1
|
Kreyenmeier P, Bhuiyan I, Gian M, Chow HM, Spering M. Smooth pursuit inhibition reveals audiovisual enhancement of fast movement control. J Vis 2024; 24:3. [PMID: 38558158 PMCID: PMC10996987 DOI: 10.1167/jov.24.4.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
The sudden onset of a visual object or event elicits an inhibition of eye movements at latencies approaching the minimum delay of visuomotor conductance in the brain. Typically, information presented via multiple sensory modalities, such as sound and vision, evokes stronger and more robust responses than unisensory information. Whether and how multisensory information affects ultra-short latency oculomotor inhibition is unknown. In two experiments, we investigate smooth pursuit and saccadic inhibition in response to multisensory distractors. Observers tracked a horizontally moving dot and were interrupted by an unpredictable visual, auditory, or audiovisual distractor. Distractors elicited a transient inhibition of pursuit eye velocity and catch-up saccade rate within ∼100 ms of their onset. Audiovisual distractors evoked stronger oculomotor inhibition than visual- or auditory-only distractors, indicating multisensory response enhancement. Multisensory response enhancement magnitudes were equal to the linear sum of responses to component stimuli. These results demonstrate that multisensory information affects eye movements even at ultra-short latencies, establishing a lower time boundary for multisensory-guided behavior. We conclude that oculomotor circuits must have privileged access to sensory information from multiple modalities, presumably via a fast, subcortical pathway.
Collapse
Affiliation(s)
- Philipp Kreyenmeier
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ishmam Bhuiyan
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathew Gian
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiu Mei Chow
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, St. Thomas University, Fredericton, New Brunswick, Canada
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, BC, Vancouver, Canada
- Institute for Computing, Information, and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Hu J, Vetter P. How the eyes respond to sounds. Ann N Y Acad Sci 2024; 1532:18-36. [PMID: 38152040 DOI: 10.1111/nyas.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Eye movements have been extensively studied with respect to visual stimulation. However, we live in a multisensory world, and how the eyes are driven by other senses has been explored much less. Here, we review the evidence on how audition can trigger and drive different eye responses and which cortical and subcortical neural correlates are involved. We provide an overview on how different types of sounds, from simple tones and noise bursts to spatially localized sounds and complex linguistic stimuli, influence saccades, microsaccades, smooth pursuit, pupil dilation, and eye blinks. The reviewed evidence reveals how the auditory system interacts with the oculomotor system, both behaviorally and neurally, and how this differs from visually driven eye responses. Some evidence points to multisensory interaction, and potential multisensory integration, but the underlying computational and neural mechanisms are still unclear. While there are marked differences in how the eyes respond to auditory compared to visual stimuli, many aspects of auditory-evoked eye responses remain underexplored, and we summarize the key open questions for future research.
Collapse
Affiliation(s)
- Junchao Hu
- Visual and Cognitive Neuroscience Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Petra Vetter
- Visual and Cognitive Neuroscience Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Stolte M, Kraus L, Ansorge U. Visual attentional guidance during smooth pursuit eye movements: Distractor interference is independent of distractor-target similarity. Psychophysiology 2023; 60:e14384. [PMID: 37431573 DOI: 10.1111/psyp.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In the current study, we used abrupt-onset distractors similar and dissimilar in luminance to the target of a smooth pursuit eye-movement to test if abrupt-onset distractors capture attention in a top-down or bottom-up fashion while the eyes track a moving object. Abrupt onset distractors were presented at different positions relative to the current position of a pursuit target during the closed-loop phase of smooth pursuit. Across experiments, we varied the duration of the distractors, their motion direction, and task-relevance. We found that abrupt-onset distractors decreased the gain of horizontally directed smooth-pursuit eye-movements. This effect, however, was independent of the similarity in luminance between distractor and target. In addition, distracting effects on horizontal gain were the same, regardless of the exact duration and position of the distractors, suggesting that capture was relatively unspecific and short-lived (Experiments 1 and 2). This was different with distractors moving in a vertical direction, perpendicular to the horizontally moving target. In line with past findings, these distractors caused suppression of vertical gain (Experiment 3). Finally, making distractors task-relevant by asking observers to report distractor positions increased the pursuit gain effect of the distractors. This effect was also independent of target-distractor similarity (Experiment 4). In conclusion, the results suggest that a strong location signal exerted by the pursuit targets led to very brief and largely location-unspecific interference through the abrupt onsets and that this interference was bottom-up, implying that the control of smooth pursuit was independent of other target features besides its motion signal.
