Zhao S, Li B, Sun J, Liu L. Therapeutic applications and potential mechanisms of acupuncture in migraine: A literature review and perspectives. Front Neurosci 2022; 16:1022455. [PMID: 36340786 PMCID: PMC9630645 DOI: 10.3389/fnins.2022.1022455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Acupuncture is commonly used as a treatment for migraines. Animal studies have suggested that acupuncture can decrease neuropeptides, immune cells, and proinflammatory and excitatory neurotransmitters, which are associated with the pathogenesis of neuroinflammation. In addition, acupuncture participates in the development of peripheral and central sensitization through modulation of the release of neuronal-sensitization-related mediators (brain-derived neurotrophic factor, glutamate), endocannabinoid system, and serotonin system activation. Clinical studies have demonstrated that acupuncture may be a beneficial migraine treatment, particularly in decreasing pain intensity, duration, emotional comorbidity, and days of acute medication intake. However, specific clinical effectiveness has not been substantiated, and the mechanisms underlying its efficacy remain obscure. With the development of biomedical and neuroimaging techniques, the neural mechanism of acupuncture in migraine has gained increasing attention. Neuroimaging studies have indicated that acupuncture may alter the abnormal functional activity and connectivity of the descending pain modulatory system, default mode network, thalamus, frontal-parietal network, occipital-temporal network, and cerebellum. Acupuncture may reduce neuroinflammation, regulate peripheral and central sensitization, and normalize abnormal brain activity, thereby preventing pain signal transmission. To summarize the effects and neural mechanisms of acupuncture in migraine, we performed a systematic review of literature about migraine and acupuncture. We summarized the characteristics of current clinical studies, including the types of participants, study designs, and clinical outcomes. The published findings from basic neuroimaging studies support the hypothesis that acupuncture alters abnormal neuroplasticity and brain activity. The benefits of acupuncture require further investigation through basic and clinical studies.
Collapse
|
2
|
The Anti-CGRP Antibody Fremanezumab Lowers CGRP Release from Rat Dura Mater and Meningeal Blood Flow. Cells 2022; 11:cells11111768. [PMID: 35681463 PMCID: PMC9179471 DOI: 10.3390/cells11111768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies directed against the neuropeptide calcitonin gene-related peptide (CGRP) belong to a new generation of therapeutics that are effective in the prevention of migraine. CGRP, a potent vasodilator, is strongly implicated in the pathophysiology of migraine, but its role remains to be fully elucidated. The hemisected rat head preparation and laser Doppler flowmetry were used to examine the effects on CGRP release from the dura mater and meningeal blood flow of the subcutaneously injected anti-CGRP monoclonal antibody fremanezumab at 30 mg/kg, when compared to an isotype control antibody. Some rats were administered glycerol trinitrate (GTN) intraperitoneally to produce a migraine-like sensitized state. When compared to the control antibody, the fremanezumab injection was followed by reduced basal and capsaicin-evoked CGRP release from day 3 up to 30 days. The difference was enhanced after 4 h of GTN application. The samples from the female rats showed a higher CGRP release compared to that of the males. The increases in meningeal blood flow induced by acrolein (100 µM) and capsaicin (100 nM) were reduced 13–20 days after the fremanezumab injection, and the direct vasoconstrictor effect of high capsaicin (10 µM) was intensified. In conclusion, fremanezumab lowers the CGRP release and lasts up to four weeks, thereby lowering the CGRP-dependent meningeal blood flow. The antibody may not only prevent the released CGRP from binding but may also influence the CGRP release stimulated by noxious agents relevant for the generation of migraine pain.
Collapse
|
3
|
Abstract
Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.
