1
|
Gu J, Buidze T, Zhao K, Gläscher J, Fu X. The neural network of sensory attenuation: A neuroimaging meta-analysis. Psychon Bull Rev 2025; 32:31-51. [PMID: 38954157 DOI: 10.3758/s13423-024-02532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 07/04/2024]
Abstract
Sensory attenuation refers to the reduction in sensory intensity resulting from self-initiated actions compared to stimuli initiated externally. A classic example is scratching oneself without feeling itchy. This phenomenon extends across various sensory modalities, including visual, auditory, somatosensory, and nociceptive stimuli. The internal forward model proposes that during voluntary actions, an efferent copy of the action command is sent out to predict sensory feedback. This predicted sensory feedback is then compared with the actual sensory feedback, leading to the suppression or reduction of sensory stimuli originating from self-initiated actions. To further elucidate the neural mechanisms underlying sensory attenuation effect, we conducted an extensive meta-analysis of functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) studies. Utilizing activation likelihood estimation (ALE) analysis, our results revealed significant activations in a prominent cluster encompassing the right superior temporal gyrus (rSTG), right middle temporal gyrus (rMTG), and right insula when comparing external-generated with self-generated conditions. Additionally, significant activation was observed in the right anterior cerebellum when comparing self-generated to external-generated conditions. Further analysis using meta-analytic connectivity modeling (MACM) unveiled distinct brain networks co-activated with the rMTG and right cerebellum, respectively. Based on these findings, we propose that sensory attenuation arises from the suppression of reflexive inputs elicited by self-initiated actions through the internal forward modeling of a cerebellum-centered action prediction network, enabling the "sensory conflict detection" regions to effectively discriminate between inputs resulting from self-induced actions and those originating externally.
Collapse
Affiliation(s)
- Jingjin Gu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tatia Buidze
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jan Gläscher
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Giannini G, Nierhaus T, Blankenburg F. Investigation of sensory attenuation in the somatosensory domain using EEG in a novel virtual reality paradigm. Sci Rep 2025; 15:2819. [PMID: 39843944 PMCID: PMC11754869 DOI: 10.1038/s41598-025-87244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones. Studying this phenomenon, however, requires considering a plethora of factors that could otherwise interfere with its interpretation, such as differences in stimulus properties, attentional resources, or temporal predictability. We therefore developed a novel Virtual Reality (VR) setup which allows control over several of these confounding factors. Furthermore, we modulated the expectation of receiving a somatosensory stimulation across self-production and passive perception through a simple probabilistic learning task, allowing us to test to what extent the electrophysiological correlates of sensory attenuation are impacted by stimulus expectation. Therefore, the aim of the present study was twofold: first we aimed validating a novel VR paradigm during electroencephalography (EEG) recoding to investigate sensory attenuation in a highly controlled setup; second, we tested whether electrophysiological differences between self- and externally-generated sensations could be better explained by stimulus predictability factors, corroborating the validity of sensory attenuation. Results of 26 participants indicate that early (P100), mid-latency (P200) and later negative contralateral potentials were significantly attenuated by self-generated sensations, independent of the stimulus expectation. Moreover, a component around 200 ms post-stimulus at frontal sites was found to be enhanced for self-produced stimuli. The P300 was influenced by stimulus expectation, regardless of whether the stimulation was actively produced or passively attended. Together, our results demonstrate that VR opens up new possibilities to study sensory attenuation in more ecological valid yet well-controlled paradigms, and that sensory attenuation is not significantly modulated by stimulus predictability, suggesting that sensory attenuation relies on motor-specific predictions about their sensory outcomes. This not only supports the phenomenon of sensory attenuation, but is also consistent with previous research and the concept that action actually plays a crucial role in perception.
