1
|
Oz M, Kury LA, Sadek B, Mahgoub MO. The role of nicotinic acetylcholine receptors in the pathophysiology and pharmacotherapy of autism spectrum disorder: Focus on α7 nicotinic receptors. Int J Biochem Cell Biol 2024; 174:106634. [PMID: 39094731 DOI: 10.1016/j.biocel.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Postmortem studies have revealed that brains of individuals with autism spectrum disorder (ASD) exhibit abnormalities in various components of the cholinergic system including cholinergic receptors, projections, and nuclei. Deletions in the 15q13.3 region which encompasses CHRNA7, the gene that encodes the α7-nACh receptor, have been linked to various neurodevelopmental disorders, including ASD. In addition, the involvement of α7-nACh receptors in biological phenomena known to play a role in the pathophysiology of ASD such as cognitive functions, learning, memory, neuroinflammation, and oxidative stress, as well as the excitation-inhibition balance in neuronal circuits and maternal immune activation have been reported in previous studies. Furthermore, evolving preclinical and clinical literature supports the potential therapeutic benefits of using selectively acting cholinergic compounds, particularly those targeting the α7-nACh receptor subtype, in the treatment of ASD. This study reviews the previous literature on the involvement of nACh receptors in the pathophysiology of ASD and focuses on the α7-nACh receptor as a potential therapeutic target.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Lina Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohamed Omer Mahgoub
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| |
Collapse
|
2
|
Noftz WA, Echols EE, Beebe NL, Mellott JG, Schofield BR. Differential cholinergic innervation of lemniscal versus non-lemniscal regions of the inferior colliculus. J Chem Neuroanat 2024; 139:102443. [PMID: 38914378 DOI: 10.1016/j.jchemneu.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
The inferior colliculus (IC), a midbrain hub for integration of auditory information, receives dense cholinergic input that could modulate nearly all aspects of hearing. A key step in understanding cholinergic modulation is to identify the source(s) and termination patterns of cholinergic input. These issues have not been addressed for the IC in mice, an increasingly important model for study of hearing. We examined cholinergic inputs to the IC in adult male and female mice. We used retrograde tracing and immunochemistry to identify three sources of cholinergic innervation of the mouse IC: the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT) and the lateral paragigantocellular nucleus (LPGi). We then used Cre-dependent labeling of cholinergic neurons in normal-hearing ChAT-Cre mice to selectively label the cholinergic projections to the IC from each of the cholinergic sources. Labeling of cholinergic projections from the PPT and LDT revealed cholinergic axons and boutons terminating throughout the IC, with the ipsilateral projection being denser. Electron microscopic examination showed that these cholinergic axons can form traditional synaptic junctions with IC neurons. In separate experiments, selective labeling of cholinergic projections from the LPGi revealed bilateral projections to the IC. The LPGi axons exhibited relatively equal densities on ipsilateral and contralateral sides, but on both sides the terminations were largely restricted to the non-lemniscal regions of the IC (i.e., the dorsal cortex, lateral cortex and intercollicular tegmentum). We conclude first that cholinergic axons can form traditional synapses in the IC. In addition, lemniscal and non-lemniscal regions of the IC receive different patterns of cholinergic innervation. The lemniscal IC (IC central nucleus) is innervated by cholinergic neurons in the PPT and the LDT whereas the non-lemniscal "shell" areas of the IC are innervated by the PPT and LDT and by cholinergic neurons in the LPGi. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- William A Noftz
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Emily E Echols
- Department of Biology, University of Akron, Akron, OH 44325, USA
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, University Hospitals Hearing Research Center at NEOMED, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
3
|
Ji L, Borges BC, Martel DT, Wu C, Liberman MC, Shore SE, Corfas G. From hidden hearing loss to supranormal auditory processing by neurotrophin 3-mediated modulation of inner hair cell synapse density. PLoS Biol 2024; 22:e3002665. [PMID: 38935589 PMCID: PMC11210788 DOI: 10.1371/journal.pbio.3002665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
Collapse
Affiliation(s)
- Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David T. Martel
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calvin Wu
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - M. Charles Liberman
- Mass Eye and Ear Infirmary and Harvard Medical School. Boston, Massachusetts, United States of America
| | - Susan E. Shore
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Ranieri A, La Monica I, Di Iorio MR, Lombardo B, Pastore L. Genetic Alterations in a Large Population of Italian Patients Affected by Neurodevelopmental Disorders. Genes (Basel) 2024; 15:427. [PMID: 38674362 PMCID: PMC11050211 DOI: 10.3390/genes15040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.
