1
|
Nagy-Watson NV, Jonz MG. Hypoxia increases intracellular calcium in glutamate-activated horizontal cells of goldfish retina via mitochondrial K ATP channels and intracellular stores. Comp Biochem Physiol A Mol Integr Physiol 2024; 300:111786. [PMID: 39608485 DOI: 10.1016/j.cbpa.2024.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Central neurons of the common goldfish (Carassius auratus) are exceptional in their capacity to survive Ca2+-induced excitotoxicity and cell death during hypoxia. Horizontal cells (HCs) are inhibitory interneurons of the retina that are tonically depolarized by the neurotransmitter, glutamate, yet preserve intracellular Ca2+ homeostasis. In HCs isolated from goldfish, and in the absence of glutamatergic input, intracellular Ca2+ concentration ([Ca2+]i) is protected from prolonged exposure to hypoxia by mitochondrial ATP-dependent K+ (mKATP) channel activity. In the present study, we investigated the effects of hypoxia upon [Ca2+]i in isolated HCs during tonic activation by glutamate to better predict the effects of hypoxia in the active retina. Dynamic changes in [Ca2+]i were measured using the ratiometric Ca2+ indicator, Fura-2. Application of 100 μM glutamate during hypoxia (PO2 = 25 mmHg) produced a 1.3-fold greater rise in [Ca2+]i compared to the same glutamate stimulus during normoxia. The hypoxia-dependent increase in [Ca2+]i was abolished by application of 5-hydroxydecanoic acid, which renders mKATP channels inactive. Extracellular Ca2+ did not contribute to the elevated [Ca2+]i observed during hypoxia, as the effect persisted in Ca2+-free solution and during application of verapamil, an L-type Ca2+ channel blocker. By contrast, inhibition of the mitochondrial Ca2+ uniporter or ryanodine receptors (with ruthenium red or ryanodine, respectively) abolished the hypoxia-dependent rise in [Ca2+]i. This study reports an mKATP-dependent rise in [Ca2+]i during hypoxia in HCs activated by glutamate, and suggests roles for the mitochondria and intracellular Ca2+ stores in regulating this mechanism.
Collapse
Affiliation(s)
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
3
|
Abstract
Voltage-gated Ca2+ (Cav) channels play pivotal roles in regulating gene transcription, neuronal excitability, and neurotransmitter release. To meet the spatial and temporal demands of visual signaling, Cav channels exhibit unusual properties in the retina compared to their counterparts in other areas of the nervous system. In this article, we review current concepts regarding the specific subtypes of Cav channels expressed in the retina, their intrinsic properties and forms of modulation, and how their dysregulation could lead to retinal disease.
Collapse
Affiliation(s)
- Brittany Williams
- Department of Cell Biology & Physiology, Carolina Institute for Developmental Disabilities, and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J Wesley Maddox
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| | - Amy Lee
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| |
Collapse
|
4
|
Han AY, Ha SM, Shin YK, Seol GH. Ginsenoside Rg-1 prevents elevated cytosolic Ca 2+ via store-operated Ca 2+ entry in high-glucose-stimulated vascular endothelial and smooth muscle cells. BMC Complement Med Ther 2022; 22:166. [PMID: 35733160 PMCID: PMC9215051 DOI: 10.1186/s12906-022-03647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ginsenoside Rg-1 (Rg-1), a triterpenoid saponin abundantly present in Panax ginseng, is a type of naturally occurring steroid with known anti-diabetic and anti-inflammatory effects. In this study, we sought to confirm the effects and mechanisms of action of Rg-1 on store-operated Ca2+ entry (SOCE) in human vascular endothelial cell line (EA) and murine aortic vascular smooth muscle cell line (MOVAS) cells exposed to high glucose. METHODS Cytosolic Ca2+ concentrations in EA and MOVAS cells were measured by monitoring fluorescence of the ratiometric Ca2+-indicator, Fura-2 AM. RESULTS High glucose significantly increased Ca2+ influx by abnormally activating SOCE in EA and MOVAS cells. Notably, this high glucose-induced increase in SOCE was restored to normal levels in EA and MOVAS cells by Rg-1. Moreover, Rg-1 induced reductions in SOCE in cells exposed to high glucose were significantly inhibited by the plasma membrane Ca2+ ATPase (PMCA) blocker lanthanum, the Na+/K+-ATPase blocker ouabain, or the Na+/Ca2+ exchanger (NCX) blockers Ni2+ and KB-R7943. These observations suggest that the mechanism of action of Rg-1 inhibition of SOCE involves PMCA and Na+/K+-ATPase, and an increase in Ca2+ efflux via NCXs in both EA and MOVAS cells exposed to high glucose. CONCLUSIONS These findings indicate that Rg-1 may protect vascular endothelial and smooth muscle cells from Ca2+ increases following exposure to hyperglycemic conditions.