Collapse
Affiliation(s)
- Gianluigi Giannini
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität Berlin, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Till Nierhaus
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität Berlin, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Sato R, Kimura E. Voluntary blinks and eye-widenings, but not spontaneous blinks, facilitate perceptual alternation during continuous flash suppression. J Vis 2024; 24:11. [PMID: 39699910 DOI: 10.1167/jov.24.13.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The fact that blinks occur more often than necessary for ocular lubrication has led to the proposal that blinks are involved in altering some aspects of visual cognition. Previous studies have suggested that blinking can modulate the alternation of different visual interpretations of the same stimulus, that is, perceptual alternation in multistable perception. This study investigated whether and how different types of blinks, spontaneous and voluntary, interact with perceptual alternation in a multistable perception paradigm called continuous flash suppression. The results showed that voluntary blinking facilitated perceptual alternation, whereas spontaneous blinking did not. Moreover, voluntary eye-widening, as well as eyelid closing, facilitated perceptual alternation. Physical blackouts, which had timing and duration comparable to those of voluntary blinks, did not produce facilitatory effects. These findings suggest that the effects of voluntary eyelid movements are mediated by extraretinal processes and are consistent with previous findings that different types of blinks are at least partially mediated by different neurophysiological processes. Furthermore, perceptual alternation was also found to facilitate spontaneous blinking. These results indicate that eyelid movements and perceptual alternation interact reciprocally with each other.
Collapse
Affiliation(s)
- Ryoya Sato
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Eiji Kimura
- Department of Psychology, Graduate School of Humanities, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Balla VR, Kilencz T, Szalóki S, Dalos VD, Partanen E, Csifcsák G. Motor dominance and movement-outcome congruency influence the electrophysiological correlates of sensory attenuation for self-induced visual stimuli. Int J Psychophysiol 2024; 200:112344. [PMID: 38614439 DOI: 10.1016/j.ijpsycho.2024.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
This study explores the impact of movement-outcome congruency and motor dominance on the action-associated modulations of early visual event-related potentials (ERPs). Employing the contingent paradigm, participants with varying degrees of motor dominance were exposed to stimuli depicting left or right human hands in the corresponding visual hemifields. Stimuli were either passively observed or evoked by voluntary button-presses with the dominant or non-dominant hand, in a manner that was either congruent or incongruent with stimulus laterality and hemifield. Early occipital responses (C1 and P1 components) revealed modulations consistent with sensory attenuation (SA) for self-evoked stimuli. Our findings suggest that sensory attenuation during the initial stages of visual processing (C1 component) is a general phenomenon across all degrees of handedness and stimulus/movement combinations. However, the magnitude of C1 suppression was modulated by handedness and movement-stimulus congruency, reflecting stronger SA in right-handed participants for stimuli depicting the right hand, when elicited by actions of the corresponding hand, and measured above the contralateral occipital lobe. P1 modulation suggested concurrent but opposing influences of attention and sensory prediction, with more pronounced suppression following stimulus-congruent button-presses over the hemisphere contralateral to movement, especially in left-handed individuals. We suggest that effects of motor dominance on the degree of SA may stem from functional/anatomical asymmetries in the processing of body parts (C1) and attention networks (P1). Overall, our results demonstrate the modulating effect of hand dominance and movement-outcome congruency on SA, underscoring the need for deeper exploration of their interplay. Additional empirical evidence in this direction could substantiate a premotor account for action-associated modulation of early sensory processing in the visual domain.
Collapse
Affiliation(s)
- Viktória Roxána Balla
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| | - Tünde Kilencz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Szilvia Szalóki
- Department of Cognitive and Neuropsychology, Institute of Psychology, Faculty of Humanities and Social Sciences, University of Szeged, Hungary
| | - Vera Daniella Dalos
- Doctoral School of Interdisciplinary Medicine, Faculty of Medicine, University of Szeged, Hungary
| | - Eino Partanen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Gábor Csifcsák
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Numasawa K, Miyamoto T, Kizuka T, Ono S. Prediction error in implicit adaptation during visually- and memory-guided reaching tasks. Sci Rep 2024; 14:8582. [PMID: 38615053 PMCID: PMC11016115 DOI: 10.1038/s41598-024-59169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Human movements are adjusted by motor adaptation in order to maintain their accuracy. There are two systems in motor adaptation, referred to as explicit or implicit adaptation. It has been suggested that the implicit adaptation is based on the prediction error and has been used in a number of motor adaptation studies. This study aimed to examine the effect of visual memory on prediction error in implicit visuomotor adaptation by comparing visually- and memory-guided reaching tasks. The visually-guided task is thought to be implicit learning based on prediction error, whereas the memory-guided task requires more cognitive processes. We observed the adaptation to visuomotor rotation feedback that is gradually rotated. We found that the adaptation and retention rates were higher in the visually-guided task than in the memory-guided task. Furthermore, the delta-band power obtained by electroencephalography (EEG) in the visually-guided task was increased immediately following the visual feedback, which indicates that the prediction error was larger in the visually-guided task. Our results show that the visuomotor adaptation is enhanced in the visually-guided task because the prediction error, which contributes update of the internal model, was more reliable than in the memory-guided task. Therefore, we suggest that the processing of the prediction error is affected by the task-type, which in turn affects the rate of the visuomotor adaptation.
