1
|
Mayfield DL, Holt NC. Does force depression resulting from shortening against series elasticity contribute to the activation dependence of optimum length? Am J Physiol Cell Physiol 2025; 328:C528-C540. [PMID: 39726260 DOI: 10.1152/ajpcell.00638.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
The optimum length for force generation (L0) increases as activation is reduced, challenging classic theories of muscle contraction. Although the activation dependence of L0 is seemingly consistent with length-dependent Ca2+ sensitivity, this mechanism cannot explain the apparent force dependence of L0 or the effect of series compliance on activation-related shifts in L0. We have tested a theory proposing that the activation dependence of L0 relates to force depression resulting from shortening against series elasticity. This theory predicts that significant series compliance would cause tetanic L0 to be shorter than the length corresponding to optimal filament overlap, thereby increasing the activation dependence of L0. We tested this prediction by determining L0 and maximum tetanic force (P0) with (L0_spring, P0_spring) and without added compliance in bullfrog semitendinosus muscles. The activation dependence of L0 was characterized with the addition of twitch and doublet contractions. Springs attached to muscles gave added fixed-end compliances of 11%-39% and induced force depression for tetanic fixed-end contractions (P0_spring < P0). We found strong, negative correlations between spring compliance and both P0_spring (r2 = 0.89-0.91) and L0_spring (r2 = 0.60-0.63; P < 0.001), whereas the activation dependence of L0 was positively correlated to added compliance (r2 = 0.45, P = 0.011). However, since the compliance-mediated reduction in L0 was modest relative to the activation-related shift reported for the bullfrog plantaris muscle, additional factors must be considered. Our demonstration of force depression under novel conditions adds support to the involvement of a stress-induced inhibition of cross-bridge binding.NEW & NOTEWORTHY Length-dependent Ca2+ sensitivity does not fully explain the activation dependence of optimum length (L0). We demonstrate using an isolated muscle preparation and added series compliance that substantial force depression can arise during an isometric contraction, causing tetanic L0 to shift to a shorter length. Our findings illustrate that series compliance, via the work and length dependencies of force depression, partially uncouples force generation from myofilament overlap, which ultimately increases the activation (or force) dependence of L0.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States
| | - Natalie C Holt
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States
| |
Collapse
|
2
|
Carswell TMR, Hasan M, Giles JW. A scoping review and evaluation of open-source transtibial amputation musculoskeletal models for female populations. Prosthet Orthot Int 2024:00006479-990000000-00264. [PMID: 39259587 DOI: 10.1097/pxr.0000000000000372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/14/2024] [Indexed: 09/13/2024]
Abstract
Musculoskeletal modeling is often used to study people with transtibial amputations. Females in this population are of particular interest as they are underrepresented in research, experience unique challenges, and demonstrate gait biomechanics distinct from males. Because generic models often neglect innate variations between populations, it is important to determine whether data used to develop a model are representative of the population studied. The objective of this study was to review and analyze existing transtibial amputation musculoskeletal models, establish a database from the information compiled, and use the database to select the model most relevant for studying female populations. A scoping search was performed and a database was created based on data detailing the eligible models. Models were evaluated through a weighted decision process based on criteria of their representation of females with transtibial amputations, prosthetic functionality, development transparency, overall functionality, and experimental validation methods. The scoping review identified 3 studies, Willson et al., LaPrè et al., and Miller and Esposito. A database detailing these models was established. The Willson model scored highest on all criteria except overall functionality, where the LaPrè model outscored it. Based on the established weightings, the Willson model was classed most appropriate for the stated goals. The created database can be used by other researchers to guide their own modeling studies, irrespective of the population of focus. Of the 3, the Willson model was found most relevant for studying females with transtibial amputations. This model will be used in future work investigating and addressing challenges of females with transtibial amputations.
Collapse
Affiliation(s)
- Tess M R Carswell
- Orthopaedic Technologies and Biomechanics Laboratory, Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | | | | |
Collapse
|
3
|
Lubel E, Sgambato BG, Rohlen R, Ibanez J, Barsakcioglu DY, Tang MX, Farina D. Non-Linearity in Motor Unit Velocity Twitch Dynamics: Implications for Ultrafast Ultrasound Source Separation. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3699-3710. [PMID: 37703141 DOI: 10.1109/tnsre.2023.3315146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Ultrasound (US) muscle image series can be used for peripheral human-machine interfacing based on global features, or even on the decomposition of US images into the contributions of individual motor units (MUs). With respect to state-of-the-art surface electromyography (sEMG), US provides higher spatial resolution and deeper penetration depth. However, the accuracy of current methods for direct US decomposition, even at low forces, is relatively poor. These methods are based on linear mathematical models of the contributions of MUs to US images. Here, we test the hypothesis of linearity by comparing the average velocity twitch profiles of MUs when varying the number of other concomitantly active units. We observe that the velocity twitch profile has a decreasing peak-to-peak amplitude when tracking the same target motor unit at progressively increasing contraction force levels, thus with an increasing number of concomitantly active units. This observation indicates non-linear factors in the generation model. Furthermore, we directly studied the impact of one MU on a neighboring MU, finding that the effect of one source on the other is not symmetrical and may be related to unit size. We conclude that a linear approximation is partly limiting the decomposition methods to decompose full velocity twitch trains from velocity images, highlighting the need for more advanced models and methods for US decomposition than those currently employed.