Collapse
Affiliation(s)
- Jan Hoffmann
- 1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serapio M Baca
- 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Simon Akerman
- 3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
4
|
Okada S, Saito H, Matsuura Y, Mikuzuki L, Sugawara S, Onose H, Asaka J, Ohara K, Lee J, Iinuma T, Katagiri A, Iwata K. Upregulation of calcitonin gene-related peptide, neuronal nitric oxide synthase, and phosphorylated extracellular signal-regulated kinase 1/2 in the trigeminal ganglion after bright light stimulation of the eye in rats. J Oral Sci 2019; 61:146-155. [PMID: 30918211 DOI: 10.2334/josnusd.18-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bright light stimulation of the eye activates trigeminal subnucleus caudalis (Vc) neurons in rats. Sensory information is conveyed to the Vc via the trigeminal ganglion (TG). Thus, it is likely that TG neurons respond to photic stimulation and are involved in photic hypersensitivity. However, the mechanisms underlying this process are unclear. Therefore, the hypothesis in this study is bright light stimulation enhances the excitability of TG neurons involved in photic hypersensitivity. Expressions of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase (nNOS) were significantly higher in TG neurons from 5 min to 12 h after photic stimulation of the eye. Phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2) was enhanced in TG neurons within 5 min after photic stimulation, while pERK1/2 immunoreactivity in satellite glial cells (SGCs) persisted for more than 12 h after the stimulus. Activation of SGCs was observed from 5 min to 2 h. Expression of CGRP, nNOS, and pERK1/2 was observed in small and medium TG neurons, and activation of SGCs and pERK1/2-immunoreactive SGCs encircling large TG neurons was accelerated after stimulation. These results suggest that upregulation of CGRP, nNOS, and pERK1/2 within the TG is involved in photic hypersensitivity.
Collapse
Affiliation(s)
- Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Yutaka Matsuura
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry.,Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
5
|
Mikhailov N, Leskinen J, Fagerlund I, Poguzhelskaya E, Giniatullina R, Gafurov O, Malm T, Karjalainen T, Gröhn O, Giniatullin R. Mechanosensitive meningeal nociception via Piezo channels: Implications for pulsatile pain in migraine? Neuropharmacology 2019; 149:113-123. [PMID: 30768945 DOI: 10.1016/j.neuropharm.2019.02.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 02/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recent discovery of mechanosensitive Piezo receptors in trigeminal ganglia suggested the novel molecular candidate for generation of migraine pain. However, the contribution of Piezo channels in migraine pathology was not tested yet. Therefore, in this study, we explored a potential involvement of Piezo channels in peripheral trigeminal nociception implicated in generation of migraine pain. METHODS We used immunohistochemistry, calcium imaging, calcitonin gene related peptide (CGRP) release assay and electrophysiology in mouse and rat isolated trigeminal neurons and rat hemiskulls to study action of various stimulants of Piezo receptors on migraine-related peripheral nociception. RESULTS We found that essential (35%) fraction of isolated rat trigeminal neurons responded to chemical Piezo1 agonist Yoda1 and about a half of Yoda1 positive neurons responded to hypo-osmotic solution (HOS) and a quarter to mechanical stimulation by focused ultrasound (US). In ex vivo hemiskull preparation, Yoda1 and HOS largely activated persistent nociceptive firing in meningeal branches of trigeminal nerve. By using our novel cluster analysis of pain spikes, we demonstrated that 42% of fibers responded to Piezo1 agonist and 20% of trigeminal fibers were activated by Yoda1 and by capsaicin, suggesting expression of Piezo receptors in TRPV1 positive peptidergic nociceptive nerve fibers. Consistent with this, Yoda1 promoted the release of the key migraine mediator CGRP from hemiskull preparation. CONCLUSION Taken together, our data suggest the involvement of mechanosensitive Piezo receptors, in particular, Piezo1 subtype in peripheral trigeminal nociception, which provides a new view on mechanotransduction in migraine pathology and suggests novel molecular targets for anti-migraine medicine.
Collapse
Affiliation(s)
- Nikita Mikhailov
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Jarkko Leskinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ilkka Fagerlund
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Ekaterina Poguzhelskaya
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Raisa Giniatullina
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia
| | - Tarja Malm
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Tero Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70211, Finland
| | - Olli Gröhn
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland; Laboratory of Neurobiology, Kazan Federal University, Kazan, 420008, Russia.
