1
|
Rogalla MM, Quass GL, Yardley H, Martinez-Voigt C, Ford AN, Wallace G, Dileepkumar D, Corfas G, Apostolides PF. Population coding of auditory space in the dorsal inferior colliculus persists with altered binaural cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612867. [PMID: 39314270 PMCID: PMC11419156 DOI: 10.1101/2024.09.13.612867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear. Here we use 2-photon Ca2+ imaging in awake head-fixed mice to determine how the higher-order "shell" layers of the inferior colliculus (IC) encode sound source location in the frontal azimuth, under binaural conditions and after acute monaural hearing loss induced by an ear plug ipsilateral to the imaged hemisphere. Spatial receptive fields were typically broad and not exclusively contralateral: Neurons responded reliably to multiple positions in the contra- and ipsi-lateral hemifields, with preferred positions tiling the entire frontal azimuth. Ear plugging broadened receptive fields and reduced spatial selectivity in a subset of neurons, in agreement with an inhibitory influence of ipsilateral sounds. However ear plugging also enhanced spatial tuning and/or unmasked receptive fields in other neurons, shifting the distribution of preferred angles ipsilaterally with minimal impact on the neuronal population's overall spatial resolution; these effects occurred within 2 hours of ear plugging. Consequently, linear classifiers trained on fluorescence data from control and ear-plugged conditions had similar classification accuracy when tested on held out data from within, but not across hearing conditions. Spatially informative neuronal population codes therefore arise rapidly following monaural hearing loss, in absence of overt experience.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunnar L. Quass
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Harry Yardley
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Clara Martinez-Voigt
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Alexander N. Ford
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunseli Wallace
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
2
|
van den Wildenberg MF, Bremen P. Heterogeneous spatial tuning in the auditory pathway of the Mongolian Gerbil (Meriones unguiculatus). Eur J Neurosci 2024; 60:4954-4981. [PMID: 39085952 DOI: 10.1111/ejn.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Sound-source localization is based on spatial cues arising due to interactions of sound waves with the torso, head and ears. Here, we evaluated neural responses to free-field sound sources in the central nucleus of the inferior colliculus (CIC), the medial geniculate body (MGB) and the primary auditory cortex (A1) of Mongolian gerbils. Using silicon probes we recorded from anaesthetized gerbils positioned in the centre of a sound-attenuating, anechoic chamber. We measured rate-azimuth functions (RAFs) with broad-band noise of varying levels presented from loudspeakers spanning 210° in azimuth and characterized RAFs by calculating spatial centroids, Equivalent Rectangular Receptive Fields (ERRFs), steepest slope locations and spatial-separation thresholds. To compare neuronal responses with behavioural discrimination thresholds from the literature we performed a neurometric analysis based on signal-detection theory. All structures demonstrated heterogeneous spatial tuning with a clear dominance of contralateral tuning. However, the relative amount of contralateral tuning decreased from the CIC to A1. In all three structures spatial tuning broadened with increasing sound-level. This effect was strongest in CIC and weakest in A1. Neurometric spatial-separation thresholds compared well with behavioural discrimination thresholds for locations directly in front of the animal. Our findings contrast with those reported for another rodent, the rat, which exhibits homogenous and sharply delimited contralateral spatial tuning. Spatial tuning in gerbils resembles more closely the tuning reported in A1 of cats, ferrets and non-human primates. Interestingly, gerbils, in contrast to rats, share good low-frequency hearing with carnivores and non-human primates, which may account for the observed spatial tuning properties.
