1
|
Palazzo E, Marabese I, Ricciardi F, Guida F, Luongo L, Maione S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol Ther 2024; 263:108724. [PMID: 39299577 DOI: 10.1016/j.pharmthera.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic β-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy.
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
2
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
3
|
Kinetic fingerprinting of metabotropic glutamate receptors. Commun Biol 2023; 6:104. [PMID: 36707695 PMCID: PMC9883448 DOI: 10.1038/s42003-023-04468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Dimeric metabotropic glutamate receptors (mGluRs) are abundantly expressed in neurons. In mammals, eight subunit isoforms, mGluR1-8, have been identified, forming the groups I, II, and III. We investigated receptor dimerization and kinetics of these mGluR isoforms in excised membrane patches by FRET and confocal patch-clamp fluorometry. We show that 5 out of 8 homodimeric receptors develop characteristic glutamate-induced on- and off-kinetics, as do 11 out of 28 heterodimers. Glutamate-responsive heterodimers were identified within each group, between groups I and II as well as between groups II and III, but not between groups I and III. The glutamate-responsive heterodimers showed heterogeneous activation and deactivation kinetics. Interestingly, mGluR7, not generating a kinetic response in homodimers, showed fast on-kinetics in mGluR2/7 and mGluR3/7 while off-kinetics retained the speed of mGluR2 or mGluR3 respectively. In conclusion, glutamate-induced conformational changes in heterodimers appear within each group and between groups if one group II subunit is present.
Collapse
|
4
|
Mao LM, Mathur N, Shah K, Wang JQ. Roles of metabotropic glutamate receptor 8 in neuropsychiatric and neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:349-366. [PMID: 36868634 PMCID: PMC10162486 DOI: 10.1016/bs.irn.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors. Among eight mGlu subtypes (mGlu1-8), mGlu8 has drawn increasing attention. This subtype is localized to the presynaptic active zone of neurotransmitter release and is among the mGlu subtypes with high affinity for glutamate. As a Gi/o-coupled autoreceptor, mGlu8 inhibits glutamate release to maintain homeostasis of glutamatergic transmission. mGlu8 receptors are expressed in limbic brain regions and play a pivotal role in modulating motivation, emotion, cognition, and motor functions. Emerging evidence emphasizes the increasing clinical relevance of abnormal mGlu8 activity. Studies using mGlu8 selective agents and knockout mice have revealed the linkage of mGlu8 receptors to multiple neuropsychiatric and neurological disorders, including anxiety, epilepsy, Parkinson's disease, drug addiction, and chronic pain. Expression and function of mGlu8 receptors in some limbic structures undergo long-lasting adaptive changes in animal models of these disorders, which may contribute to the remodeling of glutamatergic transmission critical for the pathogenesis and symptomatology of brain illnesses. This review summarizes the current understanding of mGlu8 biology and the possible involvement of the receptor in several common psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Nirav Mathur
- Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Karina Shah
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States; Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States.
| |
Collapse
|
5
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Formaggio F, Rimondini R, Delprete C, Scalia L, Merlo Pich E, Liguori R, Nicoletti F, Caprini M. L-Acetylcarnitine causes analgesia in mice modeling Fabry disease by up-regulating type-2 metabotropic glutamate receptors. Mol Pain 2022; 18:17448069221087033. [PMID: 35255745 PMCID: PMC9008852 DOI: 10.1177/17448069221087033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fabry disease (FD) is a X-linked lysosomal storage disorder caused by deficient
function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads
to multisystemic clinical manifestations caused by the preferential accumulation
of globotriaosylceramide (Gb3). A hallmark symptom of FD patients is neuropathic
pain that appears in the early stage of the disease as a result of peripheral
small fiber damage. Previous studies have shown that Acetyl-L-carnitine (ALC)
has neuroprotective, neurotrophic, and analgesic activity in animal models of
neuropathic pain. To study the action of ALC on neuropathic pain associated with
FD, we treated α-GalA gene null mice (α-GalA(-/0)) with ALC for 30 days. In
α-Gal KO mice, ALC treatment induced acute and long-lasting analgesia, which
persisted 1 month after drug withdrawal. This effect was antagonized by single
administration of LY341495, an orthosteric antagonist of mGlu2/3 metabotropic
glutamate receptors. We also found an up-regulation of mGlu2 receptors in
cultured DRG neurons isolated from 30-day ALC-treated α-GalA KO mice. However,
the up-regulation of mGlu2 receptors was no longer present in DRG neurons
isolated 30 days after the end of treatment. Taken together, these findings
suggest that ALC induces analgesia in an animal model of FD by up-regulating
mGlu2 receptors, and that analgesia is maintained by additional mechanisms after
ALC withdrawal. ALC might represent a valuable pharmacological strategy to
reduce pain in FD patients.