Collapse
|
4
|
Model-Based Analysis of Muscle Strength and EMG-Force Relation with respect to Different Patterns of Motor Unit Loss. Neural Plast 2021; 2021:5513224. [PMID: 34257638 PMCID: PMC8245245 DOI: 10.1155/2021/5513224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/02/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
This study presents a model-based sensitivity analysis of the strength of voluntary muscle contraction with respect to different patterns of motor unit loss. A motor unit pool model was implemented including simulation of a motor neuron pool, muscle force, and surface electromyogram (EMG) signals. Three different patterns of motor unit loss were simulated, including (1) motor unit loss restricted to the largest ones, (2) motor unit loss restricted to the smallest ones, and (3) motor unit loss without size restriction. The model outputs including muscle force amplitude, variability, and the resultant EMG-force relation were quantified under two different motor neuron firing strategies. It was found that motor unit loss restricted to the largest ones had the most dominant impact on muscle strength and significantly changed the EMG-force relation, while loss restricted to the smallest motor units had a pronounced effect on force variability. These findings provide valuable insight toward our understanding of the neurophysiological mechanisms underlying experimental observations of muscle strength, force control, and EMG-force relation in both normal and pathological conditions.
Collapse
|
5
|
Lim D, Castillo MD, Bergquist AJ, Milosevic M, Masani K. Contribution of Each Motor Point of Quadriceps Femoris to Knee Extension Torque During Neuromuscular Electrical Stimulation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:389-396. [PMID: 33465028 DOI: 10.1109/tnsre.2021.3052853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcutaneous neuromuscular electrical stimulation (NMES) can be used to activate the quadriceps femoris muscle to produce knee extension torque via seven distinct motor points, defined as the most sensitive locations on the muscle belly to electrical stimuli. However, it remains unclear how much individual motor points of the quadriceps femoris muscle contribute to the knee joint torque. Here we systematically investigated the contribution of each motor point of the quadriceps femoris muscle to the knee joint torque produced by paired electrical stimuli. Ten able-bodied individuals participated in this study. Paired electrical stimuli was applied by delivering electrical impulses on the motor points in all combinations among seven motor points (i.e., totaling to 127 combinations) at two different stimulation intensities (i.e., 25% and 50% of the maximum) while recording isometric knee joint torque. The contribution of individual motor points was estimated using statistical analyses. We found that a linear addition of twitch torques induced by single motor point stimulus overestimated the twitch torques induced by multiple motor point stimulations, suggesting overlaps in muscle fibres activated by each motor point. Using multiple linear regressions, we identified the average contribution of each motor point to the knee extension torque during paired electrical stimuli and found significant differences between these torque contributions. We demonstrated that seven distinct motor points can be activated for the quadriceps muscle group using paired electrical stimuli and identified the contribution of each motor point to knee extension torque during twitch muscle contraction; these findings provide useful information to design rehabilitation using NMES on quadriceps femoris muscles.