Collapse
Affiliation(s)
- Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
5
|
Pérez-González D, Lao-Rodríguez AB, Aedo-Sánchez C, Malmierca MS. Acetylcholine modulates the precision of prediction error in the auditory cortex. eLife 2024; 12:RP91475. [PMID: 38241174 PMCID: PMC10942646 DOI: 10.7554/elife.91475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
A fundamental property of sensory systems is their ability to detect novel stimuli in the ambient environment. The auditory brain contains neurons that decrease their response to repetitive sounds but increase their firing rate to novel or deviant stimuli; the difference between both responses is known as stimulus-specific adaptation or neuronal mismatch (nMM). Here, we tested the effect of microiontophoretic applications of ACh on the neuronal responses in the auditory cortex (AC) of anesthetized rats during an auditory oddball paradigm, including cascade controls. Results indicate that ACh modulates the nMM, affecting prediction error responses but not repetition suppression, and this effect is manifested predominantly in infragranular cortical layers. The differential effect of ACh on responses to standards, relative to deviants (in terms of averages and variances), was consistent with the representational sharpening that accompanies an increase in the precision of prediction errors. These findings suggest that ACh plays an important role in modulating prediction error signaling in the AC and gating the access of these signals to higher cognitive levels.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Basic Psychology, Psychobiology and Behavioural Science Methodology, Faculty of Psychology, Campus Ciudad Jardín, University of SalamancaSalamancaSpain
| | - Ana Belén Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Cristian Aedo-Sánchez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of SalamancaSalamancaSpain
| |
Collapse
|
6
|
Uribe PM, Hudson AM, Lockard G, Jiang M, Harding J, Steyger PS, Coffin AB. Hepatocyte growth factor mimetic confers protection from aminoglycoside-induced hair cell death in vitro. Hear Res 2023; 434:108786. [PMID: 37192594 DOI: 10.1016/j.heares.2023.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Loss of sensory hair cells from exposure to certain licit drugs, such as aminoglycoside antibiotics, can result in permanent hearing damage. Exogenous application of the neurotrophic molecule hepatocyte growth factor (HGF) promotes neuronal cell survival in a variety of contexts, including protecting hair cells from aminoglycoside ototoxicity. HGF itself is not an ideal therapeutic due to a short half-life and limited blood-brain barrier permeability. MM-201 is a chemically stable, blood-brain barrier permeable, synthetic HGF mimetic that serves as a functional ligand to activate the HGF receptor and its downstream signaling cascade. We previously demonstrated that MM-201 robustly protects zebrafish lateral line hair cells from aminoglycoside ototoxicity. Here, we examined the ability of MM-201 to protect mammalian sensory hair cells from aminoglycoside damage to further evaluate MM-201's clinical potential. We found that MM-201 exhibited dose-dependent protection from neomycin and gentamicin ototoxicity in mature mouse utricular explants. MM-201's protection was reduced following inhibition of mTOR, a downstream target of HGF receptor activation, implicating the activation of endogenous intracellular substrates by MM-201 as critical for the observed protection. We then asked if MM-201 altered the bactericidal properties of aminoglycosides. Using either plate or liquid growth assays we found that MM-201 did not alter the bactericidal efficacy of aminoglycoside antibiotics at therapeutically relevant concentrations. We therefore assessed the protective capacity of MM-201 in an in vivo mouse model of kanamycin ototoxicity. In contrast to our in vitro data, MM-201 did not attenuate kanamycin ototoxicity in vivo. Further, we found that MM-201 was ototoxic to mice across the dose range tested here. These data suggest species- and tissue-specific differences in otoprotective capacity. Next generation HGF mimetics are in clinical trials for neurodegenerative diseases and show excellent safety profiles, but neither preclinical studies nor clinical trials have examined hearing loss as a potential consequence of pharmaceutical HGF activation. Further research is needed to determine the consequences of systemic MM-201 application on the auditory system.