Collapse
Affiliation(s)
| | - Roberto Rimondini
- Dipartimento di Scienze Mediche e Chirurgiche 9296University of Bologna
| | - Cecilia Delprete
- Department of Pharmacy and Biotechnology9296University of Bologna
| | | | | | | | | | | |
Collapse
|
7
|
Palazzo E, Boccella S, Marabese I, Perrone M, Belardo C, Iannotta M, Scuteri D, De Dominicis E, Pagano M, Infantino R, Bagetta G, Maione S. Homo-AMPA in the periaqueductal grey modulates pain and rostral ventromedial medulla activity in diabetic neuropathic mice. Neuropharmacology 2022; 212:109047. [DOI: 10.1016/j.neuropharm.2022.109047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/22/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
|
8
|
In Vivo Assessment of the Ameliorative Impact of Some Medicinal Plant Extracts on Lipopolysaccharide-Induced Multiple Sclerosis in Wistar Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051608. [PMID: 35268709 PMCID: PMC8911946 DOI: 10.3390/molecules27051608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 01/21/2023]
Abstract
Multiple sclerosis is a chronic autoimmune disorder that leads to the demyelination of nerve fibers, which is the major cause of non-traumatic disability all around the world. Herbal plants Nepeta hindustana L., Vitex negundo L., and Argemone albiflora L., in addition to anti-inflammatory and anti-oxidative effects, have shown great potential as neuroprotective agents. The study was aimed to develop a neuroprotective model to study the effectiveness of herbal plants (N. hindustana, V. negundo, and A. albiflora) against multiple sclerosis. The in vivo neuroprotective effects of ethanolic extracts isolated from N. hindustana, V. negundo, and A. albiflora were evaluated in lipopolysaccharides (LPS) induced multiple sclerosis Wistar rat model. The rat models were categorized into seven groups including group A as normal, B as LPS induced diseased group, while C, D, E, F, and G were designed as treatment groups. Histopathological evaluation and biochemical markers including stress and inflammatory (MMP-6, MDA, TNF-α, AOPPs, AGEs, NO, IL-17 and IL-2), antioxidant (SOD, GSH, CAT, GPx), DNA damage (Isop-2α, 8OHdG) as well as molecular biomarkers (RAGE, Caspase-8, p38) along with glutamate, homocysteine, acetylcholinesterase, and myelin binding protein (MBP) were investigated. The obtained data were analyzed using SPSS version 21 and GraphPad Prism 8.0. The different extract treated groups (C, D, E, F, G) displayed a substantial neuroprotective effect regarding remyelination of axonal terminals and oligodendrocytes migration, reduced lymphocytic infiltrations, and reduced necrosis of Purkinje cells. The levels of stress, inflammatory, and DNA damage markers were observed high in the diseased group B, which were reduced after treatments with plant extracts. The antioxidant activity was significantly reduced in diseased induced group B, however, their levels were raised after treatment with plant extract. Group F (a mélange of all the extracts) showed the most significant change among all other treatment groups (C, D, E, G). The communal dose of selected plant extracts regulates neurodegeneration at the cellular level resulting in restoration and remyelination of axonal neurons. Moreover, 400 mg/kg dose of three plants in conjugation (Group F) were found to be more effective in restoring the normal activities of all measured parameters than independent doses (Group C, D, E) and is comparable with standard drug nimodipine (Group G) clinically used for the treatment of multiple sclerosis. The present study, for the first time, reported the clinical evidence of N. hindustana, V. negundo, and A. albiflora against multiple sclerosis and concludes that all three plants showed remyelination as well neuroprotective effects which may be used as a potential natural neurotherapeutic agent against multiple sclerosis.