Collapse
|
6
|
Madarshahian S, Letizi J, Latash ML. Synergic control of a single muscle: The example of flexor digitorum superficialis. J Physiol 2020; 599:1261-1279. [DOI: 10.1113/jp280555] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology The Pennsylvania State University University Park PA USA
| | | | - Mark L. Latash
- Department of Kinesiology The Pennsylvania State University University Park PA USA
| |
Collapse
|
7
|
Holt NC. Beyond bouncy gaits: The role of multiscale compliance in skeletal muscle performance. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:50-59. [DOI: 10.1002/jez.2261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Natalie C. Holt
- Department of Biological Sciences; Northern Arizona University; Flagstaff Arizona
| |
Collapse
|
8
|
Raikova R, Celichowski J, Angelova S, Krutki P. A model of the rat medial gastrocnemius muscle based on inputs to motoneurons and on an algorithm for prediction of the motor unit force. J Neurophysiol 2018; 120:1973-1987. [PMID: 30020845 DOI: 10.1152/jn.00041.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The muscle force is the sum of forces of multiple motor units (MUs), which have different contractile properties. During movements, MUs develop unfused tetani, which result from summation of twitch-shape responses to individual stimuli, which are variable in amplitude and duration. The aim of the study was to develop a realistic muscle model that would integrate previously developed models of MU contractions and an algorithm for the prediction of tetanic forces. The proposed model of rat medial gastrocnemius muscle is based on physiological data: excitability and firing frequencies of motoneurons, contractile properties, and the number and proportion of MUs in the muscle. The MU twitches were modeled by a six-parameter analytical function. The excitability of motoneurons was modeled according to a distribution of their rheobase currents measured experimentally. Processes of muscle force regulation were modeled according to a common drive hypothesis. The excitation signal to motoneurons was modeled by two form types: triangular and trapezoid. The discharge frequencies of MUs, calculated individually for each MU, corresponded to those recorded for rhythmic firing of motoneurons. The force of the muscle was calculated as the sum of all recruited MUs. Participation of the three types of MUs in the developed muscle force was presented at different levels of the excitation signal to motoneurons. The model appears highly realistic and open for input data from various skeletal muscles with different compositions of MU types. The results were compared with three other models with different distribution of the input parameters. NEW & NOTEWORTHY The proposed mathematical model of rat medial gastrocnemius muscle is highly realistic because it is based strictly on experimentally determined motor unit contractile parameters and motoneuron properties. It contains the actual number and proportion of motor units and takes into consideration their different contributions to the whole muscle force, depending on the level of the excitation signal. The model is open for input data from other muscles, and additional physiological parameters can also be included.
Collapse
Affiliation(s)
- R Raikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - J Celichowski
- Department of Neurobiology, Poznan University of Physical Education , Poland
| | - S Angelova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - P Krutki
- Department of Neurobiology, Poznan University of Physical Education , Poland
| |
Collapse
|
9
|
Thompson CK, Negro F, Johnson MD, Holmes MR, McPherson LM, Powers RK, Farina D, Heckman CJ. Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output. J Physiol 2018; 596:2643-2659. [PMID: 29726002 DOI: 10.1113/jp276153] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be routinely recorded in humans. We have reengineered motor unit collection and decomposition approaches, originally developed in humans, to measure the neural drive to muscle and estimate muscle force generation in the in vivo cat model. Experimental, computational, and predictive approaches are used to demonstrate the validity of this approach across a wide range of modes to activate the motor pool. The utility of this approach is shown through the ability to track individual motor units across trials, allowing for better predictions of muscle force than the electromyography signal, and providing insights in to the stereotypical discharge characteristics in response to synaptic activation of the motor pool. This approach now allows for a direct link between the intracellular data of single motoneurons, the discharge properties of motoneuron populations, and muscle force generation in the same preparation. ABSTRACT The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibres represents the functional quantum of the motor system. Recent advances in the recording and decomposition of the electromyographic signal allow for the identification of several tens of concurrently active motor units. These detailed population data provide the potential to achieve deep insights into the synaptic organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new electrode and decomposition methods to recording of motor unit populations in these same preparations. To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to those developed for humans, to record and decompose the activity of tens of concurrently active motor units in a hindlimb muscle in the in vivo cat. Our results showed that the decomposition method in this animal preparation was highly accurate, with conventional two-source validation providing rates of agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor unit action potential provides the ability to accurately track the same motor unit across multiple contractions. Additionally, correlational analyses demonstrate that the composite spike train provides better estimates of whole muscle force than conventional estimates obtained from the electromyographic signal. Lastly, stark differences are observed between the modes of activation, in particular tendon vibration produced quantal interspike intervals at integer multiples of the vibration period.
Collapse
Affiliation(s)
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Chicago, IL, USA
| | | | - Matthew R Holmes
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | | | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
10
|
Abstract
A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence that the nervous system uses millisecond-scale variations in the timing of spikes within multispike patterns to control a vertebrate behavior-namely, respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision.