| |
Collapse
|
6
|
CGRP Induces Differential Regulation of Cytokines from Satellite Glial Cells in Trigeminal Ganglia and Orofacial Nociception. Int J Mol Sci 2019; 20:ijms20030711. [PMID: 30736422 PMCID: PMC6386987 DOI: 10.3390/ijms20030711] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/29/2023] Open
Abstract
Neuron-glia interactions contribute to pain initiation and sustainment. Intra-ganglionic (IG) secretion of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) modulates pain transmission through neuron-glia signaling, contributing to various orofacial pain conditions. The present study aimed to investigate the role of satellite glial cells (SGC) in TG in causing cytokine-related orofacial nociception in response to IG administration of CGRP. For that purpose, CGRP alone (10 μL of 10−5 M), Minocycline (5 μL containing 10 μg) followed by CGRP with one hour gap (Min + CGRP) were administered directly inside the TG in independent experiments. Rats were evaluated for thermal hyperalgesia at 6 and 24 h post-injection using an operant orofacial pain assessment device (OPAD) at three temperatures (37, 45 and 10 °C). Quantitative real-time PCR was performed to evaluate the mRNA expression of IL-1β, IL-6, TNF-α, IL-1 receptor antagonist (IL-1RA), sodium channel 1.7 (NaV 1.7, for assessment of neuronal activation) and glial fibrillary acidic protein (GFAP, a marker of glial activation). The cytokines released in culture media from purified glial cells were evaluated using antibody cytokine array. IG CGRP caused heat hyperalgesia between 6–24 h (paired-t test, p < 0.05). Between 1 to 6 h the mRNA and protein expressions of GFAP was increased in parallel with an increase in the mRNA expression of pro-inflammatory cytokines IL-1β and anti-inflammatory cytokine IL-1RA and NaV1.7 (one-way ANOVA followed by Dunnett’s post hoc test, p < 0.05). To investigate whether glial inhibition is useful to prevent nociception symptoms, Minocycline (glial inhibitor) was administered IG 1 h before CGRP injection. Minocycline reversed CGRP-induced thermal nociception, glial activity, and down-regulated IL-1β and IL-6 cytokines significantly at 6 h (t-test, p < 0.05). Purified glial cells in culture showed an increase in release of 20 cytokines after stimulation with CGRP. Our findings demonstrate that SGCs in the sensory ganglia contribute to the occurrence of pain via cytokine expression and that glial inhibition can effectively control the development of nociception.
Collapse
|
7
|
Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol 2018; 40:301-314. [PMID: 29568973 DOI: 10.1007/s00281-018-0676-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of "sterile inflammation" in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) has long been a focus of migraine research, since it turned out that inhibition of CGRP or CGRP receptors by antagonists or monoclonal IgG antibodies was therapeutic in frequent and chronic migraine. This contribution deals with the questions, from which sites CGRP is released, where it is drained and where it acts to cause its headache proliferating effects in the trigeminovascular system. RESULTS The available literature suggests that the bulk of CGRP is released from trigeminal afferents both in meningeal tissues and at the first synapse in the spinal trigeminal nucleus. CGRP may be drained off into three different compartments, the venous blood plasma, the cerebrospinal fluid and possibly the glymphatic system. CGRP receptors in peripheral tissues are located on arterial vessel walls, mononuclear immune cells and possibly Schwann cells; within the trigeminal ganglion they are located on neurons and glial cells; in the spinal trigeminal nucleus they can be found on central terminals of trigeminal afferents. All these structures are potential signalling sites for CGRP, where CGRP mediates arterial vasodilatation but not direct activation of trigeminal afferents. In the spinal trigeminal nucleus a facilitating effect on synaptic transmission seems likely. In the trigeminal ganglion CGRP is thought to initiate long-term changes including cross-signalling between neurons and glial cells based on gene expression. In this way, CGRP may upregulate the production of receptor proteins and pro-nociceptive molecules. CONCLUSIONS CGRP and other big molecules cannot easily pass the blood-brain barrier. These molecules may act in the trigeminal ganglion to influence the production of pronociceptive substances and receptors, which are transported along the central terminals into the spinal trigeminal nucleus. In this way peripherally acting therapeutics can have a central antinociceptive effect.