Collapse
|
9
|
Woo MS, Ufer F, Rothammer N, Di Liberto G, Binkle L, Haferkamp U, Sonner JK, Engler JB, Hornig S, Bauer S, Wagner I, Egervari K, Raber J, Duvoisin RM, Pless O, Merkler D, Friese MA. Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med 2021; 218:e20201290. [PMID: 33661276 PMCID: PMC7938362 DOI: 10.1084/jem.20201290] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with continuous neuronal loss. Treatment of clinical progression remains challenging due to lack of insights into inflammation-induced neurodegenerative pathways. Here, we show that an imbalance in the neuronal receptor interactome is driving glutamate excitotoxicity in neurons of MS patients and identify the MS risk-associated metabotropic glutamate receptor 8 (GRM8) as a decisive modulator. Mechanistically, GRM8 activation counteracted neuronal cAMP accumulation, thereby directly desensitizing the inositol 1,4,5-trisphosphate receptor (IP3R). This profoundly limited glutamate-induced calcium release from the endoplasmic reticulum and subsequent cell death. Notably, we found Grm8-deficient neurons to be more prone to glutamate excitotoxicity, whereas pharmacological activation of GRM8 augmented neuroprotection in mouse and human neurons as well as in a preclinical mouse model of MS. Thus, we demonstrate that GRM8 conveys neuronal resilience to CNS inflammation and is a promising neuroprotective target with broad therapeutic implications.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Ufer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Lars Binkle
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Jana K. Sonner
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Hornig
- Experimentelle Neuropädiatrie, Klinik für Kinder und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Kristof Egervari
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Manuel A. Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
WeiWei Y, WenDi F, Mengru C, Tuo Y, Chen G. The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain. Rev Neurosci 2021; 32:545-558. [PMID: 33565739 DOI: 10.1515/revneuro-2020-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Clinical therapies for chronic pain are limited. While targeted drugs are promising therapies for chronic pain, they exhibit insufficient efficacy and poor targeting. The occurrence of chronic pain partly results from central changes caused by alterations in neurons in the rostral ventromedial medulla (RVM) in the brainstem regulatory pathway. The RVM, which plays a key role in the descending pain control pathway, greatly contributes to the development and maintenance of pain. However, the exact roles of the RVM in chronic pain remain unclear, making it difficult to develop new drugs targeting the RVM and related pathways. Here, we first discuss the roles of the RVM and related circuits in chronic pain. Then, we analyze synaptic transmission between RVM neurons and spinal cord neurons, specifically focusing on the release of neurotransmitters, to explore the cellular mechanisms by which the RVM regulates chronic pain. Finally, we propose some ideas for the development of drugs targeting the RVM.
Collapse
Affiliation(s)
- Yu WeiWei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Fei WenDi
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Cui Mengru
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China
| | - Yang Tuo
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Gang Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China.,Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| |
Collapse
|
11
|
Zhuang X, Huang L, Gu Y, Wang L, Zhang R, Zhang M, Li F, Shi Y, Mo Y, Dai Q, Wei C, Wang J. The anterior cingulate cortex projection to the dorsomedial striatum modulates hyperalgesia in a chronic constriction injury mouse model. Arch Med Sci 2021; 17:1388-1399. [PMID: 34522268 PMCID: PMC8425248 DOI: 10.5114/aoms.2019.85202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/26/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of the study was to study the role of the anterior cingulate cortex (ACC)-dorsal midbrain striatum (DMS) in neuropathic pain in mice. MATERIAL AND METHODS Optogenetics has been increasingly used in neuroscience research to selectively and precisely control the activity of a defined group of central neurons to determine their roles in behavioral functions in animals. The most important opsins are blue-sensitive ChR2 and yellow-sensitive NpHR. Calcium-calmodulin dependent protein kinase Iiα (CaMKIIα) is mostly expressed in the pyramidal excitatory neurons. Mice were injected with AAV2/9-CamKII-ChR2-mCherry, AAV2/9-CamKII-eNpHR3.0-GFP or AAV2/9-CamKII-mCherry virus in the ACC region, and the optical fiber implantation was performed in the ACC or DMS region. Mice were then followed up for 2 to 8 weeks and behavioral tests were carried out in the presence or absence of the blue/yellow light (473 nm/589 nm). Pain behavioral tests with or without the blue/yellow light at the same time were performed on the third and the seventh day after the chronic constriction injury of sciatic nerve model (CCI) was established. The pain thresholds of left and right hind limbs of mice in all groups were measured. RESULTS No matter whether activating the neurons in ACC or DMS, compared with normal mice in the ChR2-off-right group, and the mCherry-on-right group, the thermal pain threshold and mechanical pain threshold of the normal mice in the ChR2-on-right group were significantly lower. When inhibiting the neurons in the ACC or DMS, on day 3 and day 7 after CCI operation, the thermal pain threshold and mechanical pain threshold of the CCI mice of the NpHR-on-right group were significantly higher compared with the NpHR-off-right and mCherry-on-right groups. CONCLUSIONS The anterior cingulate cortex-dorsal midbrain striatum may be involved in the regulation of neuropathic pain in mice.