Collapse
|
11
|
Drzymała-Celichowska H, Kaczmarek P, Krutki P, Celichowski J. Summation of slow motor unit forces at constant and variable interpulse intervals in rat soleus muscle. J Electromyogr Kinesiol 2016; 30:1-8. [PMID: 27203710 DOI: 10.1016/j.jelekin.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022] Open
Abstract
Effects of the summation of forces generated by functionally isolated slow-twitch motor units (MU) of the rat soleus muscle were examined in this study. Initially, the twitch, fused tetanic and unfused tetanic contractions evoked by trains of stimuli at variable interpulse intervals were recorded for each MU. Then, two, three or four MUs were co-activated, and the recorded forces were compared to the algebraic sum of the forces of individual MUs. The mean cumulative force of twitches and the mean cumulative force of fused tetani were not statistically different from the respective algebraic sums of forces, which revealed a high degree of linearity in the summation. However, relaxation of the recorded tetanic contractions (either fused or unfused) was faster than that predicted by the linear summation of individual contractions. Moreover, for twitch and tetanic contractions, a tendency to shorten relaxation with an increasing number of co-active MUs was noted. The results indicate that forces of rat soleus slow MUs sum up more linearly than in the respective cat muscle as well as more linearly than for fast MUs in the medial gastrocnemius muscle.
Collapse
Affiliation(s)
- Hanna Drzymała-Celichowska
- Department of Neurobiology, University of Physical Education in Poznań, Poland; Division of Biochemistry, University of Physical Education in Poznań, Poland.
| | - Piotr Kaczmarek
- Institute of Control and Information Engineering, Poznań University of Technology, Poland
| | - Piotr Krutki
- Department of Neurobiology, University of Physical Education in Poznań, Poland
| | - Jan Celichowski
- Department of Neurobiology, University of Physical Education in Poznań, Poland
| |
Collapse
|
12
|
Mayfield DL, Cresswell AG, Lichtwark GA. Effects of series elastic compliance on muscle force summation and the rate of force rise. J Exp Biol 2016; 219:3261-3270. [DOI: 10.1242/jeb.142604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/05/2016] [Indexed: 01/24/2023]
Abstract
Compliant tendons permit mechanically unfavourable fascicle dynamics during fixed-end contractions. The purpose of this study was to reduce the effective compliance of tendon and investigate how small reductions in active shortening affect twitch kinetics and contractile performance in response to a second stimulus. The series elastic element (SEE) of the human triceps surae (N=15) was effectively stiffened by applying a 55 ms rotation to the ankle, through a range of 5°, at the onset of twitch and doublet [interstimulus interval (ISI) of 80 ms] stimulation. Ultrasonography was employed to quantify lateral gastrocnemius and soleus fascicle lengths. Rotation increased twitch torque (40-75%), rate of torque development (RTD, 124-154%) and torque-time integral (TTI, 70-110%) relative to constant-length contractions at the initial and final joint positions, yet caused only modest reductions in shortening amplitude and velocity. The torque contribution of the second pulse increased when stimulation was preceded by rotation, a finding unable to be explained on the basis of fascicle length or SEE stiffness during contraction post-rotation. A further increase in torque contribution was not demonstrated, nor an increase in doublet TTI, when the second pulse was delivered during rotation and shortly after the initial pulse (ISI of 10 ms). The depressant effect of active shortening on subsequent torque generation suggests that compliant tendons, by affording large length changes, may limit torque summation. Our findings indicate that changes in tendon compliance shown to occur in response to resistance training or unloading are likely sufficient to considerably alter contractile performance, particularly maximal RTD.
Collapse
Affiliation(s)
- Dean L. Mayfield
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Andrew G. Cresswell
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Glen A. Lichtwark
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Holt NC, Azizi E. What drives activation-dependent shifts in the force-length curve? Biol Lett 2015; 10:rsbl.2014.0651. [PMID: 25252838 DOI: 10.1098/rsbl.2014.0651] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscles are rarely recruited maximally during movement. However, much of our understanding of muscle properties is based on studies using maximal activation. The effect of activation level on skeletal muscle properties remains poorly understood. Muscle optimum length increases with decreased activation; however, the mechanism responsible is unclear. Here, we attempted to determine whether length-dependent calcium effects, or the effect of absolute force underpin this shift. Fixed-end contractions were performed in frog plantaris muscles at a range of lengths using maximal tetanic (high force, high calcium), submaximal tetanic (low force, high calcium) and twitch (low force, low calcium) stimulation conditions. Peak force and optimum length were determined in each condition. Optimum length increased with decreasing peak force, irrespective of stimulation condition. Assuming calcium concentration varied as predicted, this suggests that absolute force, rather than calcium concentration, underpins the effect of activation level on optimum length. We suggest that the effect of absolute force is due to the varying effect of the internal mechanics of the muscle at different activation levels. These findings have implications for our understanding of in vivo muscle function and suggest that mechanical interactions within muscle may be important determinants of force at lower levels of activation.