Collapse
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|
9
|
Yuan H, Lauritsen CG, Kaiser EA, Silberstein SD. CGRP Monoclonal Antibodies for Migraine: Rationale and Progress. BioDrugs 2017; 31:487-501. [DOI: 10.1007/s40259-017-0250-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Li Z, Zeng F, Yin T, Lan L, Makris N, Jorgenson K, Guo T, Wu F, Gao Y, Dong M, Liu M, Yang J, Li Y, Gong Q, Liang F, Kong J. Acupuncture modulates the abnormal brainstem activity in migraine without aura patients. NEUROIMAGE-CLINICAL 2017; 15:367-375. [PMID: 28580293 PMCID: PMC5447510 DOI: 10.1016/j.nicl.2017.05.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 02/05/2023]
Abstract
Migraine is a common neurological disease with a high prevalence and unsatisfactory treatment options. The specific pathophysiological mechanisms of migraine remain unclear, which restricts the development of effective treatments for this prevalent disorder. The aims of this study were to 1) compare the spontaneous brain activity differences between Migraine without Aura (MwoA) patients and healthy controls (HCs), using amplitude of low-frequency fluctuations (ALFF) calculation method, and 2) explore how an effective treatment (verum acupuncture) could modulate the ALFF of MwoA patients. One hundred MwoA patients and forty-six matched HCs were recruited. Patients were randomized to four weeks' verum acupuncture, sham acupuncture, and waiting list groups. Patients had resting state BOLD-fMRI scan before and after treatment, while HCs only had resting state BOLD-fMRI scan at baseline. Headache intensity, headache frequency, self-rating anxiety and self-rating depression were used for clinical efficacy evaluation. Compared with HCs, MwoA patients showed increased ALFF in posterior insula and putamen/caudate, and reduced ALFF in rostral ventromedial medulla (RVM)/trigeminocervical complex (TCC). After longitudinal verum acupuncture treatment, the decreased ALFF of the RVM/TCC was normalized in migraine patients. Verum acupuncture and sham acupuncture have different modulation effects on ALFF of RVM/TCC in migraine patients. Our results suggest that impairment of the homeostasis of the trigeminovascular nociceptive pathway is involved in the neural pathophysiology of migraines. Effective treatments, such as verum acupuncture, could help to restore this imbalance.
Collapse
Affiliation(s)
- Zhengjie Li
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Zeng
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Yin
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lei Lan
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nikos Makris
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Taipin Guo
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Feng Wu
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yujie Gao
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingkai Dong
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mailan Liu
- Acupuncture & Tuina School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Yang
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fanrong Liang
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Corresponding authors.
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Corresponding authors.
| |
Collapse
|
11
|
Cairns BE, O'Brien M, Dong XD, Gazerani P. Elevated Fractalkine (CX3CL1) Levels in the Trigeminal Ganglion Mechanically Sensitize Temporalis Muscle Nociceptors. Mol Neurobiol 2016; 54:3695-3706. [PMID: 27209190 DOI: 10.1007/s12035-016-9935-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
It has been proposed that after nerve injury or tissue inflammation, fractalkine (CX3CL1) released from dorsal root ganglion neurons acts on satellite glial cells (SGCs) through CX3C receptor 1 (CX3CR1) to induce neuroplastic changes. The existence and importance of fractalkine/CX3CR1 signaling in the trigeminal ganglia has not yet been clarified. This study investigated (1) whether trigeminal ganglion neurons that innervate temporalis muscle and their associated SGCs contain fractalkine and/or express CX3CR1, (2) if intraganglionic injection of fractalkine increases the mechanical sensitivity of temporalis muscle afferent fibers, (3) whether complete Freund's adjuvant (CFA)-induced inflammation of the temporalis muscle alters the expression of fractalkine or its receptor in the trigeminal ganglion, and (4) if intraganglionic administration of CX3CR1 antibodies alters afferent mechanical sensitivity. Immunohistochemistry and in vivo electrophysiological recordings in male and female rats were used to address these questions. It was found that ∼50 % of temporalis ganglion neurons and ∼25 % of their associated SGCs express CX3CR1, while only neurons expressed fractalkine. Temporalis muscle inflammation increased the expression of fractalkine, but only in male rats. Intraganglionic injection of fractalkine (25 g/ml; 3 μl) induced prolonged afferent mechanical sensitization. Intraganglionic injection of CX3CR1 antibody increased afferent mechanical threshold, but this effect was greater in controls than in rats with CFA-induced muscle inflammation. These findings raise the possibility that basal fractalkine signalling within the trigeminal ganglion plays an important role in mechanical sensitivity of masticatory muscle sensory afferent fibers and that inhibition of CX3CR1 signaling within the trigeminal ganglia may induce analgesia through a peripheral mechanism.