Collapse
Affiliation(s)
- Kosuke Numasawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takeshi Miyamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tomohiro Kizuka
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Seiji Ono
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
6
|
Hu Y, Yu Q. Spatiotemporal dynamics of self-generated imagery reveal a reverse cortical hierarchy from cue-induced imagery. Cell Rep 2023; 42:113242. [PMID: 37831604 DOI: 10.1016/j.celrep.2023.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Visual imagery allows for the construction of rich internal experience in our mental world. However, it has remained poorly understood how imagery experience derives volitionally as opposed to being cue driven. Here, using electroencephalography and functional magnetic resonance imaging, we systematically investigate the spatiotemporal dynamics of self-generated imagery by having participants volitionally imagining one of the orientations from a learned pool. We contrast self-generated imagery with cue-induced imagery, where participants imagined line orientations based on associative cues acquired previously. Our results reveal overlapping neural signatures of cue-induced and self-generated imagery. Yet, these neural signatures display substantially differential sensitivities to the two types of imagery: self-generated imagery is supported by an enhanced involvement of the anterior cortex in representing imagery contents. By contrast, cue-induced imagery is supported by enhanced imagery representations in the posterior visual cortex. These results jointly support a reverse cortical hierarchy in generating and maintaining imagery contents in self-generated versus externally cued imagery.
Collapse
Affiliation(s)
- Yiheng Hu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
7
|
Neural Signatures of Actively Controlled Self-Motion and the Subjective Encoding of Distance. eNeuro 2022; 9:ENEURO.0137-21.2022. [PMID: 36635239 PMCID: PMC9770018 DOI: 10.1523/eneuro.0137-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Navigating through an environment requires knowledge about one's direction of self-motion (heading) and traveled distance. Behavioral studies showed that human participants can actively reproduce a previously observed travel distance purely based on visual information. Here, we employed electroencephalography (EEG) to investigate the underlying neural processes. We measured, in human observers, event-related potentials (ERPs) during visually simulated straight-forward self-motion across a ground plane. The participants' task was to reproduce (active condition) double the distance of a previously seen self-displacement (passive condition) using a gamepad. We recorded the trajectories of self-motion during the active condition and played it back to the participants in a third set of trials (replay condition). We analyzed EEG activity separately for four electrode clusters: frontal (F), central (C), parietal (P), and occipital (O). When aligned to self-motion onset or offset, response modulation of the ERPs was stronger, and several ERP components had different latencies in the passive as compared with the active condition. This result is in line with the concept of predictive coding, which implies modified neural activation for self-induced versus externally induced sensory stimulation. We aligned our data also to the times when subjects passed the (objective) single distance d_obj and the (subjective) single distance d_sub. Remarkably, wavelet-based temporal-frequency analyses revealed enhanced theta-band activation for F, P, and O-clusters shortly before passing d_sub. This enhanced activation could be indicative of a navigation related representation of subjective distance. More generally, our study design allows to investigate subjective perception without interfering neural activation because of the required response action.