Collapse
Affiliation(s)
- Moritz Stolte
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Leon Kraus
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Research Platform Mediatised Lifeworlds, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Khademi F, Zhang T, Baumann MP, Buonocore A, Malevich T, Yu Y, Hafed ZM. Visual feature tuning properties of stimulus-driven saccadic inhibition in macaque monkeys. J Neurophysiol 2023; 130:1282-1302. [PMID: 37818591 DOI: 10.1152/jn.00289.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Saccadic inhibition refers to a short-latency transient cessation of saccade generation after visual sensory transients. This oculomotor phenomenon occurs with a latency that is consistent with a rapid influence of sensory responses, such as stimulus-induced visual bursts, on oculomotor control circuitry. However, the neural mechanisms underlying saccadic inhibition are not well understood. Here, we exploited the fact that macaque monkeys experience robust saccadic inhibition to test the hypothesis that inhibition time and strength exhibit systematic visual feature tuning properties to a multitude of visual feature dimensions commonly used in vision science. We measured saccades in three monkeys actively controlling their gaze on a target, and we presented visual onset events at random times. Across seven experiments, the visual onsets tested size, spatial frequency, contrast, orientation, motion direction, and motion speed dependencies of saccadic inhibition. We also investigated how inhibition might depend on the behavioral relevance of the appearing stimuli. We found that saccadic inhibition starts earlier, and is stronger, for large stimuli of low spatial frequencies and high contrasts. Moreover, saccadic inhibition timing depends on motion direction and orientation, with earlier inhibition systematically occurring for horizontally drifting vertical gratings. On the other hand, saccadic inhibition is stronger for faster motions and when the appearing stimuli are subsequently foveated. Besides documenting a range of feature tuning dimensions of saccadic inhibition to the properties of exogenous visual stimuli, our results establish macaque monkeys as an ideal model system for unraveling the neural mechanisms underlying a ubiquitous oculomotor phenomenon in visual neuroscience.NEW & NOTEWORTHY Visual onsets dramatically reduce saccade generation likelihood with very short latencies. Such latencies suggest that stimulus-induced visual responses, normally jump-starting perceptual and scene analysis processes, can also directly impact the decision of whether to generate saccades or not, causing saccadic inhibition. Consistent with this, we found that changing the appearance of the visual onsets systematically alters the properties of saccadic inhibition. These results constrain neurally inspired models of coordination between saccade generation and exogenous sensory stimulation.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tong Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, Italy
| | - Tatiana Malevich
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Yue Yu
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
5
|
Mastropasqua A, Vural G, Taylor PCJ. Elements of exogenous attentional cueing preserved during optokinetic motion of the visual scene. Eur J Neurosci 2021; 55:746-761. [PMID: 34964525 DOI: 10.1111/ejn.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/27/2022]
Abstract
Navigating through our environment raises challenges for perception by generating salient background visual motion, and eliciting prominent eye movements to stabilise the retinal image. It remains unclear if exogenous spatial attentional orienting is possible during background motion and the eye movements it causes, and whether this compromises the underlying neural processing. To test this, we combined exogenous orienting, visual scene motion, and EEG. 26 participants viewed a background of moving black and grey bars (optokinetic stimulation). We tested for effects of non-spatially predictive peripheral cueing on visual motion discrimination of a target dot, presented either at the same (valid) or opposite (invalid) location as the preceding cue. Valid cueing decreased reaction times not only when participants kept their gaze fixed on a central point (fixation blocks), but even when there was no fixation point, so that participants performed intensive, repetitive tracking eye movements (eye movements blocks). Overall, manual response reaction times were slower during eye movements. Cueing also produced reliable effects on neural activity on either block, including within the first 120 milliseconds of neural processing of the target. The key pattern with larger ERP amplitudes on invalid versus valid trials showed that the neural substrate of exogenous cueing was highly similar during eye movements or fixation. Exogenous peripheral cueing and its neural correlates are robust against distraction from the moving visual scene, important for perceptual cognition during navigation.