Collapse
Affiliation(s)
- Brian E Cairns
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada.,SMI®, Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7-D3, 9220, Aalborg East, Denmark
| | - Melissa O'Brien
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Xu-Dong Dong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Parisa Gazerani
- SMI®, Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Fredrik Bajers Vej 7-D3, 9220, Aalborg East, Denmark.
| |
Collapse
|
12
|
Dux M, Will C, Vogler B, Filipovic MR, Messlinger K. Meningeal blood flow is controlled by H2 S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 2015; 173:431-45. [PMID: 25884403 DOI: 10.1111/bph.13164] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Meningeal blood flow is controlled by CGRP released from trigeminal afferents and NO mainly produced in arterial endothelium. The vasodilator effect of NO may be due to the NO-derived compound, nitroxyl (HNO), generated through reaction with endogenous H2 S. We investigated the involvement of HNO in CGRP release and meningeal blood flow. EXPERIMENTAL APPROACH Blood flow in exposed dura mater of rats was recorded by laser Doppler flowmetry. CGRP release from the dura mater in the hemisected rat head was quantified using an elisa. NO and H2 S were localized histochemically with specific sensors. KEY RESULTS Topical administration of the NO donor diethylamine-NONOate increased meningeal blood flow by 30%. Pretreatment with oxamic acid, an inhibitor of H2 S synthesis, reduced this effect. Administration of Na2 S increased blood flow by 20%, an effect abolished by the CGRP receptor antagonist CGRP8-37 or the TRPA1 channel antagonist HC030031 and reduced when endogenous NO synthesis was blocked. Na2 S dose-dependently increased CGRP release two- to threefold. Co-administration of diethylamine-NONOate facilitated CGRP release, while inhibition of endogenous NO or H2 S synthesis lowered basal CGRP release. NO and H2 S were mainly localized in arterial vessels, HNO additionally in nerve fibre bundles. HNO staining was lost after treatment with L-NMMA and oxamic acid. CONCLUSIONS AND IMPLICATIONS NO and H2 S cooperatively increased meningeal blood flow by forming HNO, which activated TRPA1 cation channels in trigeminal fibres, inducing CGRP release. This HNO-TRPA1-CGRP signalling pathway may be relevant to the pathophysiology of headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Christine Will
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Li Y, Wang S, Ran K, Hu Z, Liu Z, Duan K. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis. Mol Med Rep 2015; 12:2953-60. [PMID: 25936412 DOI: 10.3892/mmr.2015.3697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/15/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Saiying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Ran
- Department of Anesthesiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhonghua Hu
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaoqian Liu
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kaiming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
14
|
Dussor G, Yan J, Xie JY, Ossipov MH, Dodick DW, Porreca F. Targeting TRP channels for novel migraine therapeutics. ACS Chem Neurosci 2014; 5:1085-96. [PMID: 25138211 PMCID: PMC4240253 DOI: 10.1021/cn500083e] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
![]()
Migraine is increasingly understood
to be a disorder of the brain.
In susceptible individuals, a variety of “triggers”
may influence altered central excitability, resulting in the activation
and sensitization of trigeminal nociceptive afferents surrounding
blood vessels (i.e., the trigeminovascular system), leading to migraine
pain. Transient receptor potential (TRP) channels are expressed in
a subset of dural afferents, including those containing calcitonin
gene related peptide (CGRP). Activation of TRP channels promotes excitation
of nociceptive afferent fibers and potentially lead to pain. In addition
to pain, allodynia to mechanical and cold stimuli can result from
sensitization of both peripheral afferents and of central pain pathways.
TRP channels respond to a variety of endogenous conditions including
chemical mediators and low pH. These channels can be activated by
exogenous stimuli including a wide range of chemical and environmental
irritants, some of which have been demonstrated to trigger migraine
in humans. Activation of TRP channels can elicit CGRP release, and
blocking the effects of CGRP through receptor antagonism or antibody
strategies has been demonstrated to be effective in the treatment
of migraine. Identification of approaches that can prevent activation
of TRP channels provides an additional novel strategy for discovery
of migraine therapeutics.
