1
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Li K, Auksztulewicz R, Chan CHK, Mishra AP, Schnupp JWH. The precedence effect in spatial hearing manifests in cortical neural population responses. BMC Biol 2022; 20:48. [PMID: 35172815 PMCID: PMC8848659 DOI: 10.1186/s12915-022-01228-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To localize sound sources accurately in a reverberant environment, human binaural hearing strongly favors analyzing the initial wave front of sounds. Behavioral studies of this "precedence effect" have so far largely been confined to human subjects, limiting the scope of complementary physiological approaches. Similarly, physiological studies have mostly looked at neural responses in the inferior colliculus, the main relay point between the inner ear and the auditory cortex, or used modeling of cochlear auditory transduction in an attempt to identify likely underlying mechanisms. Studies capable of providing a direct comparison of neural coding and behavioral measures of sound localization under the precedence effect are lacking. RESULTS We adapted a "temporal weighting function" paradigm previously developed to quantify the precedence effect in human for use in laboratory rats. The animals learned to lateralize click trains in which each click in the train had a different interaural time difference. Computing the "perceptual weight" of each click in the train revealed a strong onset bias, very similar to that reported for humans. Follow-on electrocorticographic recording experiments revealed that onset weighting of interaural time differences is a robust feature of the cortical population response, but interestingly, it often fails to manifest at individual cortical recording sites. CONCLUSION While previous studies suggested that the precedence effect may be caused by early processing mechanisms in the cochlea or inhibitory circuitry in the brainstem and midbrain, our results indicate that the precedence effect is not fully developed at the level of individual recording sites in the auditory cortex, but robust and consistent precedence effects are observable only in the auditory cortex at the level of cortical population responses. This indicates that the precedence effect emerges at later cortical processing stages and is a significantly "higher order" feature than has hitherto been assumed.
Collapse
Affiliation(s)
- Kongyan Li
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Ryszard Auksztulewicz
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Chloe H K Chan
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Ambika Prasad Mishra
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jan W H Schnupp
- Department of Biomedical Sciences and Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Liu FD, Duan HM, Hao F, Zhao W, Gao YD, Hao P, Yang ZY, Li XG. Biomimetic chitosan scaffolds with long-term controlled release of nerve growth factor repairs 20-mm-long sciatic nerve defects in rats. Neural Regen Res 2021; 17:1146-1155. [PMID: 34558544 PMCID: PMC8552858 DOI: 10.4103/1673-5374.324860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length, it still has some shortcomings, such as insufficient donors and secondary injury. Composite chitosan scaffolds loaded with controlled release of nerve growth factor can promote neuronal survival and axonal regeneration after short-segment sciatic nerve defects. However, the effects on extended nerve defects remain poorly understood. In this study, we used chitosan scaffolds loaded with nerve growth factor for 8 weeks to repair long-segment (20 mm) sciatic nerve defects in adult rats. The results showed that treatment markedly promoted the recovery of motor and sensory functions. The regenerated sciatic nerve not only reconnected with neurons but neural circuits with the central nervous system were also reconstructed. In addition, the regenerated sciatic nerve reconnected the motor endplate with the target muscle. Therefore, this novel biomimetic scaffold can promote the regeneration of extended sciatic nerve defects and reconstruct functional circuits. This provides a promising method for the clinical treatment of extended peripheral nerve injury. This study was approved by the Animal Ethics Committee of Capital Medical University, China (approval No. AEEI-2017-033) on March 21, 2017.
Collapse
Affiliation(s)
- Fa-Dong Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hong-Mei Duan
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yu-Dan Gao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhao-Yang Yang
- Department of Neurobiology, Capital Medical University; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University; Department of Neurobiology, Capital Medical University; Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
4
|
Sensitivity to interaural time differences in the inferior colliculus of cochlear implanted rats with or without hearing experience. Hear Res 2021; 408:108305. [PMID: 34315027 DOI: 10.1016/j.heares.2021.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/11/2023]
Abstract
For deaf patients cochlear implants (CIs) can restore substantial amounts of functional hearing. However, binaural hearing, and in particular, the perception of interaural time differences (ITDs) with current CIs has been found to be notoriously poor, especially in the event of early hearing loss. One popular hypothesis for these deficits posits that a lack of early binaural experience may be a principal cause of poor ITD perception in pre-lingually deaf CI patients. This is supported by previous electrophysiological studies done in neonatally deafened, bilateral CI-stimulated animals showing reduced ITD sensitivity. However, we have recently demonstrated that neonatally deafened CI rats can quickly learn to discriminate microsecond ITDs under optimized stimulation conditions which suggests that the inability of human CI users to make use of ITDs is not due to lack of binaural hearing experience during development. In the study presented here, we characterized ITD sensitivity and tuning of inferior colliculus neurons under bilateral CI stimulation of neonatally deafened and hearing experienced rats. The hearing experienced rats were not deafened prior to implantation. Both cohorts were implanted bilaterally between postnatal days 64-77 and recorded immediately following surgery. Both groups showed comparably large proportions of ITD sensitive multi-units in the inferior colliculus (Deaf: 84.8%, Hearing: 82.5%), and the strength of ITD tuning, quantified as mutual information between response and stimulus ITD, was independent of hearing experience. However, the shapes of tuning curves differed substantially between both groups. We observed four main clusters of tuning curves - trough, contralateral, central, and ipsilateral tuning. Interestingly, over 90% of multi-units for hearing experienced rats showed predominantly contralateral tuning, whereas as many as 50% of multi-units in neonatally deafened rats were centrally tuned. However, when we computed neural d' scores to predict likely limits on performance in sound lateralization tasks, we did not find that these differences in tuning shapes predicted worse psychoacoustic performance for the neonatally deafened animals. We conclude that, at least in rats, substantial amounts of highly precise, "innate" ITD sensitivity can be found even after profound hearing loss throughout infancy. However, ITD tuning curve shapes appear to be strongly influenced by auditory experience although substantial lateralization encoding is present even in its absence.