Collapse
Affiliation(s)
- Angela Mastropasqua
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Gizem Vural
- Department of Forensic Psychiatry, Psychiatric Hospital of the LMU Munich, Germany
| | - Paul C J Taylor
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Department of Psychology, LMU Munich, Germany.,Faculty of Philosophy and Philosophy of Science, LMU Munich, Germany.,Munich Center for Neuroscience, LMU Munich, Germany
| |
Collapse
|
6
|
Luna R, Serrano-Pedraza I, Gegenfurtner KR, Schütz AC, Souto D. Achieving visual stability during smooth pursuit eye movements: Directional and confidence judgements favor a recalibration model. Vision Res 2021; 184:58-73. [PMID: 33873123 DOI: 10.1016/j.visres.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
During smooth pursuit eye movements, the visual system is faced with the task of telling apart reafferent retinal motion from motion in the world. While an efference copy signal can be used to predict the amount of reafference to subtract from the image, an image-based adaptive mechanism can ensure the continued accuracy of this computation. Indeed, repeatedly exposing observers to background motion with a fixed direction relative to that of the target that is pursued leads to a shift in their point of subjective stationarity (PSS). We asked whether the effect of exposure reflects adaptation to motion contingent on pursuit direction, recalibration of a reference signal or both. A recalibration account predicts a shift in reference signal (i.e. predicted reafference), resulting in a shift of PSS, but no change in sensitivity. Results show that both directional judgements and confidence judgements about them favor a recalibration account, whereby there is an adaptive shift in the reference signal caused by the prevailing retinal motion during pursuit. We also found that the recalibration effect is specific to the exposed visual hemifield.
Collapse
Affiliation(s)
- Raúl Luna
- Department of Experimental Psychology, Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain; School of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio Serrano-Pedraza
- Department of Experimental Psychology, Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Phillips-Universität Marburg, Giessen, Germany
| | - David Souto
- Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
7
|
Ziv I, Bonneh YS. Oculomotor inhibition during smooth pursuit and its dependence on contrast sensitivity. J Vis 2021; 21:12. [PMID: 33630026 PMCID: PMC7910627 DOI: 10.1167/jov.21.2.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
Our eyes are never still, but tend to "freeze" in response to stimulus onset. This effect is termed "oculomotor inhibition" (OMI); its magnitude and time course depend on the stimulus parameters, attention, and expectation. We previously showed that the time course and duration of microsaccade and spontaneous eye-blink inhibition provide an involuntary measure of low-level visual properties such as contrast sensitivity during fixation. We investigated whether this stimulus-dependent inhibition also occurs during smooth pursuit, for both the catch-up saccades and the pursuit itself. Observers followed a target with continuous back-and-forth horizontal motion while a Gabor patch was briefly flashed centrally with varied spatial frequency and contrast. Catch-up saccades of the size of microsaccades had a similar pattern of inhibition as microsaccades during fixation, with stronger inhibition onset and faster inhibition release for more salient stimuli. Moreover, a similar stimulus dependency of inhibition was shown for pursuit latencies and peak velocity. Additionally, microsaccade latencies at inhibition release, peak pursuit velocities, and latencies at minimum pursuit velocity were correlated with contrast sensitivity. We demonstrated the generality of OMI to smooth pursuit for both microsaccades and the pursuit itself and its close relation to the low-level processes that define saliency, such as contrast sensitivity.
Collapse
Affiliation(s)
- Inbal Ziv
- School of Optometry and Vision Science, Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Sharp A, Turgeon C, Johnson AP, Pannasch S, Champoux F, Ellemberg D. Congenital Deafness Leads to Altered Overt Oculomotor Behaviors. Front Neurosci 2020; 14:273. [PMID: 32327967 PMCID: PMC7153650 DOI: 10.3389/fnins.2020.00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
The human brain is highly cross-modal, and sensory information may affect a wide range of behaviors. In particular, there is evidence that auditory functions are implicated in oculomotor behaviors. Considering this apparent auditory-oculomotor link, one might wonder how the loss of auditory input from birth might have an influence on these motor behaviors. Eye movement tracking enables to extract several components, including saccades and smooth pursuit. One study suggested that deafness can alter saccades processing. Oculomotor behaviors have not been examined further in the deaf. The main goal of this study was to examine smooth pursuit following deafness. A pursuit task paradigm was used in this experiment. Participants were instructed to move their eyes to follow a target as it moved. The target movements have a possibility of four different trajectories (horizontal, vertical, elliptic clockwise, and elliptic counter-clockwise). Results indicate a significant reduction in the ability to track a target in both elliptical conditions showing that more complex motion processing differs in deaf individuals. The data also revealed significantly more saccades per trial in the vertical, anti-clockwise, and, to a lesser extent, the clockwise elliptic condition. This suggests that auditory deprivation from birth leads to altered overt oculomotor behaviors.