Collapse
Affiliation(s)
- Phillip M Uribe
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Alexandria M Hudson
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Gavin Lockard
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Harding
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Peter S Steyger
- Translational Hearing Center, Creighton University, Omaha, NE, 68178, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
7
|
Kwapiszewski JT, Rivera-Perez LM, Roberts MT. Cholinergic Boutons are Distributed Along the Dendrites and Somata of VIP Neurons in the Inferior Colliculus. J Assoc Res Otolaryngol 2023; 24:181-196. [PMID: 36627519 PMCID: PMC10121979 DOI: 10.1007/s10162-022-00885-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Cholinergic signaling shapes sound processing and plasticity in the inferior colliculus (IC), the midbrain hub of the central auditory system, but how cholinergic terminals contact and influence individual neuron types in the IC remains largely unknown. Using pharmacology and electrophysiology, we recently found that acetylcholine strongly excites VIP neurons, a class of glutamatergic principal neurons in the IC, by activating α3β4* nicotinic acetylcholine receptors (nAChRs). Here, we confirm and extend these results using tissue from mice of both sexes. First, we show that mRNA encoding α3 and β4 nAChR subunits is expressed in many neurons throughout the IC, including most VIP neurons, suggesting that these subunits, which are rare in the brain, are important mediators of cholinergic signaling in the IC. Next, by combining fluorescent labeling of VIP neurons and immunofluorescence against the vesicular acetylcholine transporter (VAChT), we show that individual VIP neurons in the central nucleus of the IC (ICc) are contacted by a large number of cholinergic boutons. Cholinergic boutons were distributed adjacent to the somata and along the full length of the dendritic arbors of VIP neurons, positioning cholinergic signaling to affect synaptic computations arising throughout the somatodendritic compartments of VIP neurons. In addition, cholinergic boutons were occasionally observed in close apposition to dendritic spines on VIP neurons, raising the possibility that cholinergic signaling also modulates presynaptic release onto VIP neurons. Together, these results strengthen the evidence that cholinergic signaling exerts widespread influence on auditory computations performed by VIP neurons and other neurons in the IC.
Collapse
Affiliation(s)
- Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, MI, Ann Arbor, 48109, USA.
- Department of Molecular and Integrative Pharmacology, University of Michigan, MI, Ann Arbor, 48109, USA.
| |
Collapse
|
8
|
Giovenale AMG, Ruotolo G, Soriano AA, Turco EM, Rotundo G, Casamassa A, D’Anzi A, Vescovi AL, Rosati J. Deepening the understanding of CNVs on chromosome 15q11-13 by using hiPSCs: An overview. Front Cell Dev Biol 2023; 10:1107881. [PMID: 36684422 PMCID: PMC9852989 DOI: 10.3389/fcell.2022.1107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer's disease, and others. Currently, α7 receptor analysis has been commonly performed in animal models due to the impossibility of direct investigation of the living human brain. But the use of model systems has shown that there are very large differences between humans and mice when researchers must study the CNVs and, in particular, the CNV of chromosome 15q13.3 where the CHRNA7 gene is present. In fact, human beings present genomic alterations as well as the presence of genes of recent origin that are not present in other model systems as well as they show a very heterogeneous symptomatology that is associated with both their genetic background and the environment where they live. To date, the induced pluripotent stem cells, obtained from patients carrying CNV in CHRNA7 gene, are a good in vitro model for studying the association of the α7 receptor to human diseases. In this review, we will outline the current state of hiPSCs technology applications in neurological diseases caused by CNVs in CHRNA7 gene. Furthermore, we will discuss some weaknesses that emerge from the overall analysis of the published articles.