Collapse
|
5
|
Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation. J Assoc Res Otolaryngol 2021; 22:289-318. [PMID: 33861395 DOI: 10.1007/s10162-021-00797-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
Listeners typically perceive a sound as originating from the direction of its source, even as direct sound is followed milliseconds later by reflected sound from multiple different directions. Early-arriving sound is emphasised in the ascending auditory pathway, including the medial superior olive (MSO) where binaural neurons encode the interaural-time-difference (ITD) cue for spatial location. Perceptually, weighting of ITD conveyed during rising sound energy is stronger at 600 Hz than at 200 Hz, consistent with the minimum stimulus rate for binaural adaptation, and with the longer reverberation times at 600 Hz, compared with 200 Hz, in many natural outdoor environments. Here, we computationally explore the combined efficacy of adaptation prior to the binaural encoding of ITD cues, and excitatory binaural coincidence detection within MSO neurons, in emphasising ITDs conveyed in early-arriving sound. With excitatory inputs from adapting, nonlinear model spherical bushy cells (SBCs) of the bilateral cochlear nuclei, a nonlinear model MSO neuron with low-threshold potassium channels reproduces the rate-dependent emphasis of rising vs. peak sound energy in ITD encoding; adaptation is equally effective in the model MSO. Maintaining adaptation in model SBCs, and adjusting membrane speed in model MSO neurons, 'left' and 'right' populations of computationally efficient, linear model SBCs and MSO neurons reproduce this stronger weighting of ITD conveyed during rising sound energy at 600 Hz compared to 200 Hz. This hemispheric population model demonstrates a link between strong weighting of spatial information during rising sound energy, and correct unambiguous lateralisation of a speech source in reverberation.
Collapse
|
6
|
Yin TC, Smith PH, Joris PX. Neural Mechanisms of Binaural Processing in the Auditory Brainstem. Compr Physiol 2019; 9:1503-1575. [DOI: 10.1002/cphy.c180036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Siveke I, Lingner A, Ammer JJ, Gleiss SA, Grothe B, Felmy F. A Temporal Filter for Binaural Hearing Is Dynamically Adjusted by Sound Pressure Level. Front Neural Circuits 2019; 13:8. [PMID: 30814933 PMCID: PMC6381077 DOI: 10.3389/fncir.2019.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/24/2019] [Indexed: 12/02/2022] Open
Abstract
In natural environments our auditory system is exposed to multiple and diverse signals of fluctuating amplitudes. Therefore, to detect, localize, and single out individual sounds the auditory system has to process and filter spectral and temporal information from both ears. It is known that the overall sound pressure level affects sensory signal transduction and therefore the temporal response pattern of auditory neurons. We hypothesize that the mammalian binaural system utilizes a dynamic mechanism to adjust the temporal filters in neuronal circuits to different overall sound pressure levels. Previous studies proposed an inhibitory mechanism generated by the reciprocally coupled dorsal nuclei of the lateral lemniscus (DNLL) as a temporal neuronal-network filter that suppresses rapid binaural fluctuations. Here we investigated the consequence of different sound levels on this filter during binaural processing. Our in vivo and in vitro electrophysiology in Mongolian gerbils shows that the integration of ascending excitation and contralateral inhibition defines the temporal properties of this inhibitory filter. The time course of this filter depends on the synaptic drive, which is modulated by the overall sound pressure level and N-methyl-D-aspartate receptor (NMDAR) signaling. In psychophysical experiments we tested the temporal perception of humans and show that detection and localization of two subsequent tones changes with the sound pressure level consistent with our physiological results. Together our data support the hypothesis that mammals dynamically adjust their time window for sound detection and localization within the binaural system in a sound level dependent manner.