Collapse
|
8
|
Lele AS, Fang Y, Anwar A, Raychowdhury A. Bio-mimetic high-speed target localization with fused frame and event vision for edge application. Front Neurosci 2022; 16:1010302. [PMID: 36507348 PMCID: PMC9732385 DOI: 10.3389/fnins.2022.1010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Evolution has honed predatory skills in the natural world where localizing and intercepting fast-moving prey is required. The current generation of robotic systems mimics these biological systems using deep learning. High-speed processing of the camera frames using convolutional neural networks (CNN) (frame pipeline) on such constrained aerial edge-robots gets resource-limited. Adding more compute resources also eventually limits the throughput at the frame rate of the camera as frame-only traditional systems fail to capture the detailed temporal dynamics of the environment. Bio-inspired event cameras and spiking neural networks (SNN) provide an asynchronous sensor-processor pair (event pipeline) capturing the continuous temporal details of the scene for high-speed but lag in terms of accuracy. In this work, we propose a target localization system combining event-camera and SNN-based high-speed target estimation and frame-based camera and CNN-driven reliable object detection by fusing complementary spatio-temporal prowess of event and frame pipelines. One of our main contributions involves the design of an SNN filter that borrows from the neural mechanism for ego-motion cancelation in houseflies. It fuses the vestibular sensors with the vision to cancel the activity corresponding to the predator's self-motion. We also integrate the neuro-inspired multi-pipeline processing with task-optimized multi-neuronal pathway structure in primates and insects. The system is validated to outperform CNN-only processing using prey-predator drone simulations in realistic 3D virtual environments. The system is then demonstrated in a real-world multi-drone set-up with emulated event data. Subsequently, we use recorded actual sensory data from multi-camera and inertial measurement unit (IMU) assembly to show desired working while tolerating the realistic noise in vision and IMU sensors. We analyze the design space to identify optimal parameters for spiking neurons, CNN models, and for checking their effect on the performance metrics of the fused system. Finally, we map the throughput controlling SNN and fusion network on edge-compatible Zynq-7000 FPGA to show a potential 264 outputs per second even at constrained resource availability. This work may open new research directions by coupling multiple sensing and processing modalities inspired by discoveries in neuroscience to break fundamental trade-offs in frame-based computer vision.
Collapse
Affiliation(s)
- Ashwin Sanjay Lele
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Yan Fang
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, United States
| | - Aqeel Anwar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Arijit Raychowdhury
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
9
|
The influence of the motor command accuracy on the prediction error and the automatic corrective response. Physiol Behav 2022; 250:113801. [PMID: 35395251 DOI: 10.1016/j.physbeh.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
The online control system allows for automatic corrective response to unexpected perturbation. This corrective response may involve a prediction error between the sensory prediction by the motor command and the actual feedback signal. Therefore, we attempted to investigate the effect of motor command accuracy on the automatic corrective response. Participants were asked to move a cursor displayed on a monitor and required to reach the center of a Gaussian blob target as accurately as possible for small and large Gaussian blob conditions. The accuracy of the motor command was manipulated by the size of the Gaussian blob. In half of the trials, a perturbation occurred in which the cursor position jumped 10 mm to either the left or right from the actual position, which induced an automatic corrective response. This corrective response was detected by the acceleration signal on the lateral axis. In addition, the prediction error was estimated by the amplitude of the N1 event-related potential (ERP) of the EEG signal. We found that the automatic response and N1 ERP were significantly larger in the small Gaussian blob conditions than in the large one. This result indicates that the automatic corrective response is affected by the certainty of the motor command manipulated by the Gaussian blob. Furthermore, the linear mixed-effect model (LME) indicated that the response is associated with the N1 ERP. Therefore, we suggest that the motor command accuracy affects the prediction error, which in turn modulates the automatic corrective response.
Collapse
|
10
|
Vestibular and active self-motion signals drive visual perception in binocular rivalry. iScience 2021; 24:103417. [PMID: 34877486 PMCID: PMC8632839 DOI: 10.1016/j.isci.2021.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Multisensory integration helps the brain build reliable models of the world and resolve ambiguities. Visual interactions with sound and touch are well established but vestibular influences on vision are less well studied. Here, we test the vestibular influence on vision using horizontally opposed motions presented one to each eye so that visual perception is unstable and alternates irregularly. Passive, whole-body rotations in the yaw plane stabilized visual alternations, with perceived direction oscillating congruently with rotation (leftward motion during leftward rotation, and vice versa). This demonstrates a purely vestibular signal can resolve ambiguous visual motion and determine visual perception. Active self-rotation following the same sinusoidal profile also entrained vision to the rotation cycle – more strongly and with a lesser time lag, likely because of efference copy and predictive internal models. Both experiments show that visual ambiguity provides an effective paradigm to reveal how vestibular and motor inputs can shape visual perception. Binocular rivalry between left/right motions is stabilized by congruent head movement Left/right head rotations entrain rivalry dynamics so matching direction is perceived Active and passive rotations both drive rivalry dominance to match rotation direction Resolving ambiguous vision occurs in a broader vestibular and action-based context