Collapse
Affiliation(s)
| | - Peter Bremen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Luo TZ, Kim TD, Gupta D, Bondy AG, Kopec CD, Elliot VA, DePasquale B, Brody CD. Transitions in dynamical regime and neural mode underlie perceptual decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562427. [PMID: 37904994 PMCID: PMC10614809 DOI: 10.1101/2023.10.15.562427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Perceptual decision-making is the process by which an animal uses sensory stimuli to choose an action or mental proposition. This process is thought to be mediated by neurons organized as attractor networks 1,2 . However, whether attractor dynamics underlie decision behavior and the complex neuronal responses remains unclear. Here we use an unsupervised, deep learning-based method to discover decision-related dynamics from the simultaneous activity of neurons in frontal cortex and striatum of rats while they accumulate pulsatile auditory evidence. We found that trajectories evolved along two sequential regimes, the first dominated by sensory inputs, and the second dominated by the autonomous dynamics, with flow in a direction (i.e., "neural mode") largely orthogonal to that in the first regime. We propose that the second regime corresponds to decision commitment. We developed a simplified model that approximates the coupled transition in dynamics and neural mode and allows precise inference, from each trial's neural activity, of a putative internal decision commitment time in that trial. The simplified model captures diverse and complex single-neuron temporal profiles, such as ramping and stepping 3-5 . It also captures trial-averaged curved trajectories 6-8 , and reveals distinctions between brain regions. The putative neurally-inferred commitment times ("nTc") occurred at times broadly distributed across trials, and not time-locked to stimulus onset, offset, or response onset. Nevertheless, when trials were aligned to nTc, behavioral analysis showed that, as predicted by a decision commitment time, sensory evidence before nTc affected the subjects' decision, but evidence after nTc did not. Our results show that the formation of a perceptual choice involves a rapid, coordinated transition in both the dynamical regime and the neural mode of the decision process, and suggest the moment of commitment to be a useful entry point for dissecting mechanisms underlying rapid changes in internal state.
Collapse
|
4
|
Valente M, Castiñeiras-de Saa JR, Renart A, Pardo-Vazquez JL. Ratphones: An Affordable Tool for Highly Controlled Sound Presentation in Freely Moving Rats. eNeuro 2023; 10:10/5/ENEURO.0028-23.2023. [PMID: 37230769 DOI: 10.1523/eneuro.0028-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Encoding and processing sensory information is key to understanding the environment and to guiding behavior accordingly. Characterizing the behavioral and neural correlates of these processes requires the experimenter to have a high degree of control over stimuli presentation. For auditory stimulation in animals with relatively large heads, this can be accomplished by using headphones. However, it has proven more challenging in smaller species, such as rats and mice, and has been only partially solved using closed-field speakers in anesthetized or head-restrained preparations. To overcome the limitations of such preparations and to deliver sound with high precision to freely moving animals, we have developed a set of miniature headphones for rats. The headphones consist of a small, skull-implantable base attached with magnets to a fully adjustable structure that holds the speakers and keeps them in the same position with respect to the ears.
Collapse
Affiliation(s)
- Mafalda Valente
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Alfonso Renart
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Jose L Pardo-Vazquez
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
- Neuroscience and Motor Control Group, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
5
|
Li K, Auksztulewicz R, Chan CHK, Mishra AP, Schnupp JWH. The precedence effect in spatial hearing manifests in cortical neural population responses. BMC Biol 2022; 20:48. [PMID: 35172815 PMCID: PMC8848659 DOI: 10.1186/s12915-022-01228-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To localize sound sources accurately in a reverberant environment, human binaural hearing strongly favors analyzing the initial wave front of sounds. Behavioral studies of this "precedence effect" have so far largely been confined to human subjects, limiting the scope of complementary physiological approaches. Similarly, physiological studies have mostly looked at neural responses in the inferior colliculus, the main relay point between the inner ear and the auditory cortex, or used modeling of cochlear auditory transduction in an attempt to identify likely underlying mechanisms. Studies capable of providing a direct comparison of neural coding and behavioral measures of sound localization under the precedence effect are lacking. RESULTS We adapted a "temporal weighting function" paradigm previously developed to quantify the precedence effect in human for use in laboratory rats. The animals learned to lateralize click trains in which each click in the train had a different interaural time difference. Computing the "perceptual weight" of each click in the train revealed a strong onset bias, very similar to that reported for humans. Follow-on electrocorticographic recording experiments revealed that onset weighting of interaural time differences is a robust feature of the cortical population response, but interestingly, it often fails to manifest at individual cortical recording sites. CONCLUSION While previous studies suggested that the precedence effect may be caused by early processing mechanisms in the cochlea or inhibitory circuitry in the brainstem and midbrain, our results indicate that the precedence effect is not fully developed at the level of individual recording sites in the auditory cortex, but robust and consistent precedence effects are observable only in the auditory cortex at the level of cortical population responses. This indicates that the precedence effect emerges at later cortical processing stages and is a significantly "higher order" feature than has hitherto been assumed.