Collapse
Affiliation(s)
- Gregory Dussor
- School
of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, United States
| | - J. Yan
- Department
of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Jennifer Y. Xie
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| | - Michael H. Ossipov
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| | - David W. Dodick
- Department
of Neurology, Mayo Clinic Arizona, Phoenix, Arizona 85054, United States
| | - Frank Porreca
- Department
of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona 85724, United States
| |
Collapse
|
15
|
Capuano A, Greco MC, Navarra P, Tringali G. Correlation between algogenic effects of calcitonin-gene-related peptide (CGRP) and activation of trigeminal vascular system, in an in vivo experimental model of nitroglycerin-induced sensitization. Eur J Pharmacol 2014; 740:97-102. [PMID: 24998872 DOI: 10.1016/j.ejphar.2014.06.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/03/2023]
Abstract
The neural mechanism(s) underlying migraine remain poorly defined at present; preclinical and clinical studies show an involvement of CGRP in this disorder. However current evidence pointed out that CGRP does not exert an algogenic action per se, but it is able to mediate migraine pain only if the trigeminal-vascular system is sensitized. The present study was addressed to investigate CGRP-evoked behavior in nitric oxide (NO) sensitized rats, using an experimental model of nitroglycerin induced sensitization of trigeminal system, looking at neuropeptide release from different cerebral areas after the intra-peritoneal (i.p.) administration of NO-donors. CGRP injected into the rat whisker pad did not induce significant changes in face rubbing behavior compared to controls. On the contrary, CGRP injected in animals pre-treated with 10mg/kg nitroglycerin significantly increased the time spent in face rubbing. Nitroglycerin pre-treated animals did not show any rubbing behavior after locally injected saline. Furthermore, the i.p. treatment with nitroglycerin produced an increase of CGRP levels in brainstem and trigeminal ganglia, but not in the hypothalamus and hippocampus. The absolute amounts of CGRP produced in the brainstem were lower compared to those in the trigeminal ganglion; however, after nitroglycerin stimulation the percentage increase was higher in the brainstem. In conclusion, findings presented in this study suggest that CGRP induces a painful behavior in rats only after sensitization of trigeminal system; thus supporting the concept that a genetic as well as acquired predisposition to trigemino- vascular activation represents the neurobiological basis of CGRP nociceptive effects in migraineurs.
Collapse
Affiliation(s)
- Alessandro Capuano
- Division of Neurology, Bambino Gesù Children׳s Hospital, IRCCS, Rome, Italy.
| | | | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| |
Collapse
|
16
|
Bell IM. Calcitonin Gene-Related Peptide Receptor Antagonists: New Therapeutic Agents for Migraine. J Med Chem 2014; 57:7838-58. [DOI: 10.1021/jm500364u] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ian M. Bell
- Department of Discovery Chemistry,
Merck Research Laboratories, West
Point, Pennsylvania 19486, United States
| |
Collapse
|
17
|
Bhatt DK, Ramachandran R, Christensen SLT, Gupta S, Jansen-Olesen I, Olesen J. CGRP infusion in unanesthetized rats increases expression of c-Fos in the nucleus tractus solitarius and caudal ventrolateral medulla, but not in the trigeminal nucleus caudalis. Cephalalgia 2014; 35:220-33. [PMID: 24895375 DOI: 10.1177/0333102414535995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Calcitonin gene-related peptide (CGRP) and glyceryl trinitrate (GTN) infusion in migraineurs provokes headache resembling spontaneous migraine, and CGRP receptor antagonists are effective in the treatment of acute migraine. We hypothesized that CGRP infusion would increase molecular markers of neuronal activation in migraine-relevant tissues of the rat. METHODS CGRP was infused intravenously (i.v.) in freely moving rats to circumvent factors like anesthesia, acute surgery and severe hypotension, the three confounding factors for c-Fos expression. The trigeminal nucleus caudalis (TNC) was isolated at different time points after CGRP infusion. The level of c-Fos mRNA and protein expression in TNC were analyzed by qPCR and immunohistochemistry. c-Fos-stained nuclei were also counted in the nucleus tractus solitarius (NTS) and caudal ventrolateral medulla (CVLM), integrative sites in the brain stem for processing cardiovascular signals. We also investigated Zif268 protein expression (another immediate early gene) in TNC. The protein expression of p-ERK, p-CREB and c-Fos was analyzed in dura mater, trigeminal ganglion (TG) and TNC samples using Western blot. RESULTS CGRP infusion caused a significant dose-dependent fall in mean arterial blood pressure. No significant activation of c-Fos in the TNC at mRNA and protein levels was observed after CGRP infusion. A significant increase in c-Fos protein was observed in the NTS and CVLM in the brain stem. Zif268 expression in the TNC was also not changed after CGRP infusion. p-ERK was increased in the dura mater 30 minutes after CGRP infusion. CONCLUSION CGRP infusion increased the early expression of p-ERK in the dura mater but did not increase c-Fos and Zif268 expression in the TNC. The rats may, thus, differ from migraine patients, in whom infusion of CGRP caused headache and a delayed migraine attack. The rat CGRP infusion model with c-Fos or Zif268 as neuronal pain markers in TNC is unsuitable for antimigraine drug testing.