Collapse
|
11
|
Stripeikyte G, Pereira M, Rognini G, Potheegadoo J, Blanke O, Faivre N. Increased Functional Connectivity of the Intraparietal Sulcus Underlies the Attenuation of Numerosity Estimations for Self-Generated Words. J Neurosci 2021; 41:8917-8927. [PMID: 34497152 PMCID: PMC8549530 DOI: 10.1523/jneurosci.3164-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that self-generated stimuli in auditory, visual, and somatosensory domains are attenuated, producing decreased behavioral and neural responses compared with the same stimuli that are externally generated. Yet, whether such attenuation also occurs for higher-level cognitive functions beyond sensorimotor processing remains unknown. In this study, we assessed whether cognitive functions such as numerosity estimations are subject to attenuation in 56 healthy participants (32 women). We designed a task allowing the controlled comparison of numerosity estimations for self-generated (active condition) and externally generated (passive condition) words. Our behavioral results showed a larger underestimation of self-generated compared with externally generated words, suggesting that numerosity estimations for self-generated words are attenuated. Moreover, the linear relationship between the reported and actual number of words was stronger for self-generated words, although the ability to track errors about numerosity estimations was similar across conditions. Neuroimaging results revealed that numerosity underestimation involved increased functional connectivity between the right intraparietal sulcus and an extended network (bilateral supplementary motor area, left inferior parietal lobule, and left superior temporal gyrus) when estimating the number of self-generated versus externally generated words. We interpret our results in light of two models of attenuation and discuss their perceptual versus cognitive origins.SIGNIFICANCE STATEMENT We perceive sensory events as less intense when they are self-generated compared with when they are externally generated. This phenomenon, called attenuation, enables us to distinguish sensory events from self and external origins. Here, we designed a novel fMRI paradigm to assess whether cognitive processes such as numerosity estimations are also subject to attenuation. When asking participants to estimate the number of words they had generated or passively heard, we found bigger underestimation in the former case, providing behavioral evidence of attenuation. Attenuation was associated with increased functional connectivity of the intraparietal sulcus, a region involved in numerosity processing. Together, our results indicate that the attenuation of self-generated stimuli is not limited to sensory consequences but is also impact cognitive processes such as numerosity estimations.
Collapse
Affiliation(s)
- Giedre Stripeikyte
- Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Pereira
- Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
- Laboratoire de Psychologie et NeuroCognition, CNRS, Univ. Grenoble Alpes, CNRS, LPNC, 38000 Grenoble, France
| | - Giulio Rognini
- Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Jevita Potheegadoo
- Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
- Department of Neurology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nathan Faivre
- Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
- Laboratoire de Psychologie et NeuroCognition, CNRS, Univ. Grenoble Alpes, CNRS, LPNC, 38000 Grenoble, France
| |
Collapse
|
12
|
Finnemann JJS, Plaisted-Grant K, Moore J, Teufel C, Fletcher PC. Low-level, prediction-based sensory and motor processes are unimpaired in Autism. Neuropsychologia 2021; 156:107835. [PMID: 33794277 DOI: 10.1016/j.neuropsychologia.2021.107835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023]
Abstract
A new promising account of human brain function suggests that sensory cortices try to optimise information processing via predictions that are based on prior experiences. The brain is thus likened to a probabilistic prediction machine. There has been a growing - though inconsistent - literature to suggest that features of autism spectrum conditions (ASCs) are associated with a deficit in modelling the world through such prediction-based inference. However empirical evidence for differences in low-level sensorimotor predictions in autism is still lacking. One approach to examining predictive processing in the sensorimotor domain is in the context of self-generated (predictable) as opposed to externally-generated (less predictable) effects. We employed two complementary tasks - forcematching and intentional binding - which examine self-versus externally-generated action effects in terms of sensory attenuation and intentional binding respectively in adults with and without autism. The results show that autism was associated with normal levels of sensory attenuation of internally-generated force and with unaltered temporal attraction of voluntary actions and their outcomes. Thus, our results do not support a general deficit in predictive processing in autism.
Collapse
Affiliation(s)
- Johanna J S Finnemann
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom.