Collapse
Affiliation(s)
- Natalie C Holt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - E Azizi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Corti M, Smith BK, Falk DJ, Lawson LA, Fuller DD, Subramony SH, Byrne BJ, Christou EA. Altered activation of the tibialis anterior in individuals with Pompe disease: Implications for motor unit dysfunction. Muscle Nerve 2015; 51:877-83. [PMID: 25186912 DOI: 10.1002/mus.24444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Pompe disease is a progressive disease that affects skeletal muscles and leads to loss of ambulation. We investigated the activation of the tibialis anterior (TA) in late-onset Pompe disease (LOPD) individuals during maximal voluntary contraction (MVC) and evoked involuntary responses. METHODS Four LOPD patients and matched control subjects performed MVC of the TA using dorsiflexion and TA evoked responses. Activation of the TA was recorded with surface electromyography. RESULTS The Pompe patients exhibited greater power at frequencies below 60 Hz and reduced power above 100 Hz. They also exhibited a reduced increase in M-wave and prolonged M-wave latency and duration in response to stimulation. CONCLUSIONS These results provide evidence that LOPD individuals have an altered activation pattern of the TA during maximal contractions. The observed activation pattern may reflect impairments in voluntary command, neuromuscular junction pathology, or compensatory drive due to a reduced number of functional motoneurons.
Collapse
Affiliation(s)
- Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, Florida, USA
| | - Barbara K Smith
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physical Therapy, College of Public Health & Health Profession, University of Florida, P.O. Box 100296, Gainesville, Florida, 32610, USA
| | - Darin J Falk
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Lee Ann Lawson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - David D Fuller
- Department of Physical Therapy, College of Public Health & Health Profession, University of Florida, P.O. Box 100296, Gainesville, Florida, 32610, USA
| | - S H Subramony
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Evangelos A Christou
- Department of Physical Therapy, College of Public Health & Health Profession, University of Florida, P.O. Box 100296, Gainesville, Florida, 32610, USA
- Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Holt NC, Wakeling JM, Biewener AA. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox. Proc Biol Sci 2014; 281:20140002. [PMID: 24695429 DOI: 10.1098/rspb.2014.0002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force-velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force-velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.
Collapse
Affiliation(s)
- N C Holt
- UC Irvine, , McGaugh Hall, Irvine, CA 92697, USA, Concord Field Station, , 100 Old Causeway Road, Bedford, MA 01730, USA, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, , 8888 University Drive, Burnaby, British Columbia, Canada , V5A 1S6
| | | | | |
Collapse
|
16
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
17
|
Heller M. Mechanics of doublet firings in motor unit pools. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 2010; 16:455-464. [DOI: 10.1080/13873954.2010.507099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Summation of motor unit forces in rat medial gastrocnemius muscle. J Electromyogr Kinesiol 2010; 20:599-607. [PMID: 20185336 DOI: 10.1016/j.jelekin.2010.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/23/2009] [Accepted: 01/25/2010] [Indexed: 11/21/2022] Open
Abstract
The summation of contractile forces of motor units (MUs) was analyzed by comparing the recorded force during parallel stimulation of two and four individual MUs or four groups of MUs to the algebraic sum of their individual forces. Contractions of functionally-isolated single MUs of the medial gastrocnemius muscle were evoked by electrical stimulation of thin filaments of the split L5 or L4 ventral roots of spinal nerves. Additionally, contractions of large groups of MUs were evoked by stimuli delivered to four parts of the divided L5 ventral root. Single twitches, 40Hz unfused tetani, and 150Hz fused maximum tetani were recorded. In these experimental situations the summation was more effective for unfused tetani than for twitches or maximum tetani. The results obtained for pairs of MUs were highly variable (more- or less-than-linear summation), but coactivation of more units led to progressively weaker effects of summation, which were usually less-than-linear in comparison to the algebraic sums of the individual forces. The variability of the results highlights the importance of the structure of the muscle and the architecture of its MUs. Moreover, the simultaneous activity of fast and slow MUs was considerably more effective than that of two fast units.
Collapse
|
19
|
Dimitrova DM, Allman BL, Shall MS, Goldberg SJ. Polyneuronal innervation of single muscle fibers in cat eye muscle: inferior oblique. J Neurophysiol 2009; 101:2815-21. [PMID: 19297514 DOI: 10.1152/jn.90828.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single muscle fibers with multiple axonal endplates (multiply innervated fibers) are normally present in adult extraocular muscles (EOMs), while most other mammalian skeletal muscles contain fibers with a single myoneural junction. Recent findings by others led us to investigate for the presence of polyneuronal innervation (innervation of a single muscle fiber by >1 motoneuron) in the inferior oblique (IO) muscle of pentobarbital anesthetized cats. The IO muscle nerve branches, as they coursed through the orbit, were further divided for independent or simultaneous electrical stimulation with bipolar electrodes. Four of five established tests for polyneuronal innervation gave positive results. The sum of the twitch (1) and tetanic (2) tensions in response to individual nerve branch stimulation was greater than that for simultaneous (whole) nerve stimulation. The summed electromyographic (EMG) responses (3) gave a similar positive result. The result for crossed tetanic potentiation (4) was negative for polyneuronal innervation while the crossed fatigue (5) test was positive. These results are consistent with recent studies. That the EOMs exhibit polyneuronal innervation further explains the eye-movement system's functional integrity during some neuromuscular disorders as well as its ability to operate with precision after the loss of numerous motoneurons.