Collapse
Affiliation(s)
- Ida Siveke
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Institute of Zoology and Neurobiology, Ruhr-Universität Bochum, Bochum, Germany
| | - Andrea Lingner
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian J Ammer
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah A Gleiss
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Grothe
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School for Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felix Felmy
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation. eNeuro 2017; 4:eN-NWR-0007-17. [PMID: 28451630 PMCID: PMC5394928 DOI: 10.1523/eneuro.0007-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Perceiving the geometry of surrounding space is a multisensory process, crucial to contextualizing object perception and guiding navigation behavior. Humans can make judgments about surrounding spaces from reverberation cues, caused by sounds reflecting off multiple interior surfaces. However, it remains unclear how the brain represents reverberant spaces separately from sound sources. Here, we report separable neural signatures of auditory space and source perception during magnetoencephalography (MEG) recording as subjects listened to brief sounds convolved with monaural room impulse responses (RIRs). The decoding signature of sound sources began at 57 ms after stimulus onset and peaked at 130 ms, while space decoding started at 138 ms and peaked at 386 ms. Importantly, these neuromagnetic responses were readily dissociable in form and time: while sound source decoding exhibited an early and transient response, the neural signature of space was sustained and independent of the original source that produced it. The reverberant space response was robust to variations in sound source, and vice versa, indicating a generalized response not tied to specific source-space combinations. These results provide the first neuromagnetic evidence for robust, dissociable auditory source and reverberant space representations in the human brain and reveal the temporal dynamics of how auditory scene analysis extracts percepts from complex naturalistic auditory signals.
Collapse
|
9
|
Hu H, Ewert SD, McAlpine D, Dietz M. Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1862. [PMID: 28372072 DOI: 10.1121/1.4977014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that normal-hearing (NH) listeners' spatial perception of non-stationary interaural time differences (ITDs) is dominated by the carrier ITD during rising amplitude segments. Here, ITD sensitivity throughout the amplitude-modulation cycle in NH listeners and bilateral cochlear implant (CI) subjects is compared, the latter by means of direct stimulation of a single electrode pair. The data indicate that, while NH listeners are most sensitive to ITDs applied toward the beginning of a modulation cycle at 600 Hz, NH listeners at 200 Hz and especially bilateral CI subjects at 200 pulses per second (pps) are more sensitive to ITDs applied to the modulation maximum. This has implications for spatial-hearing in complex environments: NH listeners' dominant 600-Hz ITD information from the rising amplitude segments comprises direct sound information. The 200-pps low rate required to get ITD sensitivity in CI users results in a higher weight of pulses later in the modulation cycle where the source ITDs are more likely corrupted by reflections. This indirectly indicates that even if future binaural CI processors are able to provide perceptually exploitable ITD information, CI users will likely not get the full benefit from such pulse-based ITD cues in reverberant and other complex environments.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Stephan D Ewert
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| | - David McAlpine
- Department of Linguistics, Australian Hearing Hub, Macquarie University, New South Wales 2109, Australia
| | - Mathias Dietz
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
10
|
Li XT, Wang NY, Wang YJ, Xu ZQ, Liu JF, Bai YF, Dai JS, Zhao JY. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus. Neural Regen Res 2016; 11:787-94. [PMID: 27335563 PMCID: PMC4904470 DOI: 10.4103/1673-5374.182706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The γ-aminobutyric acid neurons (GABAergic neurons) in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4) and sustained-adapting firing patterns (n = 3). The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies.
Collapse
Affiliation(s)
- Xiao-Ting Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ning-Yu Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan-Jun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhi-Qing Xu
- Department of Neurophysiology, Capital Medical University, Beijing, China
| | - Jin-Feng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun-Fei Bai
- Department of Neurophysiology, Capital Medical University, Beijing, China
| | - Jin-Sheng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing-Yi Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Hossain S, Montazeri V, Assmann PF, Litovsky RY. Precedence based speech segregation in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:EL545-EL550. [PMID: 26723365 PMCID: PMC4691255 DOI: 10.1121/1.4937906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/06/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
The precedence effect (PE) enables the perceptual dominance by a source (lead) over an echo (lag) in reverberant environments. In addition to facilitating sound localization, the PE can play an important role in spatial unmasking of speech. Listeners attending to binaural vocoder simulations with identical channel center frequencies and phase demonstrated PE-based benefits in a closed-set speech segregation task. When presented with the same stimuli, bilateral cochlear implant users did not derive such benefits. These findings suggest that envelope extraction in itself may not lead to a breakdown of the PE benefits, and that other factors may play a role.
Collapse
Affiliation(s)
- Shaikat Hossain
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson Texas 75083-0688, USA
| | - Vahid Montazeri
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson Texas 75083-0688, USA
| | - Peter F Assmann
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson Texas 75083-0688, USA
| | - Ruth Y Litovsky
- Department of Communication Disorders and Waisman Center, University of Wisconsin, Madison Wisconsin 53706, USA , , ,
| |
Collapse
|