| | - Kate Plaisted-Grant
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - James Moore
- Department of Psychology, Goldsmiths, University of London, London, SE14 6NW, United Kingdom
| | - Christoph Teufel
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, United Kingdom; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom
| |
Collapse
|
13
|
Hua L, Recasens M, Grent-'t-Jong T, Adams RA, Gross J, Uhlhaas PJ. Investigating cortico-subcortical circuits during auditory sensory attenuation: A combined magnetoencephalographic and dynamic causal modeling study. Hum Brain Mapp 2020; 41:4419-4430. [PMID: 32662585 PMCID: PMC7502827 DOI: 10.1002/hbm.25134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023] Open
Abstract
Sensory attenuation refers to the decreased intensity of a sensory percept when a sensation is self‐generated compared with when it is externally triggered. However, the underlying brain regions and network interactions that give rise to this phenomenon remain to be determined. To address this issue, we recorded magnetoencephalographic (MEG) data from 35 healthy controls during an auditory task in which pure tones were either elicited through a button press or passively presented. We analyzed the auditory M100 at sensor‐ and source‐level and identified movement‐related magnetic fields (MRMFs). Regression analyses were used to further identify brain regions that contributed significantly to sensory attenuation, followed by a dynamic causal modeling (DCM) approach to explore network interactions between generators. Attenuation of the M100 was pronounced in right Heschl's gyrus (HES), superior temporal cortex (ST), thalamus, rolandic operculum (ROL), precuneus and inferior parietal cortex (IPL). Regression analyses showed that right postcentral gyrus (PoCG) and left precentral gyrus (PreCG) predicted M100 sensory attenuation. In addition, DCM results indicated that auditory sensory attenuation involved bi‐directional information flow between thalamus, IPL, and auditory cortex. In summary, our data show that sensory attenuation is mediated by bottom‐up and top‐down information flow in a thalamocortical network, providing support for the role of predictive processing in sensory‐motor system.
Collapse
Affiliation(s)
- Lingling Hua
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Marc Recasens
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tineke Grent-'t-Jong
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Joachim Gross
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute of Biomagnetism and Biosignal analysis, Westphalian Wilhelms University Muenster, Münster, Germany
| | - Peter J Uhlhaas
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Buaron B, Reznik D, Gilron R, Mukamel R. Voluntary Actions Modulate Perception and Neural Representation of Action-Consequences in a Hand-Dependent Manner. Cereb Cortex 2020; 30:6097-6107. [PMID: 32607565 DOI: 10.1093/cercor/bhaa156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Evoked neural activity in sensory regions and perception of sensory stimuli are modulated when the stimuli are the consequence of voluntary movement, as opposed to an external source. It has been suggested that such modulations are due to motor commands that are sent to relevant sensory regions during voluntary movement. However, given the anatomical-functional laterality bias of the motor system, it is plausible that the pattern of such behavioral and neural modulations will also exhibit a similar bias, depending on the effector triggering the stimulus (e.g., right/left hand). Here, we examined this issue in the visual domain using behavioral and neural measures (fMRI). Healthy participants judged the relative brightness of identical visual stimuli that were either self-triggered (using right/left hand button presses), or triggered by the computer. Stimuli were presented either in the right or left visual field. Despite identical physical properties of the visual consequences, we found stronger perceptual modulations when the triggering hand was ipsi- (rather than contra-) lateral to the stimulated visual field. Additionally, fMRI responses in visual cortices differentiated between stimuli triggered by right/left hand. Our findings support a model in which voluntary actions induce sensory modulations that follow the anatomical-functional bias of the motor system.
Collapse
Affiliation(s)
- Batel Buaron
- Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Daniel Reznik
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ro'ee Gilron
- Department of Neurological Surgery, UCSF School of Medicine, UCSF, San Francisco, CA 94115, USA
| | - Roy Mukamel
- Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Arikan BE, van Kemenade BM, Podranski K, Steinsträter O, Straube B, Kircher T. Perceiving your hand moving: BOLD suppression in sensory cortices and the role of the cerebellum in the detection of feedback delays. J Vis 2020; 19:4. [PMID: 31826249 DOI: 10.1167/19.14.4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sensory consequences of self-generated as opposed to externally generated movements are perceived as less intense and lead to less neural activity in corresponding sensory cortices, presumably due to predictive mechanisms. Self-generated sensory inputs have been mostly studied in a single modality, using abstract feedback, with control conditions not differentiating efferent from reafferent feedback. Here we investigated the neural processing of (a) naturalistic action-feedback associations of (b) self-generated versus externally generated movements, and (c) how an additional (auditory) modality influences neural processing and detection of delays. Participants executed wrist movements using a passive movement device (PMD) as they watched their movements in real time or with variable delays (0-417 ms). The task was to judge whether there was a delay between the movement and its visual feedback. In the externally generated condition, movements were induced by the PMD to disentangle efferent from reafferent feedback. Half of the trials involved auditory beeps coupled to the onset of the visual feedback. We found reduced BOLD activity in visual, auditory, and somatosensory areas during self-generated compared with externally generated movements in unimodal and bimodal conditions. Anterior and posterior cerebellar areas were engaged for trials in which action-feedback delays were detected for self-generated movements. Specifically, the left cerebellar lobule IX was functionally connected with the right superior occipital gyrus. The results indicate efference copy-based predictive mechanisms specific to self-generated movements, leading to BOLD suppression in sensory areas. In addition, our results support the cerebellum's role in the detection of temporal prediction errors during our actions and their consequences.