Collapse
Affiliation(s)
- Angela Maria Giada Giovenale
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giorgia Ruotolo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Amata Amy Soriano
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Maria Turco
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giovannina Rotundo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angela D’Anzi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo Luigi Vescovi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Jessica Rosati, ; Angelo Luigi Vescovi,
| |
Collapse
|
9
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Coffin AB, Dale E, Doppenberg E, Fearington F, Hayward T, Hill J, Molano O. Putative COVID-19 therapies imatinib, lopinavir, ritonavir, and ivermectin cause hair cell damage: A targeted screen in the zebrafish lateral line. Front Cell Neurosci 2022; 16:941031. [PMID: 36090793 PMCID: PMC9448854 DOI: 10.3389/fncel.2022.941031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The biomedical community is rapidly developing COVID-19 drugs to bring much-need therapies to market, with over 900 drugs and drug combinations currently in clinical trials. While this pace of drug development is necessary, the risk of producing therapies with significant side-effects is also increased. One likely side-effect of some COVID-19 drugs is hearing loss, yet hearing is not assessed during preclinical development or clinical trials. We used the zebrafish lateral line, an established model for drug-induced sensory hair cell damage, to assess the ototoxic potential of seven drugs in clinical trials for treatment of COVID-19. We found that ivermectin, lopinavir, imatinib, and ritonavir were significantly toxic to lateral line hair cells. By contrast, the approved COVID-19 therapies dexamethasone and remdesivir did not cause damage. We also did not observe damage from the antibiotic azithromycin. Neither lopinavir nor ritonavir altered the number of pre-synaptic ribbons per surviving hair cell, while there was an increase in ribbons following imatinib or ivermectin exposure. Damage from lopinavir, imatinib, and ivermectin was specific to hair cells, with no overall cytotoxicity noted following TUNEL labeling. Ritonavir may be generally cytotoxic, as determined by an increase in the number of TUNEL-positive non-hair cells following ritonavir exposure. Pharmacological inhibition of the mechanotransduction (MET) channel attenuated damage caused by lopinavir and ritonavir but did not alter imatinib or ivermectin toxicity. These results suggest that lopinavir and ritonavir may enter hair cells through the MET channel, similar to known ototoxins such as aminoglycoside antibiotics. Finally, we asked if ivermectin was ototoxic to rats in vivo. While ivermectin is not recommended by the FDA for treating COVID-19, many people have chosen to take ivermectin without a doctor's guidance, often with serious side-effects. Rats received daily subcutaneous injections for 10 days with a clinically relevant ivermectin dose (0.2 mg/kg). In contrast to our zebrafish assays, ivermectin did not cause ototoxicity in rats. Our research suggests that some drugs in clinical trials for COVID-19 may be ototoxic. This work can help identify drugs with the fewest side-effects and determine which therapies warrant audiometric monitoring.
Collapse
Affiliation(s)
- Allison B. Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emily Dale
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emilee Doppenberg
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Forrest Fearington
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Jordan Hill
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Olivia Molano
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
11
|
Castro AC, Monteiro P. Auditory Dysfunction in Animal Models of Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:845155. [PMID: 35493332 PMCID: PMC9043325 DOI: 10.3389/fnmol.2022.845155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder mainly characterized by social-communication impairments, repetitive behaviors and altered sensory perception. Auditory hypersensitivity is the most common sensory-perceptual abnormality in ASD, however, its underlying neurobiological mechanisms remain elusive. Consistently with reports in ASD patients, animal models for ASD present sensory-perception alterations, including auditory processing impairments. Here we review the current knowledge regarding auditory dysfunction in rodent models of ASD, exploring both shared and distinct features among them, mechanistic and molecular underpinnings, and potential therapeutic approaches. Overall, auditory dysfunction in ASD models seems to arise from impaired central processing. Depending on the model, impairments may arise at different steps along the auditory pathway, from auditory brainstem up to the auditory cortex. Common defects found across models encompass atypical tonotopicity in different regions of the auditory pathway, temporal and spectral processing impairments and histological differences. Imbalance between excitation and inhibition (E/I imbalance) is one of the most well-supported mechanisms explaining the auditory phenotype in the ASD models studied so far and seems to be linked to alterations in GABAergic signaling. Such E/I imbalance may have a large impact on the development of the auditory pathway, influencing the establishment of connections responsible for normal sound processing.