Collapse
Affiliation(s)
- Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Luping Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yixiao Gu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Rong Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Minyuan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Fei Li
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yiyi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Chaoyi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- Wencheng Country People’s Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
13
|
Nakamura Y, Fukushige R, Watanabe K, Kishida Y, Hisaoka-Nakashima K, Nakata Y, Morioka N. Continuous infusion of substance P inhibits acute, but not subacute, inflammatory pain induced by complete Freund's adjuvant. Biochem Biophys Res Commun 2020; 533:971-975. [PMID: 33008602 DOI: 10.1016/j.bbrc.2020.09.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have reported that continuous infusion with substance P (SP) into rat dorsal striatum ameliorated both mechanical allodynia in both formalin-evoked transient inflammatory pain and neuropathic pain models. However, a role of striatal SP in persistent inflammatory pain has not been demonstrated. The current study examined the effect of continuous infusion of SP into the rat dorsal striatum by reverse microdialysis on persistent inflammatory pain induced by complete Freund's adjuvant (CFA). Intraplantar injection of CFA evoked both mechanical allodynia and paw edema 3 and 7 days post-injection. The continuous infusion of SP ameliorated the CFA-evoked mechanical allodynia, but not paw edema, 3 days after the CFA injection. This antinociceptive effect of SP was partially inhibited by co-infusion with the neurokinin-1 (NK1) receptor antagonist CP96345. Conversely, at 7 days both CFA-evoked mechanical allodynia and paw edema were not affected by SP treatment. To clarify why the effect of SP treatment on CFA-induced pain changed, we evaluated NK1 receptor protein levels at both time points. The NK1 receptor protein level was decreased at 7, but not 3, days post CFA injection. These data suggest that persistent inflammatory pain can downregulate the striatal NK1 receptor. The current study demonstrates that striatal SP-NK1 receptor pathway can exert antinociceptive effect only on the third days of inflammatory pain phase defined as an acute but not the 7 days defined as a subacute.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ryo Fukushige
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kohei Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Kishida
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
14
|
Nakamura Y, Fukushige R, Watanabe K, Kishida Y, Hisaoka-Nakashima K, Nakata Y, Morioka N. Continuous infusion of substance P into rat striatum relieves mechanical hypersensitivity caused by a partial sciatic nerve ligation via activation of striatal muscarinic receptors. Behav Brain Res 2020; 391:112714. [PMID: 32461131 DOI: 10.1016/j.bbr.2020.112714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that continuous substance P (SP) infusion into the rat striatum attenuated hind paw formalin-induced nociceptive behaviors and mechanical hypersensitivity via a neurokinin-1 (NK1) receptor dependent mechanism. However, whether there is a role of striatal infusion of SP on chronic, neuropathic pain has yet to be demonstrated. The present study investigated the effect of continuous SP infusion into the rat striatum using a reverse microdialysis method is antinociceptive in a rat model of chronic, mononeuropathic pain. Two weeks after partial sciatic nerve injury, the ipsilateral hind paw demonstrated mechanical hypersensitivity. Infusion of SP (0.2, 0.4, or 0.8 μg/mL, 1 μL/min) for 120 min into the contralateral striatum dose-dependently relieved mechanical hypersensitivity. The antinociceptive effect of SP infusion was inhibited by co-infusion with the NK1 receptor antagonist CP96345 (10 μM). Neither ipsilateral continuous infusion nor acute microinjection of SP (10 ng) into the contralateral striatum was antinociceptive. A role of striatal muscarinic cholinergic neurons is suggested since co-infusion of SP with atropine (10 μM), but not the nicotinic receptor mecamylamine (10 μM), blocked antinociception. The current study suggests that activation of striatal muscarinic receptors through NK1 receptors could be a novel approach to managing chronic pain.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ryo Fukushige
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kohei Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Kishida
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
15
|
Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E. The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striatum. Curr Neuropharmacol 2020; 18:34-50. [PMID: 31210112 PMCID: PMC7327935 DOI: 10.2174/1570159x17666190618121859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