Collapse
Affiliation(s)
- B Ezgi Arikan
- Department of Psychology, Justus-Liebig University Giessen, Giessen, Germany
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Kornelius Podranski
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.,Core Facility Brain Imaging, Faculty of Medicine, Philipps University Marburg, Marburg, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.,Core Facility Brain Imaging, Faculty of Medicine, Philipps University Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
16
|
Affiliation(s)
- Katja Fiehler
- Department of Psychology, Justus Liebig University, Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), Universities of Marburg and Giessen, Germany
| | - Eli Brenner
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Luring the Motor System: Impact of Performance-Contingent Incentives on Pre-Movement Beta-Band Activity and Motor Performance. J Neurosci 2019; 39:2903-2914. [PMID: 30737309 DOI: 10.1523/jneurosci.1887-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/21/2022] Open
Abstract
It has been shown that when incentives are provided during movement preparation, activity in parieto-frontal regions reflects both expected value and motivational salience. Yet behavioral work suggests that the processing of rewards is faster than for punishments, raising the possibility that expected value and motivational salience manifest at different latencies during movement planning. Given the role of beta oscillations (13-30 Hz) in movement preparation and in communication within the reward circuit, this study investigated how beta activity is modulated by positive and negative monetary incentives during reach planning, and in particular whether it reflects expected value and motivational salience at different latencies. Electroencephalography was recorded while male and female humans performed a reaching task in which reward or punishment delivery depended on movement accuracy. Before a preparatory delay period, participants were informed of the consequences of hitting or missing the target, according to four experimental conditions: Neutral (hit/miss:+0/-0¢), Reward (hit/miss:+5/-0¢), Punish (hit/miss:+0/-5¢) and Mixed (hit/miss:+5/-5¢). Results revealed that beta power over parieto-frontal regions was strongly modulated by incentives during the delay period, with power positively correlating with movement times. Interestingly, beta power was selectively sensitive to potential rewards early in the delay period, after which it came to reflect motivational salience as movement onset neared. These results demonstrate that beta activity reflects expected value and motivational salience on different time scales during reach planning. They also provide support for models that link beta activity with basal ganglia and dopamine for the allocation of neural resources according to behavioral salience.SIGNIFICANCE STATEMENT The present work demonstrates that pre-movement parieto-frontal beta power is modulated by monetary incentives in a goal-directed reaching task. Specifically, beta power transiently scaled with the availability of rewards early in movement planning, before reflecting motivational salience as movement onset neared. Moreover, pre-movement beta activity correlated with the vigor of the upcoming movement. These findings suggest that beta oscillations reflect neural processes that mediate the invigorating effect of incentives on motor performance, possibly through dopamine-mediated interactions with the basal ganglia.