Collapse
Affiliation(s)
- Kongyan Li
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Ryszard Auksztulewicz
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Chloe H K Chan
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Ambika Prasad Mishra
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jan W H Schnupp
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
6
|
Liu J, Huang X, Zhang J. Unilateral Conductive Hearing Loss Disrupts the Developmental Refinement of Binaural Processing in the Rat Primary Auditory Cortex. Front Neurosci 2021; 15:762337. [PMID: 34867170 PMCID: PMC8640238 DOI: 10.3389/fnins.2021.762337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Binaural hearing is critically important for the perception of sound spatial locations. The primary auditory cortex (AI) has been demonstrated to be necessary for sound localization. However, after hearing onset, how the processing of binaural cues by AI neurons develops, and how the binaural processing of AI neurons is affected by reversible unilateral conductive hearing loss (RUCHL), are not fully elucidated. Here, we determined the binaural processing of AI neurons in four groups of rats: postnatal day (P) 14–18 rats, P19–30 rats, P57–70 adult rats, and RUCHL rats (P57–70) with RUCHL during P14–30. We recorded the responses of AI neurons to both monaural and binaural stimuli with variations in interaural level differences (ILDs) and average binaural levels. We found that the monaural response types, the binaural interaction types, and the distributions of the best ILDs of AI neurons in P14–18 rats are already adult-like. However, after hearing onset, there exist developmental refinements in the binaural processing of AI neurons, which are exhibited by the increase in the degree of binaural interaction, and the increase in the sensitivity and selectivity to ILDs. RUCHL during early hearing development affects monaural response types, decreases the degree of binaural interactions, and decreases both the selectivity and sensitivity to ILDs of AI neurons in adulthood. These new evidences help us to understand the refinements and plasticity in the binaural processing of AI neurons during hearing development, and might enhance our understanding in the neuronal mechanism of developmental changes in auditory spatial perception.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyi Huang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Liang Y, Liu B, Li X, Wang P, Wang B. Revealing the differences of the representations of sounds from different directions in the human brain using functional connectivity. Neurosci Lett 2020; 718:134746. [PMID: 31923522 DOI: 10.1016/j.neulet.2020.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/24/2022]
Abstract
Many studies have focused on the processing mechanism of sound directions in the human brain, however, as far as we know, it remains unclear whether the representations of sounds from different directions are different. In the present study, 28 subjects were scanned while listening to sounds from different directions. We used the whole-brain functional connectivity (FC) analysis to explore which brain regions had significant changes. Our results revealed that sounds from different directions affected the FC in the widely distributed regions. Importantly, all regions showed significant differences in FC between the central and eccentric directions, while few regions showed a difference between the left and right directions. These findings revealed the differences in the representations of sounds from different directions.