The dorsal striatum, apart from controlling voluntary movement, displays a recently demonstrated pain inhibition. It is connected to the descending pain modulatory system and in particular to the rostral ventromedial medulla through the medullary dorsal reticular nucleus. Diseases of the basal ganglia, such as Parkinson's disease, in addition to being characterized by motor disorders, are associated with pain and hyperactivation of the excitatory transmission. A way to counteract glutamatergic hyperactivation is through the activation of group III metabotropic glutamate receptors (mGluRs), which are located on presynaptic terminals inhibiting neurotransmitter release. So far the mGluRs of group III have been the least investigated, owing to a lack of selective tools. More recently, selective ligands for each mGluR of group III, in particular positive and negative allosteric modulators, have been developed and the role of each subtype is starting to emerge. The neuroprotective potential of group III mGluRs in pathological conditions, such as those characterized by elevate glutamate, has been recently shown. In the dorsal striatum, mGluR7 and mGluR8 are located at glutamatergic corticostriatal terminals and their stimulation inhibits pain in pathological conditions such as neuropathic pain. The two receptors in the dorsal striatum have instead a different role in pain control in normal conditions. This review will discuss recent results focusing on the contribution of mGluR7 and mGluR8 in the dorsal striatal control of pain. The role of mGluR4, whose antiparkinsonian activity is widely reported, will also be addressed.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
16
|
Metabotropic Glutamate Receptor 5 and 8 Modulate the Ameliorative Effect of Ultramicronized Palmitoylethanolamide on Cognitive Decline Associated with Neuropathic Pain. Int J Mol Sci 2019; 20:ijms20071757. [PMID: 30970677 PMCID: PMC6480075 DOI: 10.3390/ijms20071757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
This study investigated whether metabotropic glutamate receptor (mGluR) 5 and 8 are involved in the effect of ultramicronizedpalmitoylethanolamide (um-PEA) on the cognitive behavior and long term potentiation (LTP) at entorhinal cortex (LEC)-dentate gyrus (DG) pathway in mice rendered neuropathic by the spare nerve injury (SNI). SNI reduced discriminative memory and LTP. Um-PEA treatment started after the development of neuropathic pain had no effects in sham mice, whereas it restored cognitive behavior and LTP in SNI mice. 2-Methyl-6-(phenylethynyl) pyridine (MPEP), a selective mGluR5 antagonist, improved cognition in SNI mice and produced a chemical long term depression of the field excitatory postsynaptic potentials (fEPSPs) in sham and SNI mice. After theta burst stimulation (TBS) MPEP restored LTP in SNI mice. In combination with PEA, MPEP antagonized the PEA effect on discriminative memory and decreased LTP in SNI mice. The (RS)-4-(1-amino-1-carboxyethyl)phthalic acid (MDCPG), a selective mGluR8 antagonist, did not affect discriminative memory, but it induced a chemical LTP and prevented the enhancement of fEPSPs after TBS in SNI mice which were treated or not treated with PEA. The effect of PEA on LTP and cognitive behavior was modulated by mGluR5 and mGluR8. In particular in the SNI conditions, the mGluR5 blockade facilitated memory and LTP, but prevented the beneficial effects of PEA on discriminative memory while the mGluR8 blockade, which was ineffective in itself, prevented the favorable action of the PEA on LTP. Thus, although their opposite roles (excitatory/inhibitory of the two receptor subtypes on the glutamatergic system), they appeared to be required for the neuroprotective effect of PEA in conditions of neuropathic pain.
Collapse
|
17
|
Wang W, Zhong X, Li Y, Guo R, Du S, Wen L, Ying Y, Yang T, Wei X. Rostral ventromedial medulla‐mediated descending facilitation following P2X7 receptor activation is involved in the development of chronic post‐operative pain. J Neurochem 2019; 149:760-780. [DOI: 10.1111/jnc.14650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/14/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Wang
- Department of Physiology and Pain Research Center Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Xiongxiong Zhong
- Department of Physiology and Pain Research Center Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Yongyong Li
- Department of Physiology and Pain Research Center Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Ruixian Guo
- Department of Physiology and Pain Research Center Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease Guangzhou Guangdong People's Republic of China
| | - Sujuan Du
- Department of Anesthesiology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Lili Wen
- Department of Anesthesiology Cancer Center State Key Laboratory of Oncology in South China Collaborative, Innovation Center for Cancer Medicine Sun Yat‐sen University Guangzhou P. R. China
| | - Yanlu Ying
- Department of Anesthesiology Guangzhou First People's Hospital Guangzhou Medical University Guangzhou China
| | - Tao Yang
- Department of Anesthesiology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Xu‐Hong Wei
- Department of Physiology and Pain Research Center Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease Guangzhou Guangdong People's Republic of China
| |
Collapse
|
18
|
Pereira V, Goudet C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front Mol Neurosci 2019; 11:464. [PMID: 30662395 PMCID: PMC6328474 DOI: 10.3389/fnmol.2018.00464] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.