Collapse
|
18
|
Csifcsák G, Balla VR, Dalos VD, Kilencz T, Biró EM, Urbán G, Szalóki S. Action-associated modulation of visual event-related potentials evoked by abstract and ecological stimuli. Psychophysiology 2018; 56:e13289. [DOI: 10.1111/psyp.13289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Gábor Csifcsák
- Faculty of Health Sciences, Department of Psychology; UiT The Arctic University of Norway; Tromsø Norway
- Faculty of Arts, Department of Cognitive and Neuropsychology; Institute of Psychology, University of Szeged; Szeged Hungary
| | - Viktória Roxána Balla
- Cognitive Brain Research Unit, Faculty of Medicine, Department of Psychology and Logopedics; University of Helsinki; Helsinki Finland
| | - Vera Daniella Dalos
- Faculty of Arts, Department of Cognitive and Neuropsychology; Institute of Psychology, University of Szeged; Szeged Hungary
| | - Tünde Kilencz
- Faculty of Arts, Department of Cognitive and Neuropsychology; Institute of Psychology, University of Szeged; Szeged Hungary
| | - Edit Magdolna Biró
- Faculty of Medicine, Department of Psychiatry; University of Szeged; Szeged Hungary
| | - Gábor Urbán
- Faculty of Arts, Department of Cognitive and Neuropsychology; Institute of Psychology, University of Szeged; Szeged Hungary
| | - Szilvia Szalóki
- Faculty of Medicine, Department of Psychiatry; University of Szeged; Szeged Hungary
| |
Collapse
|
19
|
Visuomotor Prediction Errors Modulate EEG Activity Over Parietal Cortex. Sci Rep 2018; 8:12513. [PMID: 30131580 PMCID: PMC6104041 DOI: 10.1038/s41598-018-30609-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
The parietal cortex is thought to be involved in visuomotor adaptation, yet it remains unclear whether it is specifically modulated by visuomotor prediction errors (i.e. PEs; mismatch between the predicted and actual visual consequences of the movement). One reason for this is that PEs tend to be associated with task errors, as well as changes in motor output and visual input, making them difficult to isolate. Here this issue is addressed using electroencephalography. A strategy (STR) condition, in which participants were instructed on how to counter a 45° visuomotor rotation, was compared to a condition in which participants had adapted to the rotation (POST). Both conditions were matched for task errors and movement kinematics, with the only difference being the presence of PEs in STR. Results revealed strong parietal modulations in current source density and low theta (2–4 Hz) power shortly after movement onset in STR vs. POST, followed by increased alpha/low beta (8–18 Hz) power during much of the post-movement period. Given recent evidence showing that feedforward and feedback information is respectively carried by theta and alpha/beta oscillations, the observed power modulations may reflect the bottom-up propagation of PEs and the top-down revision of predictions.
Collapse
|
20
|
Mouchnino L, Lhomond O, Morant C, Chavet P. Plantar Sole Unweighting Alters the Sensory Transmission to the Cortical Areas. Front Hum Neurosci 2017; 11:220. [PMID: 28539876 PMCID: PMC5423901 DOI: 10.3389/fnhum.2017.00220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
It is well established that somatosensory inputs to the cortex undergo an early and a later stage of processing. The later has been shown to be enhanced when the earlier transmission decreased. In this framework, mechanical factors such as the mechanical stress to which sensors are subjected when wearing a loaded vest are associated with a decrease in sensory transmission. This decrease is in turn associated with an increase in the late sensory processes originating from cortical areas. We hypothesized that unweighting the plantar sole should lead to a facilitation of the sensory transmission. To test this hypothesis, we recorded cortical somatosensory evoked potentials (SEPs) of individuals following cutaneous stimulation (by mean of an electrical stimulation of the foot sole) in different conditions of unweighting when standing still with eyes closed. To this end, the effective bodyweight (BW) was reduced from 100% BW to 40% BW. Contrary to what was expected, we found an attenuation of sensory information when the BW was unweighted to 41% which was not compensated by an increase of the late SEP component. Overall these results suggested that the attenuation of sensory transmission observed in 40 BW condition was not solely due to the absence of forces acting on the sole of the feet but rather to the current relevance of the afferent signals related to the balance constraints of the task.
Collapse
Affiliation(s)
- Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France
| | - Olivia Lhomond
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France
| | - Clément Morant
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France.,Aix-Marseille Université, CNRS, Institut des Sciences du MouvementMarseille, France
| | - Pascale Chavet
- Aix-Marseille Université, CNRS, Institut des Sciences du MouvementMarseille, France
| |
Collapse
|
21
|
My action lasts longer: Potential link between subjective time and agency during voluntary action. Conscious Cogn 2017; 51:243-257. [PMID: 28412643 DOI: 10.1016/j.concog.2017.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/12/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
Abstract
Time perception distorts across different phases of bodily movement. During motor execution, sensory feedback matching an internal sensorimotor prediction is perceived to last longer. The sensorimotor prediction also underlies sense of agency. We investigated association between subjective time and agency during voluntary action. Participants performed hand action while watching a video feedback of their hand with various delays to manipulate agency. The perceived duration and agency over the video feedback were judged. Minimal delay of the video feedback resulted in longer perceived duration than the actual duration and stronger agency, while substantial feedback delay resulted in shorter perceived duration and weaker agency. These fluctuations of perceived duration and agency were nullified by the feedback of other's hand instead of their own, but not by inverted feedback from a third-person perspective. Subjective time during action might be associated with agency stemming from sensorimotor prediction, and self-other distinction based on bodily appearance.
Collapse
|