Collapse
Affiliation(s)
- Ana Carolina Castro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
12
|
Impaired Subcortical Processing of Amplitude-Modulated Tones in Mice Deficient for Cacna2d3, a Risk Gene for Autism Spectrum Disorders in Humans. eNeuro 2022; 9:ENEURO.0118-22.2022. [PMID: 35410870 PMCID: PMC9034753 DOI: 10.1523/eneuro.0118-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Temporal processing of complex sounds is a fundamental and complex task in hearing and a prerequisite for processing and understanding vocalization, speech, and prosody. Here, we studied response properties of neurons in the inferior colliculus (IC) in mice lacking Cacna2d3, a risk gene for autism spectrum disorders (ASDs). The α2δ3 auxiliary Ca2+ channel subunit encoded by Cacna2d3 is essential for proper function of glutamatergic synapses in the auditory brainstem. Recent evidence has shown that much of auditory feature extraction is performed in the auditory brainstem and IC, including processing of amplitude modulation (AM). We determined both spectral and temporal properties of single- and multi-unit responses in the IC of anesthetized mice. IC units of α2δ3−/− mice showed normal tuning properties yet increased spontaneous rates compared with α2δ3+/+. When stimulated with AM tones, α2δ3−/− units exhibited less precise temporal coding and reduced evoked rates to higher modulation frequencies (fm). Whereas first spike latencies (FSLs) were increased for only few modulation frequencies, population peak latencies were increased for fm ranging from 20 to 100 Hz in α2δ3−/− IC units. The loss of precision of temporal coding with increasing fm from 70 to 160 Hz was characterized using a normalized offset-corrected (Pearson-like) correlation coefficient, which appeared more appropriate than the metrics of vector strength. The processing deficits of AM sounds analyzed at the level of the IC indicate that α2δ3−/− mice exhibit a subcortical auditory processing disorder (APD). Similar deficits may be present in other mouse models for ASDs.
Collapse
|
13
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
14
|
Seif A, Shea C, Schmid S, Stevenson RA. A Systematic Review of Brainstem Contributions to Autism Spectrum Disorder. Front Integr Neurosci 2021; 15:760116. [PMID: 34790102 PMCID: PMC8591260 DOI: 10.3389/fnint.2021.760116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects one in 66 children in Canada. The contributions of changes in the cortex and cerebellum to autism have been studied for decades. However, our understanding of brainstem contributions has only started to emerge more recently. Disruptions of sensory processing, startle response, sensory filtering, sensorimotor gating, multisensory integration and sleep are all features of ASD and are processes in which the brainstem is involved. In addition, preliminary research into brainstem contribution emphasizes the importance of the developmental timeline rather than just the mature brainstem. Therefore, the purpose of this systematic review is to compile histological, behavioral, neuroimaging, and electrophysiological evidence from human and animal studies about brainstem contributions and their functional implications in autism. Moreover, due to the developmental nature of autism, the review pays attention to the atypical brainstem development and compares findings based on age. Overall, there is evidence of an important role of brainstem disruptions in ASD, but there is still the need to examine the brainstem across the life span, from infancy to adulthood which could lead the way for early diagnosis and possibly treatment of ASD.