Collapse
Affiliation(s)
- Vanessa Pereira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Boccella S, Cristiano C, Romano R, Iannotta M, Belardo C, Farina A, Guida F, Piscitelli F, Palazzo E, Mazzitelli M, Imperatore R, Tunisi L, de Novellis V, Cristino L, Di Marzo V, Calignano A, Maione S, Luongo L. Ultra-micronized palmitoylethanolamide rescues the cognitive decline-associated loss of neural plasticity in the neuropathic mouse entorhinal cortex-dentate gyrus pathway. Neurobiol Dis 2018; 121:106-119. [PMID: 30266286 DOI: 10.1016/j.nbd.2018.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is associated with cognitive deficits. Palmitoylethanolamide (PEA) has been shown to ameliorate pain and pain-related cognitive impairments by restoring glutamatergic synapses functioning in the spared nerve injury (SNI) of the sciatic nerve in mice. SNI reduced mechanical and thermal threshold, spatial memory and LTP at the lateral entorhinal cortex (LEC)-dentate gyrus (DG) pathway. It decreased also postsynaptic density, volume and dendrite arborization of DG and increased the expression of metabotropic glutamate receptor 1 and 7 (mGluR1 and mGluR7), of the GluR1, GluR1s845 and GluR1s831 subunits of AMPA receptor and the levels of glutamate in the DG. The level of the endocannabinoid 2-arachidonoylglycerol (2-AG) was instead increased in the LEC. Chronic treatment with PEA, starting from when neuropathic pain was fully developed, was able to reverse mechanical allodynia and thermal hyperalgesia, memory deficit and LTP in SNI wild type, but not in PPARα null, mice. PEA also restored the level of glutamate and the expression of phosphorylated GluR1 subunits, postsynaptic density and neurogenesis. Altogether, these results suggest that neuropathic pain negatively affects cognitive behavior and related LTP, glutamatergic synapse and synaptogenesis in the DG. In these conditions PEA treatment alleviates pain and cognitive impairment by restoring LTP and synaptic maladaptative changes in the LEC-DG pathway. These outcomes open new perspectives for the use of the N-acylethanolamines, such as PEA, for the treatment of neuropathic pain and its central behavioural sequelae.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Rosaria Romano
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Antonio Farina
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Roberta Imperatore
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lea Tunisi
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
20
|
Salas R, Ramirez K, Tortorici V, Vanegas H, Vazquez E. Functional relationship between brainstem putative pain-facilitating neurons and spinal nociceptfive neurons during development of inflammation in rats. Brain Res 2018; 1686:55-64. [DOI: 10.1016/j.brainres.2018.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/12/2017] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
|
21
|
Metabotropic glutamate receptor subtype 7 in the dorsal striatum oppositely modulates pain in sham and neuropathic rats. Neuropharmacology 2018; 135:86-99. [PMID: 29505788 DOI: 10.1016/j.neuropharm.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 11/24/2022]
Abstract
The study investigated the role of the metabotropic glutamate receptor subtype 7 (mGluR7) in pain signalling in the dorsal striatum of sham and neuropathic rats. Supraspinal circuitries involved in the dorsal striatum control of pain were also explored. In the sham rats, microinjection of N,N'-bis(diphenylmethyl)-1,2-ethanediamine (AMN082), a selective mGluR7 positive allosteric modulator, into the dorsal striatum, facilitated pain, increased the activity of the ON cells and inhibited the activity of the OFF cells in the rostral ventromedial medulla, and decreased glutamate levels in the dorsal striatum. Conversely, AMN082 inhibited pain and the activity of the ON cells while increased the activity of the OFF cells in rats with spared nerve injury (SNI) of the sciatic nerve. AMN082 also decreased glutamate levels in the dorsal striatum of SNI rats. The effect of AMN082 on mechanical allodynia and glutamate release was blocked by 6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydro-4(5H)-benzoxazolone (ADX71743), a selective mGluR7 negative allosteric modulator. Moreover, in the sham rats, AMN082 increased the activity of total nociceptive convergent neurons in the dorsal reticular nucleus while in the SNI rats, such activity was decreased. The administration of lidocaine into the subthalamic nucleus abolished the effect of AMN082 on the total nociceptive convergent neurons in the sham rats but not in the SNI rats. Thus, the dual effect of mGluR7 in facilitating or inhibiting pain responses may be due to the recruitment of different pathways of the basal ganglia, the indirect or direct pathway, in physiological or pathological conditions, respectively.