Collapse
Affiliation(s)
- Yaping Liang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; College of Intelligence and Computing, Tianjin University, Tianjin, 300350, PR China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| |
Collapse
|
8
|
Todd J, Frost J, Fitzgerald K, Winkler I. Setting precedent: Initial feature variability affects the subsequent precision of regularly varying sound contexts. Psychophysiology 2020; 57:e13528. [DOI: 10.1111/psyp.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Juanita Todd
- School of Psychology University of Newcastle Callaghan NSW Australia
| | - Jade Frost
- School of Psychology University of Newcastle Callaghan NSW Australia
| | | | - István Winkler
- Institute of Cognitive Neuroscience and Psychology Research Centre for Natural Sciences Budapest Hungary
| |
Collapse
|
9
|
Evoked Response Strength in Primary Auditory Cortex Predicts Performance in a Spectro-Spatial Discrimination Task in Rats. J Neurosci 2019; 39:6108-6121. [PMID: 31175214 DOI: 10.1523/jneurosci.0041-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022] Open
Abstract
The extent to which the primary auditory cortex (A1) participates in instructing animal behavior remains debated. Although multiple studies have shown A1 activity to correlate with animals' perceptual judgments (Jaramillo and Zador, 2011; Bizley et al., 2013; Rodgers and DeWeese, 2014), others have found no relationship between A1 responses and reported auditory percepts (Lemus et al., 2009; Dong et al., 2011). To address this ambiguity, we performed chronic recordings of evoked local field potentials (eLFPs) in A1 of head-fixed female rats performing a two-alternative forced-choice auditory discrimination task. Rats were presented with two interleaved sequences of pure tones from opposite sides and had to indicate the side from which the higher-frequency target stimulus was played. Animal performance closely correlated (r rm = 0.68) with the difference between the target and distractor eLFP responses: the more the target response exceeded the distractor response, the better the animals were at identifying the side of the target frequency. Reducing the evoked response of either frequency through stimulus-specific adaptation affected performance in the expected way: target localization accuracy was degraded when the target frequency was adapted and improved when the distractor frequency was adapted. Target frequency eLFPs were stronger on hit trials than on error trials. Our results suggest that the degree to which one stimulus stands out over others within A1 activity may determine its perceptual saliency for the animals and accordingly bias their behavioral choices.SIGNIFICANCE STATEMENT The brain must continuously calibrate the saliency of sensory percepts against their relevance to the current behavioral goal. The inability to ignore irrelevant distractors characterizes a spectrum of human attentional disorders. Meanwhile, the connection between the neural underpinnings of stimulus saliency and sensory decisions remains elusive. Here, we record local field potentials in the primary auditory cortex of rats engaged in auditory discrimination to investigate how the cortical representation of target and distractor stimuli impacts behavior. We find that the amplitude difference between target- and distractor-evoked activity predicts discrimination performance (r rm = 0.68). Specific adaptation of target or distractor shifts performance either below or above chance, respectively. It appears that recent auditory history profoundly influences stimulus saliency, biasing animals toward diametrically-opposed decisions.
Collapse
|
10
|
Wang X, Liu J, Zhang J. Chronic Unilateral Hearing Loss Disrupts Neural Tuning to Sound-Source Azimuth in the Rat Primary Auditory Cortex. Front Neurosci 2019; 13:477. [PMID: 31133797 PMCID: PMC6524417 DOI: 10.3389/fnins.2019.00477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
Accurate sound localization requires normal binaural input and precise auditory neuronal representation of sound spatial locations. Previous studies showed that unilateral hearing loss profoundly impaired the sound localization abilities. However, the underlying neural mechanism is not fully understood. Here, we investigated how chronic unilateral conductive hearing loss (UCHL) affected the neural tuning to sound source azimuth in the primary auditory cortex (AI). The UCHL was manipulated by the removal of tympanic membrane and malleus in the right ear of young (P14) rats and adult (P57) rats. We recorded the azimuth tuning of neurons in the left AI contralateral to the operated ear in the two groups of rats that experienced 2 months of UCHL, and in the left AI of age-matched control rats. We found that AI neurons in control rats showed predominant preference to sound from contralateral azimuths. However, UCHL weakened the cortical neuronal representation of contralateral azimuths on the operated ear side and strengthened the cortical neuronal representation of ipsilateral azimuths on the intact ear side. This effect was stronger in rats with UCHL at young age than in rats with UCHL in adulthood. Moreover, UCHL degraded the azimuth selectivity and azimuth sensitivity of AI neurons, and this effect was stronger in rats with UCHL in adulthood than in rats with UCHL at young age. These findings highlight a remarkable age-related experience-dependent plasticity of neural tuning to sound source azimuth in AI, and imply a neural mechanism for the impacts of chronic UCHL on sound localization abilities.