Collapse
Affiliation(s)
- Diana M Dimitrova
- Department of Anatomy, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | |
Collapse
|
20
|
Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 2008; 454:784-8. [PMID: 18600262 DOI: 10.1038/nature07104] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 05/19/2008] [Indexed: 11/08/2022]
Abstract
Sarcomeres are the basic contractile units of striated muscle. Our knowledge about sarcomere dynamics has primarily come from in vitro studies of muscle fibres and analysis of optical diffraction patterns obtained from living muscles. Both approaches involve highly invasive procedures and neither allows examination of individual sarcomeres in live subjects. Here we report direct visualization of individual sarcomeres and their dynamical length variations using minimally invasive optical microendoscopy to observe second-harmonic frequencies of light generated in the muscle fibres of live mice and humans. Using microendoscopes as small as 350 microm in diameter, we imaged individual sarcomeres in both passive and activated muscle. Our measurements permit in vivo characterization of sarcomere length changes that occur with alterations in body posture and visualization of local variations in sarcomere length not apparent in aggregate length determinations. High-speed data acquisition enabled observation of sarcomere contractile dynamics with millisecond-scale resolution. These experiments point the way to in vivo imaging studies demonstrating how sarcomere performance varies with physical conditioning and physiological state, as well as imaging diagnostics revealing how neuromuscular diseases affect contractile dynamics.
Collapse
|
21
|
Keenan KG, Valero-Cuevas FJ. Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties. J Neurophysiol 2007; 98:1581-90. [PMID: 17615125 DOI: 10.1152/jn.00577.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Computational models of motor-unit populations are the objective implementations of the hypothesized mechanisms by which neural and muscle properties give rise to electromyograms (EMGs) and force. However, the variability/uncertainty of the parameters used in these models--and how they affect predictions--confounds assessing these hypothesized mechanisms. We perform a large-scale computational sensitivity analysis on the state-of-the-art computational model of surface EMG, force, and force variability by combining a comprehensive review of published experimental data with Monte Carlo simulations. To exhaustively explore model performance and robustness, we ran numerous iterative simulations each using a random set of values for nine commonly measured motor neuron and muscle parameters. Parameter values were sampled across their reported experimental ranges. Convergence after 439 simulations found that only 3 simulations met our two fitness criteria: approximating the well-established experimental relations for the scaling of EMG amplitude and force variability with mean force. An additional 424 simulations preferentially sampling the neighborhood of those 3 valid simulations converged to reveal 65 additional sets of parameter values for which the model predictions approximate the experimentally known relations. We find the model is not sensitive to muscle properties but very sensitive to several motor neuron properties--especially peak discharge rates and recruitment ranges. Therefore to advance our understanding of EMG and muscle force, it is critical to evaluate the hypothesized neural mechanisms as implemented in today's state-of-the-art models of motor unit function. We discuss experimental and analytical avenues to do so as well as new features that may be added in future implementations of motor-unit models to improve their experimental validity.
Collapse
Affiliation(s)
- Kevin G Keenan
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853.