Collapse
Affiliation(s)
- Ala Seif
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Carly Shea
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Ryan A Stevenson
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Rivera-Perez LM, Kwapiszewski JT, Roberts MT. α 3β 4 ∗ Nicotinic Acetylcholine Receptors Strongly Modulate the Excitability of VIP Neurons in the Mouse Inferior Colliculus. Front Neural Circuits 2021; 15:709387. [PMID: 34434092 PMCID: PMC8381226 DOI: 10.3389/fncir.2021.709387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
The inferior colliculus (IC), the midbrain hub of the central auditory system, receives extensive cholinergic input from the pontomesencephalic tegmentum. Activation of nicotinic acetylcholine receptors (nAChRs) in the IC can alter acoustic processing and enhance auditory task performance. However, how nAChRs affect the excitability of specific classes of IC neurons remains unknown. Recently, we identified vasoactive intestinal peptide (VIP) neurons as a distinct class of glutamatergic principal neurons in the IC. Here, in experiments using male and female mice, we show that cholinergic terminals are routinely located adjacent to the somas and dendrites of VIP neurons. Using whole-cell electrophysiology in brain slices, we found that acetylcholine drives surprisingly strong and long-lasting excitation and inward currents in VIP neurons. This excitation was unaffected by the muscarinic receptor antagonist atropine. Application of nAChR antagonists revealed that acetylcholine excites VIP neurons mainly via activation of α3β4∗ nAChRs, a nAChR subtype that is rare in the brain. Furthermore, we show that acetylcholine excites VIP neurons directly and does not require intermediate activation of presynaptic inputs that might express nAChRs. Lastly, we found that low frequency trains of acetylcholine puffs elicited temporal summation in VIP neurons, suggesting that in vivo-like patterns of cholinergic input can reshape activity for prolonged periods. These results reveal the first cellular mechanisms of nAChR regulation in the IC, identify a functional role for α3β4∗ nAChRs in the auditory system, and suggest that cholinergic input can potently influence auditory processing by increasing excitability in VIP neurons and their postsynaptic targets.
Collapse
Affiliation(s)
- Luis M Rivera-Perez
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Julia T Kwapiszewski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Beebe NL, Zhang C, Burger RM, Schofield BR. Multiple Sources of Cholinergic Input to the Superior Olivary Complex. Front Neural Circuits 2021; 15:715369. [PMID: 34335196 PMCID: PMC8319744 DOI: 10.3389/fncir.2021.715369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
The superior olivary complex (SOC) is a major computation center in the brainstem auditory system. Despite previous reports of high expression levels of cholinergic receptors in the SOC, few studies have addressed the functional role of acetylcholine in the region. The source of the cholinergic innervation is unknown for all but one of the nuclei of the SOC, limiting our understanding of cholinergic modulation. The medial nucleus of the trapezoid body, a key inhibitory link in monaural and binaural circuits, receives cholinergic input from other SOC nuclei and also from the pontomesencephalic tegmentum. Here, we investigate whether these same regions are sources of cholinergic input to other SOC nuclei. We also investigate whether individual cholinergic cells can send collateral projections bilaterally (i.e., into both SOCs), as has been shown at other levels of the subcortical auditory system. We injected retrograde tract tracers into the SOC in gerbils, then identified retrogradely-labeled cells that were also immunolabeled for choline acetyltransferase, a marker for cholinergic cells. We found that both the SOC and the pontomesencephalic tegmentum (PMT) send cholinergic projections into the SOC, and these projections appear to innervate all major SOC nuclei. We also observed a small cholinergic projection into the SOC from the lateral paragigantocellular nucleus of the reticular formation. These various sources likely serve different functions; e.g., the PMT has been associated with things such as arousal and sensory gating whereas the SOC may provide feedback more closely tuned to specific auditory stimuli. Further, individual cholinergic neurons in each of these regions can send branching projections into both SOCs. Such projections present an opportunity for cholinergic modulation to be coordinated across the auditory brainstem.