Collapse
Affiliation(s)
- Xiuwen Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Kobak D, Pardo-Vazquez JL, Valente M, Machens CK, Renart A. State-dependent geometry of population activity in rat auditory cortex. eLife 2019; 8:e44526. [PMID: 30969167 PMCID: PMC6491041 DOI: 10.7554/elife.44526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/07/2019] [Indexed: 12/02/2022] Open
Abstract
The accuracy of the neural code depends on the relative embedding of signal and noise in the activity of neural populations. Despite a wealth of theoretical work on population codes, there are few empirical characterizations of the high-dimensional signal and noise subspaces. We studied the geometry of population codes in the rat auditory cortex across brain states along the activation-inactivation continuum, using sounds varying in difference and mean level across the ears. As the cortex becomes more activated, single-hemisphere populations go from preferring contralateral loud sounds to a symmetric preference across lateralizations and intensities, gain-modulation effectively disappears, and the signal and noise subspaces become approximately orthogonal to each other and to the direction corresponding to global activity modulations. Level-invariant decoding of sound lateralization also becomes possible in the active state. Our results provide an empirical foundation for the geometry and state-dependence of cortical population codes.
Collapse
Affiliation(s)
- Dmitry Kobak
- Champalimaud Center for the UnknownLisbonPortugal
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
| | - Jose L Pardo-Vazquez
- Champalimaud Center for the UnknownLisbonPortugal
- Neuroscience and Motor Control GroupUniversity of A CoruñaCoruñaSpain
| | | | | | | |
Collapse
|
12
|
Remington ED, Wang X. Neural Representations of the Full Spatial Field in Auditory Cortex of Awake Marmoset (Callithrix jacchus). Cereb Cortex 2019; 29:1199-1216. [PMID: 29420692 PMCID: PMC6373678 DOI: 10.1093/cercor/bhy025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/13/2018] [Indexed: 11/14/2022] Open
Abstract
Unlike visual signals, sound can reach the ears from any direction, and the ability to localize sounds from all directions is essential for survival in a natural environment. Previous studies have largely focused on the space in front of a subject that is also covered by vision and were often limited to measuring spatial tuning along the horizontal (azimuth) plane. As a result, we know relatively little about how the auditory cortex responds to sounds coming from spatial locations outside the frontal space where visual information is unavailable. By mapping single-neuron responses to the full spatial field in awake marmoset (Callithrix jacchus), an arboreal animal for which spatial processing is vital in its natural habitat, we show that spatial receptive fields in several auditory areas cover all spatial locations. Several complementary measures of spatial tuning showed that neurons were tuned to both frontal space and rear space (outside the coverage of vision), as well as the space above and below the horizontal plane. Together, these findings provide valuable new insights into the representation of all spatial locations by primate auditory cortex.
Collapse
Affiliation(s)
- Evan D Remington
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoqin Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Panniello M, King AJ, Dahmen JC, Walker KMM. Local and Global Spatial Organization of Interaural Level Difference and Frequency Preferences in Auditory Cortex. Cereb Cortex 2018; 28:350-369. [PMID: 29136122 PMCID: PMC5991210 DOI: 10.1093/cercor/bhx295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Despite decades of microelectrode recordings, fundamental questions remain about how auditory cortex represents sound-source location. Here, we used in vivo 2-photon calcium imaging to measure the sensitivity of layer II/III neurons in mouse primary auditory cortex (A1) to interaural level differences (ILDs), the principal spatial cue in this species. Although most ILD-sensitive neurons preferred ILDs favoring the contralateral ear, neurons with either midline or ipsilateral preferences were also present. An opponent-channel decoder accurately classified ILDs using the difference in responses between populations of neurons that preferred contralateral-ear-greater and ipsilateral-ear-greater stimuli. We also examined the spatial organization of binaural tuning properties across the imaged neurons with unprecedented resolution. Neurons driven exclusively by contralateral ear stimuli or by binaural stimulation occasionally formed local clusters, but their binaural categories and ILD preferences were not spatially organized on a more global scale. In contrast, the sound frequency preferences of most neurons within local cortical regions fell within a restricted frequency range, and a tonotopic gradient was observed across the cortical surface of individual mice. These results indicate that the representation of ILDs in mouse A1 is comparable to that of most other mammalian species, and appears to lack systematic or consistent spatial order.