Collapse
Affiliation(s)
- Andréanne Sharp
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montreal, QC, Canada
| | - Christine Turgeon
- Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada
| | | | - Sebastian Pannasch
- Applied Cognitive Research/Psychology III, Technische Universitaet Dresden, Dresden, Germany
| | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montreal, QC, Canada
| | - Dave Ellemberg
- Department of Kinesiology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Badler JB, Watamaniuk SNJ, Heinen SJ. A common mechanism modulates saccade timing during pursuit and fixation. J Neurophysiol 2019; 122:1981-1988. [PMID: 31533016 DOI: 10.1152/jn.00198.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth pursuit is punctuated by catch-up saccades, which are thought to automatically correct sensory errors in retinal position and velocity. Recent studies have shown that the timing of catch-up saccades is susceptible to cognitive modulation, as is the timing of fixational microsaccades. Are the timing of catchup and microsaccades thus modulated by the same mechanism? Here, we test directly whether pursuit catch-up saccades and fixational microsaccades exhibit the same temporal pattern of task-related bursts and subsidence. Observers pursued a linear array of 15 alphanumeric characters that translated across the screen and simultaneously performed a character identification task on it. At a fixed time, a cue briefly surrounded the central element to specify it as the pursuit target. After a random delay, a probe (E or 3) appeared briefly at a randomly selected character location, and observers identified it. For comparison, a fixation condition was also tested with trial parameters identical to the pursuit condition, except that the array remained stationary. We found that during both pursuit and fixation tasks, saccades paused after the cue and then rebounded as expected but also subsided in anticipation of the task. The time courses of the reactive pause, rebound, and anticipatory subsidence were similar, and idiosyncratic subject behavior was consistent across pursuit and fixation. The results provide evidence for a common mechanism of saccade control during pursuit and fixation, which is predictive as well as reactive and has an identifiable temporal signature in individual observers.NEW & NOTEWORTHY During natural scene viewing, voluntary saccades reorient the fovea to different locations for high-acuity viewing. Less is known about small "microsaccades" that also occur when fixating stationary objects and "catch-up saccades" that occur during smooth pursuit of moving objects. We provide evidence that microsaccade and catch-up saccade frequencies are generally modulated by the same mechanism. Furthermore, on a finer time scale the mechanism operates differently in different observers, suggesting that neural saccade generators are individually unique.
Collapse
Affiliation(s)
- Jeremy B Badler
- Smith-Kettlewell Eye Research Institute, San Francisco, California
| | - Scott N J Watamaniuk
- Smith-Kettlewell Eye Research Institute, San Francisco, California.,Wright State University, Dayton, Ohio
| | - Stephen J Heinen
- Smith-Kettlewell Eye Research Institute, San Francisco, California
| |
Collapse
|
10
|
Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation. J Neurosci 2019; 39:2709-2721. [PMID: 30709895 DOI: 10.1523/jneurosci.2178-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/15/2018] [Accepted: 01/13/2019] [Indexed: 11/21/2022] Open
Abstract
The oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer lasting than saccadic eye movements and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory "open-loop" interval in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view is contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here, we show that smooth pursuit initiation is sensitive to visual inputs, even in open-loop intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements and injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence and even during open-loop pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backward errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like the well known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals and that catch-up saccade generation is reset after a visual transient.SIGNIFICANCE STATEMENT Smooth pursuit eye movements allow us to track moving objects. The first ∼100 ms of smooth pursuit initiation are characterized by smooth eye acceleration and are overwhelmingly described as being "open-loop"; that is, unmodifiable by new visual motion signals. We found that all phases of smooth pursuit, including the so-called open-loop intervals, are reliably modifiable by visual signals. We injected transient flashes resulting in very brief, spatially specific position error signals to smooth pursuit and observed very short-latency changes in smooth eye movements to minimize such errors. Our results highlight the flexibility of the oculomotor system in reacting to environmental events and suggest a functional role for the pervasiveness of visual sensitivity in oculomotor control brain regions.
Collapse
|
11
|
Boyer EO, Portron A, Bevilacqua F, Lorenceau J. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control. Front Neurosci 2017; 11:197. [PMID: 28487626 PMCID: PMC5403913 DOI: 10.3389/fnins.2017.00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM) can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.