Collapse
Affiliation(s)
- A Young Han
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Nursing, College of Life Science and Industry, Sunchon National University, Suncheon, Republic of Korea
| | - Su Min Ha
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Country MW, Haase K, Blank K, Canez CR, Roberts JA, Campbell BFN, Smith JC, Pelling AE, Jonz MG. Seasonal changes in membrane structure and excitability in retinal neurons of goldfish (Carassius auratus) under constant environmental conditions. J Exp Biol 2022; 225:275230. [PMID: 35485205 DOI: 10.1242/jeb.244238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
Seasonal modifications in the structure of cellular membranes occur as an adaptive measure to withstand exposure to prolonged environmental change. Little is known about whether such changes may occur independently of external cues, such as photoperiod or temperature, or how they may impact the central nervous system. We compared membrane properties of neurons isolated from the retina of goldfish (Carassius auratus), an organism well-adapted to extreme environmental change, during the summer and winter months. Goldfish were maintained in a facility under constant environmental conditions throughout the year. Analysis of whole-retina phospholipid composition using mass spectrometry-based lipidomics revealed a two-fold increase in phosphatidylethanolamine species during the winter, suggesting an increase in cell membrane fluidity. Atomic force microscopy was used to produce localized, nanoscale-force deformation of neuronal membranes. Measurement of Young's modulus indicated increased membrane-cortical stiffness (or decreased elasticity) in neurons isolated during the winter. Voltage-clamp electrophysiology was used to assess physiological changes in neurons between seasons. Winter neurons displayed a hyperpolarized reversal potential (Vrev) and a significantly lower input resistance (Rin) compared to summer neurons. This was indicative of a decrease in membrane excitability during the winter. Subsequent measurement of intracellular Ca2+ activity using Fura-2 microspectrofluorometry confirmed a reduction in action potential activity, including duration and action potential profile, in neurons isolated during the winter. These studies demonstrate chemical and biophysical changes that occur in retinal neurons of goldfish throughout the year without exposure to seasonal cues, and suggest a novel mechanism of seasonal regulation of retinal activity.
Collapse
Affiliation(s)
| | | | - Katrin Blank
- Department of Chemistry, Carleton University, Canada
| | | | | | | | | | | | - Michael G Jonz
- Department of Biology, University of Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Canada
| |
Collapse
|
6
|
Country MW, Jonz MG. Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol 2021; 224:271844. [PMID: 34402511 DOI: 10.1242/jeb.242634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/11/2021] [Indexed: 01/20/2023]
Abstract
Neurons of the retina require oxygen to survive. In hypoxia, neuronal ATP production is impaired, ATP-dependent ion pumping is reduced, transmembrane ion gradients are dysregulated, and intracellular Ca2+ concentration ([Ca2+]i) increases enough to trigger excitotoxic cell death. Central neurons of the common goldfish (Carassius auratus) are hypoxia tolerant, but little is known about how goldfish retinas withstand hypoxia. To study the cellular mechanisms of hypoxia tolerance, we isolated retinal interneurons (horizontal cells; HCs), and measured [Ca2+]i with Fura-2. Goldfish HCs maintained [Ca2+]i throughout 1 h of hypoxia, whereas [Ca2+]i increased irreversibly in HCs of the hypoxia-sensitive rainbow trout (Oncorhynchus mykiss) with just 20 min of hypoxia. Our results suggest mitochondrial ATP-dependent K+ channels (mKATP) are necessary to stabilize [Ca2+]i throughout hypoxia. In goldfish HCs, [Ca2+]i increased when mKATP channels were blocked with glibenclamide or 5-hydroxydecanoic acid, whereas the mKATP channel agonist diazoxide prevented [Ca2+]i from increasing in hypoxia in trout HCs. We found that hypoxia protects against increases in [Ca2+]i in goldfish HCs via mKATP channels. Glycolytic inhibition with 2-deoxyglucose increased [Ca2+]i, which was rescued by hypoxia in a mKATP channel-dependent manner. We found no evidence of plasmalemmal KATP channels in patch-clamp experiments. Instead, we confirmed the involvement of KATP in mitochondria with TMRE imaging, as hypoxia rapidly (<5 min) depolarized mitochondria in a mKATP channel-sensitive manner. We conclude that mKATP channels initiate a neuroprotective pathway in goldfish HCs to maintain [Ca2+]i and avoid excitotoxicity in hypoxia. This model provides novel insight into the cellular mechanisms of hypoxia tolerance in the retina.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, ON, CanadaK1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, CanadaK1N 6N5.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, CanadaK1H 8M5