Collapse
Affiliation(s)
- Mariangela Panniello
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kerry M M Walker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Abstract
UNLABELLED Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here, we examine the emergence of SSS along the ascending auditory pathway. Extracellular recordings were made in anesthetized rats from the inferior colliculus (IC), the nucleus of the brachium of the IC (BIN), the medial geniculate body (MGB), and the primary auditory cortex (A1). Stimuli consisted of interleaved sequences of broadband noise bursts that alternated between two source locations. At stimulus presentation rates of 5 and 10 bursts per second, at which human listeners report robust SSS, neural SSS is weak in the central nucleus of the IC (ICC), it appears in the nucleus of the brachium of the IC (BIN) and in approximately two-thirds of neurons in the ventral MGB (MGBv), and is prominent throughout A1. The enhancement of SSS at the cortical level reflects both increased spatial sensitivity and increased forward suppression. We demonstrate that forward suppression in A1 does not result from synaptic inhibition at the cortical level. Instead, forward suppression might reflect synaptic depression in the thalamocortical projection. Together, our findings indicate that auditory streams are increasingly segregated along the ascending auditory pathway as distinct mutually synchronized neural populations. SIGNIFICANCE STATEMENT Listeners are capable of disentangling multiple competing sequences of sounds that originate from distinct sources. This stream segregation is aided by differences in spatial location between the sources. A possible substrate of spatial stream segregation (SSS) has been described in the auditory cortex, but the mechanisms leading to those cortical responses are unknown. Here, we investigated SSS in three levels of the ascending auditory pathway with extracellular unit recordings in anesthetized rats. We found that neural SSS emerges within the ascending auditory pathway as a consequence of sharpening of spatial sensitivity and increasing forward suppression. Our results highlight brainstem mechanisms that culminate in SSS at the level of the auditory cortex.
Collapse
|
15
|
Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex. Neuroimage 2015; 120:456-66. [PMID: 26163805 PMCID: PMC4589528 DOI: 10.1016/j.neuroimage.2015.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/08/2015] [Accepted: 07/03/2015] [Indexed: 11/20/2022] Open
Abstract
Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55–85 dB SPL, binaural 55–85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values.
Collapse
|
16
|
Zhang X, Zhang Q, Hu X, Zhang B. Neural representation of three-dimensional acoustic space in the human temporal lobe. Front Hum Neurosci 2015; 9:203. [PMID: 25932011 PMCID: PMC4399328 DOI: 10.3389/fnhum.2015.00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/27/2015] [Indexed: 11/13/2022] Open
Abstract
Sound localization is an important function of the human brain, but the underlying cortical mechanisms remain unclear. In this study, we recorded auditory stimuli in three-dimensional space and then replayed the stimuli through earphones during functional magnetic resonance imaging (fMRI). By employing a machine learning algorithm, we successfully decoded sound location from the blood oxygenation level-dependent signals in the temporal lobe. Analysis of the data revealed that different cortical patterns were evoked by sounds from different locations. Specifically, discrimination of sound location along the abscissa axis evoked robust responses in the left posterior superior temporal gyrus (STG) and right mid-STG, discrimination along the elevation (EL) axis evoked robust responses in the left posterior middle temporal lobe (MTL) and right STG, and discrimination along the ordinate axis evoked robust responses in the left mid-MTL and right mid-STG. These results support a distributed representation of acoustic space in human cortex.