Collapse
Affiliation(s)
- Eric O Boyer
- STMS Lab, IRCAM - Centre National de la Recherche Scientifique - UPMCParis, France
| | - Arthur Portron
- Laboratoire des Systèmes Perceptifs, LSP Centre National de la Recherche Scientifique (CNRS), UMR8248, Département d'Etudes Cognitives, Ecole Normale Supérieure-PSLParis, France
| | - Frederic Bevilacqua
- STMS Lab, IRCAM - Centre National de la Recherche Scientifique - UPMCParis, France
| | - Jean Lorenceau
- Laboratoire des Systèmes Perceptifs, LSP Centre National de la Recherche Scientifique (CNRS), UMR8248, Département d'Etudes Cognitives, Ecole Normale Supérieure-PSLParis, France
| |
Collapse
|
12
|
Braga RM, Fu RZ, Seemungal BM, Wise RJS, Leech R. Eye Movements during Auditory Attention Predict Individual Differences in Dorsal Attention Network Activity. Front Hum Neurosci 2016; 10:164. [PMID: 27242465 PMCID: PMC4860869 DOI: 10.3389/fnhum.2016.00164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/01/2016] [Indexed: 11/13/2022] Open
Abstract
The neural mechanisms supporting auditory attention are not fully understood. A dorsal frontoparietal network of brain regions is thought to mediate the spatial orienting of attention across all sensory modalities. Key parts of this network, the frontal eye fields (FEF) and the superior parietal lobes (SPL), contain retinotopic maps and elicit saccades when stimulated. This suggests that their recruitment during auditory attention might reflect crossmodal oculomotor processes; however this has not been confirmed experimentally. Here we investigate whether task-evoked eye movements during an auditory task can predict the magnitude of activity within the dorsal frontoparietal network. A spatial and non-spatial listening task was used with on-line eye-tracking and functional magnetic resonance imaging (fMRI). No visual stimuli or cues were used. The auditory task elicited systematic eye movements, with saccade rate and gaze position predicting attentional engagement and the cued sound location, respectively. Activity associated with these separate aspects of evoked eye-movements dissociated between the SPL and FEF. However these observed eye movements could not account for all the activation in the frontoparietal network. Our results suggest that the recruitment of the SPL and FEF during attentive listening reflects, at least partly, overt crossmodal oculomotor processes during non-visual attention. Further work is needed to establish whether the network’s remaining contribution to auditory attention is through covert crossmodal processes, or is directly involved in the manipulation of auditory information.
Collapse
Affiliation(s)
- Rodrigo M Braga
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital CampusLondon, UK; Center for Brain Science, Harvard UniversityCambridge, MA, USA; Aathinoula A. Martinos Center for Biomedical ImagingCharlestown, MA, USA
| | - Richard Z Fu
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus London, UK
| | - Barry M Seemungal
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus London, UK
| | - Richard J S Wise
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus London, UK
| | - Robert Leech
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus London, UK
| |
Collapse
|
13
|
Born S, Kerzel D. Effects of stimulus contrast and temporal delays in saccadic distraction. Vision Res 2011; 51:1163-72. [PMID: 21414338 DOI: 10.1016/j.visres.2011.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
In a recent study, we observed that saccadic distraction (i.e., the remote distractor effect, RDE) was reduced when target and distractor were displayed at unequal contrast [Born, S., & Kerzel, D. (2008). Influence of target and distractor contrast on the remote distractor effect. Vision Research, 48(28), 2805-2816]. We hypothesized that arrival times explain the RDE modulation: With equal contrast, target and distractor signals arrive simultaneously in the oculomotor system so that mutual inhibition (and therefore saccadic distraction) is largest. With unequal contrast, high-contrast signals arrive earlier than low-contrast signals, resulting in less mutual inhibition and little saccadic distraction. In the current contribution, we presented target and distractor at different stimulus onset asynchronies (SOA) to re-align arrival times with unequal contrast. Results confirmed that unequal contrast of target and distractor reduced saccadic distraction with simultaneous presentation and that strong distraction could be reestablished by introducing a SOA. However, maximal saccadic distraction also varied strongly with the specific combination of target and distractor contrast. Thus, contrast may not only modulate arrival times of target and distractor signals, but also their strength in the mutual inhibition process. Finally, we found more saccadic distraction when the distractor was presented slightly after the target. A second experiment suggests that alerting effects superimposed on the distraction contribute to this effect, but may not fully explain it. We suggest that distraction may be strongest when the rise-to-threshold of the target-related signal has already advanced.
Collapse
Affiliation(s)
- Sabine Born
- Faculté de Psychologie et des Sciences de l'Éducation, Université de Genève, Switzerland.
| | | |
Collapse
|