1
|
Chen Z, Terman DH, Travers SP, Travers JB. Regulation of Rostral Nucleus of the Solitary Tract Responses to Afferent Input by A-type K+ Current. Neuroscience 2022; 495:115-125. [PMID: 35659639 PMCID: PMC9253083 DOI: 10.1016/j.neuroscience.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Responses in the rostral (gustatory) nucleus of the solitary tract (rNST) are modified by synaptic interactions within the nucleus and the constitutive membrane properties of the neurons themselves. The potassium current IA is one potential source of modulation. In the caudal NST, projection neurons with IA show lower fidelity to afferent stimulation compared to cells without. We explored the role of an A-type K+ current (IA) in modulating the response to afferent stimulation and GABA-mediated inhibition in the rNST using whole cell patch clamp recording in transgenic mice that expressed channelrhodopsin (ChR2 H134R) in GABAergic neurons. The presence of IA was determined in current clamp and the response to electrical stimulation of afferent fibers in the solitary tract was assessed before and after treatment with the specific Kv4 channel blocker AmmTX3. Blocking IA significantly increased the response to afferent stimulation by 53%. Using dynamic clamp to create a synthetic IA conductance, we demonstrated a significant 14% decrease in responsiveness to afferent stimulation in cells lacking IA. Because IA reduced excitability and is hyperpolarization-sensitive, we examined whether IA contributed to the inhibition resulting from optogenetic release of GABA. Although blocking IA decreased the percent suppression induced by GABA, this effect was attributable to the increased responsiveness resulting from AmmTX3, not to a change in the absolute magnitude of suppression. We conclude that rNST responses to afferent input are regulated independently by IA and GABA.
Collapse
Affiliation(s)
- Z Chen
- Division of Biosciences, Ohio State University, United States
| | - D H Terman
- Department of Mathematics, Ohio State University, United States
| | - S P Travers
- Division of Biosciences, Ohio State University, United States
| | - J B Travers
- Division of Biosciences, Ohio State University, United States.
| |
Collapse
|
2
|
Chen Z, Boxwell A, Conte C, Haas T, Harley A, Terman DH, Travers SP, Travers JB. Kv4 channel expression and kinetics in GABAergic and non-GABAergic rNST neurons. J Neurophysiol 2020; 124:1727-1742. [PMID: 32997557 DOI: 10.1152/jn.00396.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rostral nucleus of the solitary tract (rNST) serves as the first central relay in the gustatory system. In addition to synaptic interactions, central processing is also influenced by the ion channel composition of individual neurons. For example, voltage-gated K+ channels such as outward K+ current (IA) can modify the integrative properties of neurons. IA currents are prevalent in rNST projection cells but are also found to a lesser extent in GABAergic interneurons. However, characterization of the kinetic properties of IA, the molecular basis of these currents, as well as the consequences of IA on spiking properties of identified rNST cells is lacking. Here, we show that IA in rNST GABAergic (G+) and non-GABAergic (G-) neurons share a common molecular basis. In both cell types, there was a reduction in IA following treatment with the specific Kv4 channel blocker AmmTx3. However, the kinetics of activation and inactivation of IA in the two cell types were different with G- neurons having significantly more negative half-maximal activation and inactivation values. Likewise, under current clamp, G- cells had significantly longer delays to spike initiation in response to a depolarizing stimulus preceded by a hyperpolarizing prepulse. Computational modeling and dynamic clamp suggest that differences in the activation half-maximum may account for the differences in delay. We further observed evidence for a window current under both voltage clamp and current clamp protocols. We speculate that the location of Kv4.3 channels on dendrites, together with a window current for IA at rest, serves to regulate excitatory afferent inputs.NEW & NOTEWORTHY Here, we demonstrate that the transient outward K+ current IA occurs in both GABAergic and non-GABAergic neurons via Kv4.3 channels in the rostral (gustatory) solitary nucleus. Although found in both cell types, IA is more prevalent in non-GABAergic cells; a larger conductance at more negative potentials leads to a greater impact on spike initiation compared with GABAergic neurons. An IA window current further suggests that IA can regulate excitatory afferent input to the nucleus.
Collapse
Affiliation(s)
- Z Chen
- Division of Biosciences, Ohio State University, Columbus, Ohio
| | - A Boxwell
- College of Medicine, Ohio State University, Columbus, Ohio
| | - C Conte
- Department of Statistics, Ohio State University, Columbus, Ohio
| | - T Haas
- Division of Biosciences, Ohio State University, Columbus, Ohio
| | - A Harley
- Division of Biosciences, Ohio State University, Columbus, Ohio
| | - D H Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio
| | - S P Travers
- Division of Biosciences, Ohio State University, Columbus, Ohio
| | - J B Travers
- Division of Biosciences, Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Travers S, Breza J, Harley J, Zhu J, Travers J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J Comp Neurol 2018; 526:2319-2338. [PMID: 30325514 PMCID: PMC6193849 DOI: 10.1002/cne.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
The nucleus of the solitary tract is a potential site for taste-visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan-neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2-rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain.