Collapse
Affiliation(s)
- Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Chao Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
17
|
Beebe NL, Schofield BR. Cholinergic boutons are closely associated with excitatory cells and four subtypes of inhibitory cells in the inferior colliculus. J Chem Neuroanat 2021; 116:101998. [PMID: 34186203 DOI: 10.1016/j.jchemneu.2021.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/23/2023]
Abstract
Acetylcholine (ACh) is a neuromodulator that has been implicated in multiple roles across the brain, including the central auditory system, where it sets neuronal excitability and gain and affects plasticity. In the cerebral cortex, subtypes of GABAergic interneurons are modulated by ACh in a subtype-specific manner. Subtypes of GABAergic neurons have also begun to be described in the inferior colliculus (IC), a midbrain hub of the auditory system. Here, we used male and female mice (Mus musculus) that express fluorescent protein in cholinergic cells, axons, and boutons to look at the association between ACh and four subtypes of GABAergic IC cells that differ in their associations with extracellular markers, their soma sizes, and their distribution within the IC. We found that most IC cells, including excitatory and inhibitory cells, have cholinergic boutons closely associated with their somas and proximal dendrites. We also found that similar proportions of each of four subtypes of GABAergic cells are closely associated with cholinergic boutons. Whether the different types of GABAergic cells in the IC are differentially regulated remains unclear, as the response of cells to ACh is dependent on which types of ACh receptors are present. Additionally, this study confirms the presence of these four subtypes of GABAergic cells in the mouse IC, as they had previously been identified only in guinea pigs. These results suggest that cholinergic projections to the IC modulate auditory processing via direct effects on a multitude of inhibitory circuits.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Brett R Schofield
- Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
18
|
Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body. J Neurosci 2020; 41:674-688. [PMID: 33268542 DOI: 10.1523/jneurosci.1633-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/29/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other computationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered prominent expression of α7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural activity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demonstrated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit recording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antagonists to two receptor types, α7 and α4β2. We observed that tone-evoked responses are dependent on ACh modulation by both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.SIGNIFICANCE STATEMENT This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brainstem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic understanding of modulatory influences in sensory processing.
Collapse
|
19
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Cholinergic Projections From the Pedunculopontine Tegmental Nucleus Contact Excitatory and Inhibitory Neurons in the Inferior Colliculus. Front Neural Circuits 2020; 14:43. [PMID: 32765226 PMCID: PMC7378781 DOI: 10.3389/fncir.2020.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The inferior colliculus processes nearly all ascending auditory information. Most collicular cells respond to sound, and for a majority of these cells, the responses can be modulated by acetylcholine (ACh). The cholinergic effects are varied and, for the most part, the underlying mechanisms are unknown. The major source of cholinergic input to the inferior colliculus is the pedunculopontine tegmental nucleus (PPT), part of the pontomesencephalic tegmentum known for projections to the thalamus and roles in arousal and the sleep-wake cycle. Characterization of PPT inputs to the inferior colliculus has been complicated by the mixed neurotransmitter population within the PPT. Using selective viral-tract tracing techniques in a ChAT-Cre Long Evans rat, the present study characterizes the distribution and targets of cholinergic projections from PPT to the inferior colliculus. Following the deposit of viral vector in one PPT, cholinergic axons studded with boutons were present bilaterally in the inferior colliculus, with the greater density of axons and boutons ipsilateral to the injection site. On both sides, cholinergic axons were present throughout the inferior colliculus, distributing boutons to the central nucleus, lateral cortex, and dorsal cortex. In each inferior colliculus (IC) subdivision, the cholinergic PPT axons appear to contact both GABAergic and glutamatergic neurons. These findings suggest cholinergic projections from the PPT have a widespread influence over the IC, likely affecting many aspects of midbrain auditory processing. Moreover, the effects are likely to be mediated by direct cholinergic actions on both excitatory and inhibitory circuits in the inferior colliculus.
Collapse
Affiliation(s)
- William A. Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Nichole L. Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brett R. Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|