| | | |
Collapse
|
22
|
Del Santo F, Gelli F, Ginanneschi F, Popa T, Rossi A. Relation between isometric muscle force and surface EMG in intrinsic hand muscles as function of the arm geometry. Brain Res 2007; 1163:79-85. [PMID: 17618609 DOI: 10.1016/j.brainres.2007.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/08/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Evidence exists that shoulder joint geometry influences recruitment efficiency and force-generating capacity of hand muscles [Ginanneschi, F., Del Santo, F., Dominici, F., Gelli, F., Mazzocchio, R., Rossi, A., 2005. Changes in corticomotor excitability of hand muscles in relation to static shoulder positions. Exp. Brain Res. 161 (3), 374-382; Dominici, F., Popa, T., Ginanneschi, F., Mazzocchio, R., Rossi, A., 2005. Cortico-motoneural output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Exp. Brain Res. 164 (4), 500-504]. The present study was designed to examine the impact of changing shoulder joint position on the relation between surface EMG amplitude and isometric force production of the abductor digiti minimi muscle (ADM). EMG-force relation of ADM was examined in two shoulder positions: 30 degrees adduction (ANT) and 30 degrees abduction (POST) on the horizontal plane, i.e. under higher and lower force-generating capacity, respectively. The relation was studied over the full range isometric force (10-100% of maximum force in 10% increments, 3 s duration) by analysing root mean square (RMS), median frequency (Mf) of the power spectrum and non-linear recurrence quantification analysis (percentage of determinism: %DET) of the surface EMG signals. We found that in POST, the slope of the RMS-force relation was significantly higher than in ANT, while its general shape (strictly linear) was preserved. Averaged Mf of the EMG power spectrum was significantly higher in POST that in ANT, while no difference in %DET was observed between the two shoulder positions. The higher slope of the EMG-force relation in POST than in ANT is interpreted in terms of increased gain of the excitatory drive-firing rate relation. It is concluded that discharge from sensory receptors signalling shoulder position may act to regulate the gain of the excitatory drive-firing rate relation of motoneurones in order to compensate for reduced recruitment efficiency.
Collapse
Affiliation(s)
- Francesco Del Santo
- Dipartimento di Scienze Neurologiche e del Comportamento, Sezione di Neurofisiologia Clinica, Italy
| | | | | | | | | |
Collapse
|
23
|
Zhou P, Suresh NL, Rymer WZ. Model based sensitivity analysis of EMG-force relation with respect to motor unit properties: applications to muscle paresis in stroke. Ann Biomed Eng 2007; 35:1521-31. [PMID: 17530407 DOI: 10.1007/s10439-007-9329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
The sensitivity of the electromyogram (EMG)-force relation to changes in motoneuron and muscle properties was explored using a simulation approach, and by applying existing motoneuron pool, muscle force, and surface EMG models. The simulation results indicate that several factors contribute potently to known changes in the EMG-force relation in paretic stroke muscles. First, compression of the motor unit recruitment range with respect to the injected current tends to generate greater EMG amplitude at a given force, and to produce a highly nonlinear EMG-force relation. The overall mean slope of the EMG-force relation tends to be flatter, primarily because of this non-linear behavior. Second, with reductions of the mean motor unit firing rates, the slope of the EMG-force relation also tends to increase especially as the mean firing rates dropped substantially below the motor unit fusion frequency. Finally, similar effects were observed with a reduction in the number of motor units, and with variation in motor unit contractile properties, which also altered the EMG-force relation. These findings provide new insight toward our understanding of experimental EMG-force relations in both normal and pathological states, such as the abnormal EMG-force relations of paresis muscles in stroke.
Collapse
Affiliation(s)
- Ping Zhou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.
| | | | | |
Collapse
|
24
|
Abstract
Nonlinear summation of force has been observed between motor units. The complex structure of muscle suggests many reasons why this could happen. When large portions of the muscle are active, however, the nonlinearities are small, and generally explained by stretch of the common elasticity. This suggests that the type of nonlinearity observed between motor units may not be physiologically significant.
Collapse
Affiliation(s)
- Thomas G Sandercock
- Department of Physiology, Northwestern University Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Farina D, Arendt-Nielsen L, Graven-Nielsen T. Effect of temperature on spike-triggered average torque and electrophysiological properties of low-threshold motor units. J Appl Physiol (1985) 2005; 99:197-203. [PMID: 15761090 DOI: 10.1152/japplphysiol.00059.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was to jointly analyze temperature-induced changes in low-threshold single motor unit twitch torque and action potential properties. Joint torque, multichannel surface, and intramuscular electromyographic signals were recorded from the tibialis anterior muscle of 12 subjects who were instructed to identify the activity of a target motor unit using intramuscular electromyographic signals as feedback. The target motor unit was activated at the minimum stable discharge rate in seven 3-min-long contractions. The first three contractions (C1-C3) were performed at 33 degrees C skin temperature. After 5 min, the subject performed three contractions at 33 degrees C (T1), 39 degrees C (T2), and 45 degrees C (T3), followed by a contraction at 33 degrees C (C4) skin temperature. Twitch torque and multichannel surface action potential of the target motor unit were obtained by spike-triggered averaging. Discharge rate (mean +/- SE, 7.1 +/- 0.5 pulses/s), interpulse interval variability (35.8 +/- 9.2%), and recruitment threshold (4.5 +/- 0.4% of the maximal voluntary torque) were not different among the seven contractions. None of the investigated variables were different among C1-C3, T1, and C4. Conduction velocity and peak twitch torque increased with temperature (P < 0.05; T1: 3.53 +/- 0.21 m/s and 0.82 +/- 0.23 mN x m, T2: 3.93 +/- 0.24 m/s and 1.17 +/- 0.36 mN x m, T3: 4.35 +/- 0.25 m/s and 1.46 +/- 0.40 mN x m, respectively). Twitch time to peak and surface action potential peak-to-peak amplitude were smaller in T3 (61.8 +/- 2.0 ms and 27.4 +/- 5.1 microV, respectively) than in T1 (71.9 +/- 4.1 ms and 35.0 +/- 6.5 microV, respectively) (P < 0.05). The relative increase in conduction velocity between T1 and T3 was positively correlated (P < 0.05) with the increase in twitch peak amplitude (r2 = 0.48), with the decrease in twitch time to peak (r2 = 0.43), and with the decrease in action potential amplitude (r2 = 0.50). In conclusion, temperature-induced modifications in fiber membrane conduction properties may have a direct effect on contractile motor unit properties.