Collapse
Affiliation(s)
- Xiaolu Zhang
- State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Computer Science and Technology, Tsinghua University Beijing, China
| | - Qingtian Zhang
- State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Computer Science and Technology, Tsinghua University Beijing, China
| | - Xiaolin Hu
- State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Computer Science and Technology, Tsinghua University Beijing, China ; Center for Brain-Inspired Computing Research (CBICR), Tsinghua University Beijing, China
| | - Bo Zhang
- State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Computer Science and Technology, Tsinghua University Beijing, China ; Center for Brain-Inspired Computing Research (CBICR), Tsinghua University Beijing, China
| |
Collapse
|
17
|
Yao JD, Bremen P, Middlebrooks JC. Transformation of spatial sensitivity along the ascending auditory pathway. J Neurophysiol 2015; 113:3098-111. [PMID: 25744891 DOI: 10.1152/jn.01029.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 11/22/2022] Open
Abstract
Locations of sounds are computed in the central auditory pathway based primarily on differences in sound level and timing at the two ears. In rats, the results of that computation appear in the primary auditory cortex (A1) as exclusively contralateral hemifield spatial sensitivity, with strong responses to sounds contralateral to the recording site, sharp cutoffs across the midline, and weak, sound-level-tolerant responses to ipsilateral sounds. We surveyed the auditory pathway in anesthetized rats to identify the brain level(s) at which level-tolerant spatial sensitivity arises. Noise-burst stimuli were varied in horizontal sound location and in sound level. Neurons in the central nucleus of the inferior colliculus (ICc) displayed contralateral tuning at low sound levels, but tuning was degraded at successively higher sound levels. In contrast, neurons in the nucleus of the brachium of the inferior colliculus (BIN) showed sharp, level-tolerant spatial sensitivity. The ventral division of the medial geniculate body (MGBv) contained two discrete neural populations, one showing broad sensitivity like the ICc and one showing sharp sensitivity like A1. Dorsal, medial, and shell regions of the MGB showed fairly sharp spatial sensitivity, likely reflecting inputs from A1 and/or the BIN. The results demonstrate two parallel brainstem pathways for spatial hearing. The tectal pathway, in which sharp, level-tolerant spatial sensitivity arises between ICc and BIN, projects to the superior colliculus and could support reflexive orientation to sounds. The lemniscal pathway, in which such sensitivity arises between ICc and the MGBv, projects to the forebrain to support perception of sound location.
Collapse
Affiliation(s)
- Justin D Yao
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - Peter Bremen
- Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - John C Middlebrooks
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California; Department of Cognitive Sciences, University of California at Irvine, Irvine, California; Department of Biomedical Engineering, University of California at Irvine, Irvine, California
| |
Collapse
|
18
|
Kyweriga M, Stewart W, Cahill C, Wehr M. Synaptic mechanisms underlying interaural level difference selectivity in rat auditory cortex. J Neurophysiol 2014; 112:2561-71. [PMID: 25185807 DOI: 10.1152/jn.00389.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interaural level difference (ILD) is a sound localization cue that is extensively processed in the auditory brain stem and midbrain and is also represented in the auditory cortex. Here, we asked whether neurons in the auditory cortex passively inherit their ILD tuning from subcortical sources or whether their spiking preferences were actively shaped by local inhibition. If inherited, the ILD selectivity of spiking output should match that of excitatory synaptic input. If shaped by local inhibition, by contrast, excitation should be more broadly tuned than spiking output with inhibition suppressing spiking for nonpreferred stimuli. To distinguish between these two processing strategies, we compared spiking responses with excitation and inhibition in the same neurons across a range of ILDs and average binaural sound levels. We found that cells preferring contralateral ILDs (often called EI cells) followed the inheritance strategy. In contrast, cells that were unresponsive to monaural sounds but responded predominantly to near-zero ILDs (PB cells) instead showed evidence of the local processing strategy. These PB cells received excitatory inputs that were similar to those received by the EI cells. However, contralateral monaural sounds and ILDs >0 dB elicited strong inhibition, quenching the spiking output. These results suggest that in the rat auditory cortex, EI cells do not utilize inhibition to shape ILD sensitivity, whereas PB cells do. We conclude that an auditory cortical circuit computes sensitivity for near-zero ILDs.
Collapse
Affiliation(s)
- Michael Kyweriga
- Institute of Neuroscience, University of Oregon, Eugene, Oregon; Department of Biology, University of Oregon, Eugene, Oregon
| | - Whitney Stewart
- Institute of Neuroscience, University of Oregon, Eugene, Oregon; Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| | - Carolyn Cahill
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Michael Wehr
- Institute of Neuroscience, University of Oregon, Eugene, Oregon; Department of Psychology, University of Oregon, Eugene, Oregon
| |
Collapse
|