Collapse
|
22
|
Abstract
This chapter describes surgical procedures for the induction of neuropathic pain using an animal model (rat or mouse) of spared nerve injury. In addition to technical details of the surgical technique, details of anesthesia and perioperative care are also included.
Collapse
|
23
|
In vivo evaluation of the hippocampal glutamate, GABA and the BDNF levels associated with spatial memory performance in a rodent model of neuropathic pain. Physiol Behav 2017; 175:97-103. [DOI: 10.1016/j.physbeh.2017.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/18/2017] [Accepted: 03/18/2017] [Indexed: 11/22/2022]
|
24
|
Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J Neurochem 2017; 141:507-519. [DOI: 10.1111/jnc.13725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Ida Marabese
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Livio Luongo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Francesca Guida
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Vito de Novellis
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Sabatino Maione
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| |
Collapse
|
25
|
Chiechio S. Modulation of Chronic Pain by Metabotropic Glutamate Receptors. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:63-89. [DOI: 10.1016/bs.apha.2015.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
26
|
Guida F, Luongo L, Marmo F, Romano R, Iannotta M, Napolitano F, Belardo C, Marabese I, D'Aniello A, De Gregorio D, Rossi F, Piscitelli F, Lattanzi R, de Bartolomeis A, Usiello A, Di Marzo V, de Novellis V, Maione S. Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol Brain 2015; 8:47. [PMID: 26260027 PMCID: PMC4532244 DOI: 10.1186/s13041-015-0139-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/02/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Enhanced supraspinal glutamate levels following nerve injury are associated with pathophysiological mechanisms responsible for neuropathic pain. Chronic pain can interfere with specific brain areas involved in glutamate-dependent neuropsychological processes, such as cognition, memory, and decision-making. The medial prefrontal cortex (mPFC) is thought to play a critical role in pain-related depression and anxiety, which are frequent co-morbidities of chronic pain. Using an animal model of spared nerve injury (SNI) of the sciatic nerve, we assess bio-molecular modifications in glutamatergic synapses in the mPFC that underlie neuropathic pain-induced plastic changes at 30 days post-surgery. Moreover, we examine the effects of palmitoylethanolamide (PEA) administration on pain-related behaviours, as well as the cortical biochemical and morphological changes that occur in SNI animals. RESULTS At 1 month, SNI was associated with mechanical and thermal hypersensitivity, as well as depression-like behaviour, cognitive impairments, and obsessive-compulsive activities. Moreover, we observed an overall glutamate synapse modification in the mPFC, characterized by changes in synaptic density proteins and amino acid levels. Finally, with regard to the resolution of pain and depressive-like syndrome in SNI mice, PEA restored the glutamatergic synapse proteins and changes in amino acid release. CONCLUSIONS Given the potential role of the mPFC in pain mechanisms, our findings may provide novel insights into neuropathic pain forebrain processes and indicate PEA as a new pharmacological tool to treat neuropathic pain and the related negative affective states. Graphical Abstract Palmitoylethanolamide: a new pharmacological tool to treat neuropathic pain and the related negative affective states.
Collapse
Affiliation(s)
- F Guida
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - L Luongo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - F Marmo
- Department of Neuroscience, Laboratory of Molecular and Translational Psychiatry, University School of Medicine "Federico II", Naples, Italy
| | - R Romano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - M Iannotta
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - F Napolitano
- Behavioural Neuroscience Laboratory, CEINGE - Biotecnologie Avanzate, Via Comunale Margherita 482, 80145, Naples, Italy
| | - C Belardo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - I Marabese
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - A D'Aniello
- Stazione Zoologica "Anton Dohrn", Naples, Italy
| | - D De Gregorio
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - F Rossi
- Department of Women, Child and General and Specialistic Surgery, Second University of Naples, Naples, Italy
| | - F Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - R Lattanzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | - A de Bartolomeis
- Department of Neuroscience, Laboratory of Molecular and Translational Psychiatry, University School of Medicine "Federico II", Naples, Italy
| | - A Usiello
- Behavioural Neuroscience Laboratory, CEINGE - Biotecnologie Avanzate, Via Comunale Margherita 482, 80145, Naples, Italy
| | - V Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - V de Novellis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy
| | - S Maione
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138, Naples, Italy.