Collapse
Affiliation(s)
- Dario Farina
- Center for Sensory-Motor Interaction, Dept. of Health Science and Technology, Aalborg Univ., Fredrik Bajers Vej 7 D-3, DK-9220 Aalborg, Denmark.
| | | | | |
Collapse
|
26
|
Callister RJ, Reinking RM, Stuart DG. Effects of fatigue on the catchlike property in a turtle hindlimb muscle. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:857-66. [PMID: 14566421 DOI: 10.1007/s00359-003-0459-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 08/06/2003] [Accepted: 09/02/2003] [Indexed: 10/26/2022]
Abstract
The purpose of this report was to test for the possibility that a catchlike, force-enhancing property, attributable to a particular stimulation pattern, could be evoked in non-mammalian turtle muscle, just as it has been shown in mammalian muscle. We tested for the presence of this property in dynamic lengthening and shortening contractions, as well as in the more commonly studied isometric contractions. A second aim was to note the effects of fatigue on the catchlike property, if the latter was present. The force response of the external gastrocnemius muscle in the adult turtle, Pseudemys ( Trachemys) scripta elegans, was compared for a control, constant-frequency 10 Hz, 1-s duration stimulation pattern using 0.1-ms pulses vs. the same pattern, but with two additional pulses within the first 100-ms interspike interval of the control stimulus train. This latter train produced a pronounced and prolonged enhancement of muscle force, which was attributed to a catchlike effect. It was greatly increased when the muscle was in a fatigued state. The extent of this force enhancement was significantly different for the three contraction types, and generally in the order: isometric>lengthening>shortening contraction. These differences were greater in fatigued vs. fresh muscle. Comparative aspects and potential mechanisms underlying the catchlike effect are discussed.
Collapse
Affiliation(s)
- R J Callister
- Discipline of Anatomy, School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
27
|
Taylor AM, Christou EA, Enoka RM. Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J Neurophysiol 2003; 90:1350-61. [PMID: 12702706 DOI: 10.1152/jn.00056.2003] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify the mechanisms responsible for the fluctuations in force that occur during voluntary contractions, experimental measurements were compared with simulated forces in the time and frequency domains at contraction intensities that ranged from 2 to 98% of the maximum voluntary contraction (MVC). The abduction force exerted by the index finger due to an isometric contraction of the first dorsal interosseus muscle was measured in 10 young adults. Force was simulated with computer models of motor-unit recruitment and rate coding for a population of 120 motor units. The models varied recruitment and rate-coding properties of the motor units and the activation pattern of the motor-unit population. The main finding was that the experimental observations of a minimum in the coefficient of variation (CV) for force (1.7%) at approximately 30% MVC and a plateau at higher forces could not be replicated by any of the models. The model that increased the level of short-term synchrony with excitatory drive provided the closest fit to the experimentally observed relation between the CV for force and the mean force. In addition, the results for the synchronization model extended previous modeling efforts to show that the effect of synchronization is independent from that of discharge-rate variability. Most of the power in the force power spectra for the models was contained in the frequency bins below 5 Hz. Only a model that included a low-frequency oscillation in excitation, however, could approximate the experimental finding of peak power at a frequency below 2 Hz: 38% of total power at 0.99 Hz and 43% at 1.37 Hz, respectively. In contrast to the experimental power spectra, all model spectra included a second peak at a higher frequency. The secondary peak was less prominent in the synchronization model because of greater variability in discharge rate. These results indicate that the variation in force fluctuations across the entire operating range of the muscle cannot be explained by a single mechanism that influences the output of the motor-unit population.
Collapse
Affiliation(s)
- Anna M Taylor
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado 80309-0354, USA
| | | | | |
Collapse
|