Collapse
Affiliation(s)
- Susan Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Breza
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jacob Harley
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - JiuLin Zhu
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Boxwell A, Terman D, Frank M, Yanagawa Y, Travers JB. A computational analysis of signal fidelity in the rostral nucleus of the solitary tract. J Neurophysiol 2018; 119:771-785. [PMID: 29093172 PMCID: PMC5899313 DOI: 10.1152/jn.00624.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Neurons in the rostral nucleus of the solitary tract (rNST) convey taste information to both local circuits and pathways destined for forebrain structures. This nucleus is more than a simple relay, however, because rNST neurons differ in response rates and tuning curves relative to primary afferent fibers. To systematically study the impact of convergence and inhibition on firing frequency and breadth of tuning (BOT) in rNST, we constructed a mathematical model of its two major cell types: projection neurons and inhibitory neurons. First, we fit a conductance-based neuronal model to data derived from whole cell patch-clamp recordings of inhibitory and noninhibitory neurons in a mouse expressing Venus under the control of the VGAT promoter. We then used in vivo chorda tympani (CT) taste responses as afferent input to modeled neurons and assessed how the degree and type of convergence influenced model cell output frequency and BOT for comparison with in vivo gustatory responses from the rNST. Finally, we assessed how presynaptic and postsynaptic inhibition impacted model cell output. The results of our simulations demonstrated 1) increasing numbers of convergent afferents (2-10) result in a proportional increase in best-stimulus firing frequency but only a modest increase in BOT, 2) convergence of afferent input selected from the same best-stimulus class of CT afferents produced a better fit to real data from the rNST compared with convergence of randomly selected afferent input, and 3) inhibition narrowed the BOT to more realistically model the in vivo rNST data. NEW & NOTEWORTHY Using a combination of in vivo and in vitro neurophysiology together with conductance-based modeling, we show how patterns of convergence and inhibition interact in the rostral (gustatory) solitary nucleus to maintain signal fidelity. Although increasing convergence led to a systematic increase in firing frequency, tuning specificity was maintained with a pattern of afferent inputs sharing the best-stimulus compared with random inputs. Tonic inhibition further enhanced response fidelity.
Collapse
Affiliation(s)
- Alison Boxwell
- College of Medicine, Ohio State University , Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University , Columbus, Ohio
| | - Marion Frank
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center , Farmington, Connecticut
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
5
|
Chen Z, Travers SP, Travers JB. Inhibitory modulation of optogenetically identified neuron subtypes in the rostral solitary nucleus. J Neurophysiol 2016; 116:391-403. [PMID: 27146980 DOI: 10.1152/jn.00168.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Inhibition is presumed to play an important role in gustatory processing in the rostral nucleus of the solitary tract (rNST). One source of inhibition, GABA, is abundant within the nucleus and comes both from local, intrasolitary sources and from outside the nucleus. In addition to the receptor-mediated effects of GABA on rNST neurons, the hyperpolarization-sensitive currents, Ih and IA, have the potential to further modulate afferent signals. To elucidate the effects of GABAergic modulation on solitary tract (ST)-evoked responses in phenotypically defined rNST neurons and to define the presence of IA and Ih in the same cells, we combined in vitro recording and optogenetics in a transgenic mouse model. This mouse expresses channelrhodopsin 2 (ChR2) in GAD65-expressing GABAergic neurons throughout the rNST. GABA positive (GABA+) neurons differed from GABA negative (GABA-) neurons in their response to membrane depolarization and ST stimulation. GABA+ neurons had lower thresholds to direct membrane depolarization compared with GABA- neurons, but GABA- neurons responded more faithfully to ST stimulation. Both IA and Ih were present in subsets of GABA+ and GABA- neurons. Interestingly, GABA+ neurons with Ih were more responsive to afferent stimulation than inhibitory neurons devoid of these currents, whereas GABA- neurons with IA were more subject to inhibitory modulation. These results suggest that the voltage-gated channels underlying IA and Ih play an important role in modulating rNST output through a circuit of feedforward inhibition.
Collapse
Affiliation(s)
- Z Chen
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - S P Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - J B Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract. Brain Struct Funct 2014; 221:1125-37. [PMID: 25503820 DOI: 10.1007/s00429-014-0959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|