| |
Collapse
|
27
|
Therapeutic potential of group III metabotropic glutamate receptor ligands in pain. Curr Opin Pharmacol 2015; 20:64-72. [DOI: 10.1016/j.coph.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022]
|
28
|
Nakamura Y, Izumi H, Fukushige R, Shimizu T, Watanabe K, Morioka N, Hama A, Takamatsu H, Nakata Y. Continuous infusion of substance P into rat striatum alleviates nociceptive behavior via phosphorylation of extracellular signal-regulated kinase 1/2. J Neurochem 2014; 131:755-66. [PMID: 25175638 DOI: 10.1111/jnc.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/12/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
Intraplantar injection of 0.4% formalin into the rat hind paw leads to a biphasic nociceptive response; an 'acute' phase (0-15 min) and 'tonic' phase (16-120 min), which is accompanied by significant phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the contralateral striatum at 120 min post-formalin injection. To uncover a possible relationship between the slow-onset substance P (SP) release and increased ERK1/2 phosphorylation in the striatum, continuous infusion of SP into the striatum by reverse microdialysis (0.4 μg/mL in microdialysis fiber, 1 μL/min) was performed to mimic volume neurotransmission of SP. Continuous infusion for 3 h of SP reduced the duration of 'tonic' phase nociception, and this SP effect was mediated by neurokinin 1 (NK1) receptors since pre-treatment with NK1 receptor antagonist CP96345 (10 μM) blocked the effect of SP infusion. However, formalin-induced 'tonic' phase nociception was significantly prolonged following acute injection of the MAP/ERK kinase 1/2 inhibitor PD0325901 (100 pmol) by microinjection. The coinfusion of SP and PD0325901 significantly increased the 'tonic' phase of nociception. These data demonstrate that volume transmission of striatal SP triggered by peripheral nociceptive stimulation does not lead to pain facilitation but a significant decrease of tonic nociception by the activation of the SP-NK1 receptor-ERK1/2 system. Noxious stimulation induces a slow-onset substance P (SP) release as a volume transmitter, activating extra-synaptic NK1 receptors, and evokes phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. The SP-NK1-ERK1/2 system in the striatum decreases tonic nociception.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Palazzo E, de Novellis V, Rossi F, Maione S. Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain. Amino Acids 2014; 46:1441-8. [PMID: 24623118 DOI: 10.1007/s00726-014-1703-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/18/2014] [Indexed: 12/28/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system and as such controls the majority of synapses. Glutamatergic neurotransmission is mediated via ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). Signaling via mGluRs permits to finely tune, rather than turning on/off, the excitatory neurotransmission as the iGluRs do. Eight mGluRs (mGluR1-8) have been cloned so far, which have been divided into three groups based on sequence homology, pharmacological properties and second messenger signaling. mGluRs are widely expressed both on glia and neurons. On neurons they are located both at postsynaptic (group I) and presynaptic sites (group II and III). Group II and III mGluR stimulation reduces glutamate release, which can prove useful in pathological conditions characterized by elevated glutamatergic neurotransmission which include chronic pain. Indeed, mGluRs are widely distributed on pain neuraxis. The recent development of selective mGluR ligands has permitted investigating the individual role of each mGluR on pain control. The development of (S)-3,4-dicarboxyphenylglycine, a selective mGluR8 agonist, has revealed the mGluR8 role in inhibiting pain and its related affective consequences in chronic pain conditions. mGluR8 proved also to be overexpressed in pain controlling areas during pathological pain guaranteeing the availability of a switch for turning off abnormal pain. Thus, mGluR8 corresponds to an ideal target in designing novel analgesics. This review will focus on the novel insights into the mGluR8 role on pain control, with particular emphasis on the supraspinal descending pathway, an antinociceptive endogenous source, whose activation or disinhibition (via mGluR8) induces analgesia.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anaesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy,
| | | | | | | |
Collapse
|