Collapse
Affiliation(s)
| | | | | | | | | | - Jes Olesen
- Department of Neurology, Glostrup Hospital, Denmark
| |
Collapse
|
18
|
Hansen JM, Ashina M. Calcitonin gene-related peptide and migraine with aura: A systematic review. Cephalalgia 2014; 34:695-707. [DOI: 10.1177/0333102413520084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Calcitonin gene-related peptide (CGRP) is a key molecule in migraine pathophysiology. Most studies have focused on CGRP in relation to migraine without aura (MO). About one-third of migraine patients have attacks with aura (MA), and this is a systematic review of the current literature on CGRP and MA. Methods We performed a systematic literature search on MEDLINE for reports of CGRP and MA, covering basic science, animal and human studies as well as randomized clinical trials. Results The literature search identified 594 citations, of which 38 contained relevant, original data. Plasma levels of CGRP in MA patients are comparable to MO, but CGRP levels varied among studies. A number of animal studies, including knock-ins of familial hemiplegic migraine (FHM) genes, have examined the relationship between CGRP and cortical spreading depression. In patients, CGRP does not trigger migraine in FHM, but is a robust trigger of migraine-like headache both in MA and MO patients. The treatment effect of CGRP antagonists are well proven in the treatment of migraine, but no studies have studied the effect specifically in MA patients. Conclusion This systematic review indicates that the role of CGRP in MA is less studied than in MO. Further studies of the importance of CGRP for auras and migraine are needed.
Collapse
Affiliation(s)
- Jakob M Hansen
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
19
|
Ramachandran R, Bhatt DK, Ploug KB, Hay-Schmidt A, Jansen-Olesen I, Gupta S, Olesen J. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia 2013; 34:136-47. [PMID: 24000375 DOI: 10.1177/0333102413502735] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIM Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) systems on the GTN-induced neuronal activation in this model. MATERIALS AND METHODS The femoral vein was catheterised in rats and GTN was infused (4 µg/kg/min, for 20 minutes, intravenously). Immunohistochemistry was performed to analyse Fos, nNOS and CGRP and Western blot for measuring nNOS protein expression. The effect of olcegepant, L-nitro-arginine methyl ester (L-NAME) and neurokinin (NK)-1 receptor antagonist L-733060 were analysed on Fos activation. RESULTS GTN-treated rats showed a significant increase of nNOS and CGRP in dura mater and CGRP in the trigeminal nucleus caudalis (TNC). Upregulation of Fos was observed in TNC four hours after the infusion. This activation was inhibited by pre-treatment with olcegepant. Pre-treatment with L-NAME and L-733060 also significantly inhibited GTN induced Fos expression. CONCLUSION The present study indicates that blockers of CGRP, NOS and NK-1 receptors all inhibit GTN induced Fos activation. These findings also predict that pre-treatment with olcegepant may be a better option than post-treatment to study its inhibitory effect in GTN migraine models.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Danish Headache Centre, Department of Neurology, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Messlinger K, Lennerz JK, Eberhardt M, Fischer MJ. CGRP and NO in the Trigeminal System: Mechanisms and Role in Headache Generation. Headache 2012; 52:1411-27. [DOI: 10.1111/j.1526-4610.2012.02212.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|