| |
Collapse
|
7
|
Kim MK, Han AY, Shin YK, Lee KW, Seol GH. Codonopsis lanceolata Contributes to Ca2+ Homeostasis by Mediating SOCE and PLC/IP3 Pathways in Vascular Endothelial and Smooth Muscle Cells. PLANTA MEDICA 2020; 86:1345-1352. [PMID: 32731264 DOI: 10.1055/a-1214-6718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Codonopsis lanceolata has been widely used as an anti-inflammatory and anti-lipogenic agent in traditional medicine. Recently, C. lanceolata was reported to prevent hypertension by improving vascular function. This study evaluated the effects of C. lanceolata and its major component lancemaside A on cytosolic calcium concentration in vascular endothelial cells and vascular smooth muscle cells. Cytosolic calcium concentration was measured using fura-2 AM fluorescence. C. lanceolata or lancemaside A increased the cytosolic calcium concentration by releasing Ca2+ from the endoplasmic reticulum and sarcoplasmic reticulum and by Ca2+ entry into endothelial cells and vascular smooth muscle cells from extracellular sources. The C. lanceolata- and lancemaside A-induced cytosolic calcium concentration increases were significantly inhibited by lanthanum, an inhibitor of non-selective cation channels, in both endothelial cells and vascular smooth muscle cells. Moreover, C. lanceolata and lancemaside A significantly inhibited store-operated Ca2+ entry under pathological extracellular Ca2+ levels. In Ca2+-free extracellular fluid, increases in the cytosolic calcium concentration induced by C. lanceolata or lancemaside A were significantly inhibited by U73122, an inhibitor of phospholipase C, and 2-APB, an inositol 1,4,5-trisphosphate receptor antagonist. In addition, dantrolene treatment, which inhibits Ca2+ release through ryanodine receptor channels, also inhibited C. lanceolata- or lancemaside A-induced increases in the cytosolic calcium concentration through the phospholipase C/inositol 1,4,5-trisphosphate pathway. These results suggest that C. lanceolata and lancemaside A increase the cytosolic calcium concentration through the non-selective cation channels and phospholipase C/inositol 1,4,5-trisphosphate pathways under physiological conditions and inhibit store-operated Ca2+ entry under pathological conditions in endothelial cells and vascular smooth muscle cells. C. lanceolata or lancemaside A can protect endothelial cells and vascular smooth muscle cells by maintaining cytosolic calcium concentration homeostasis, suggesting possible applications for these materials in diets for preventing vascular damage.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - A Young Han
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Country MW, Htite ED, Samson IA, Jonz MG. Retinal horizontal cells of goldfish (Carassius auratus) display subtype-specific differences in spontaneous action potentials in situ. J Comp Neurol 2020; 529:1756-1767. [PMID: 33070331 DOI: 10.1002/cne.25054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022]
Abstract
Horizontal cells (HCs) are neurons of the outer retina, which provide inhibitory feedback onto photoreceptors and contribute to image processing. HCs in teleosts are classified into four subtypes (H1-H4), each having different roles: H1-H3 feed back onto different sets of cones, H4 feed back onto rods, and only H1 store and release the inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Dissociated HCs exhibit spontaneous Ca2+ -based action potentials (APs), yet it is unclear if APs occur in situ, or if all subtypes exhibit APs. We measured intracellular Ca2+ and report APs in slice preparations of the goldfish retina. In HCs furthest from photoreceptors (i.e., H3/H4), APs were less frequent, with greater duration and area under the curve (a measure of Ca2+ flux). Next, we classified acutely dissociated HCs into subtypes by integrating the ratio of dendritic field size vs. soma size (rd/s ). H1 and H2 subtypes had low rd/s values (<8); H3/H4 had high rd/s (>12). To verify this model, H1s were identified by immunoreactivity for GABA and 95% of these cells had an rd/s < 4. In Ca2+ imaging experiments, as rd/s increased, AP duration and area under the curve increased, while frequency decreased. Our results demonstrate the presence of Ca2+ -based APs in the goldfish retina in situ and show that HC subtypes H1 through H4 exhibit progressively longer and less frequent spontaneous APs. These results suggest that APs may play an important role in inhibitory feedback, and may have implications for understanding the relative contributions of HC subtypes in the outer retina.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elly Dimya Htite
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Isaiah A Samson
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|