1
|
Trofimova AM, Amakhin DV, Postnikova TY, Tiselko VS, Alekseev A, Podoliak E, Gordeliy VI, Chizhov AV, Zaitsev AV. Light-Driven Sodium Pump as a Potential Tool for the Control of Seizures in Epilepsy. Mol Neurobiol 2024; 61:4691-4704. [PMID: 38114761 DOI: 10.1007/s12035-023-03865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The marine flavobacterium Krokinobactereikastus light-driven sodium pump (KR2) generates an outward sodium ion current under 530 nm light stimulation, representing a promising optogenetic tool for seizure control. However, the specifics of KR2 application to suppress epileptic activity have not yet been addressed. In the present study, we investigated the possibility of KR2 photostimulation to suppress epileptiform activity in mouse brain slices using the 4-aminopyrindine (4-AP) model. We injected the adeno-associated viral vector (AAV-PHP.eB-hSyn-KR2-YFP) containing the KR2 sodium pump gene enhanced with appropriate trafficking tags. KR2 expression was observed in the lateral entorhinal cortex and CA1 hippocampus. Using whole-cell patch clamp in mouse brain slices, we show that KR2, when stimulated with LED light, induces a substantial hyperpolarization of entorhinal neurons. However, continuous photostimulation of KR2 does not interrupt ictal discharges in mouse entorhinal cortex slices induced by a solution containing 4-AP. KR2-induced hyperpolarization strongly activates neuronal HCN channels. Consequently, turning off photostimulation resulted in HCN channel-mediated rebound depolarization accompanied by a transient increase in spontaneous network activity. Using low-frequency pulsed photostimulation, we induced the generation of short HCN channel-mediated discharges that occurred in response to the light stimulus being turned off; these discharges reliably interrupt ictal activity. Thus, low-frequency pulsed photostimulation of KR2 can be considered as a potential tool for controlling epileptic seizures.
Collapse
Affiliation(s)
- Alina M Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Dmitry V Amakhin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Tatyana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Vasilii S Tiselko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Elizaveta Podoliak
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Anton V Chizhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
- MathNeuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis, France
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia.
| |
Collapse
|
2
|
Khodadadi M, Zare M, Ghasemi Z, Karimzadeh F, Golab F, Amini N, Mehrabi S, Joghataei MT, Ahmadirad N. High and Low-Frequency Stimulation Effect on Epileptiform Activity in Brain Slices. Med J Islam Repub Iran 2023; 37:40. [PMID: 37284692 PMCID: PMC10240548 DOI: 10.47176/mjiri.37.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 06/08/2023] Open
Abstract
Background Neurostimulation is one of the new therapeutic approaches in patients with drug-resistant epilepsy, and despite its high efficiency, its mechanism of action is still unclear. On the one hand, electrical stimulation in the human brain is immoral; on the other hand, the creation of the epilepsy model in laboratory animals affects the entire brain network. As a result, one of the ways to achieve the neurostimulation mechanism is to use epileptiform activity models In vitro. In vitro models, by accessing the local network from the whole brain, we can understand the mechanisms of action of neurostimulation. Methods A literature search using scientific databases including PubMed, Google Scholar, and Scopus, using "Neurostimulation" and "epileptiform activity" combined with "high-frequency stimulation", " low-frequency stimulation ", and "brain slices" as keywords were conducted, related concepts to the topic gathered and are used in this paper. Results Electrical stimulation causes neuronal depolarization and the release of GABAA, which inhibits neuronal firing. Also, electrical stimulation inhibits the nervous tissue downstream of the stimulation site by preventing the passage of nervous activity from the upstream to the downstream of the axon. Conclusion Neurostimulation techniques consisting of LFS and HFS have a potential role in treating epileptiform activity, with some studies having positive results. Further investigations with larger sample sizes and standardized outcome measures can be conducted to validate the results of previous studies.
Collapse
Affiliation(s)
- Marzieh Khodadadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares
University, Tehran, Iran
| | - Zahra Ghasemi
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Soraya Mehrabi
- Department of Physiology, Faculty of Medicine, Iran University of Medical
Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical
Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| |
Collapse
|
3
|
Avoli M, Chen LY, Di Cristo G, Librizzi L, Scalmani P, Shiri Z, Uva L, de Curtis M, Lévesque M. Ligand-gated mechanisms leading to ictogenesis in focal epileptic disorders. Neurobiol Dis 2023; 180:106097. [PMID: 36967064 DOI: 10.1016/j.nbd.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada; Neurology & Neurosurgery and of Physiology, McGill University, Montreal H3A 2B4, Que, Canada.
| | - Li-Yuan Chen
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada; CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Zahra Shiri
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| |
Collapse
|
4
|
Proskurina EY, Chizhov AV, Zaitsev AV. Optogenetic Low-Frequency Stimulation of Principal Neurons, but Not Parvalbumin-Positive Interneurons, Prevents Generation of Ictal Discharges in Rodent Entorhinal Cortex in an In Vitro 4-Aminopyridine Model. Int J Mol Sci 2022; 24:ijms24010195. [PMID: 36613660 PMCID: PMC9820186 DOI: 10.3390/ijms24010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Low-frequency electrical stimulation is used to treat some drug-resistant forms of epilepsy. Despite the effectiveness of the method in suppressing seizures, there is a considerable risk of side effects. An optogenetic approach allows the targeting of specific populations of neurons, which can increase the effectiveness and safety of low-frequency stimulation. In our study, we tested the efficacy of the suppression of ictal activity in entorhinal cortex slices in a 4-aminopyridine model with three variants of low-frequency light stimulation (LFLS): (1) activation of excitatory and inhibitory neurons (on Thy1-ChR2-YFP mice), (2) activation of inhibitory interneurons only (on PV-Cre mice after virus injection with channelrhodopsin2 gene), and (3) hyperpolarization of excitatory neurons (on Wistar rats after virus injection with archaerhodopsin gene). Only in the first variant did simultaneous LFLS of excitatory and inhibitory neurons replace ictal activity with interictal activity. We suggest that LFLS caused changes in the concentration gradients of K+ and Na+ cations across the neuron membrane, which activated Na-K pumping. According to the mathematical modeling, the increase in Na-K pump activity in neurons induced by LFLS led to an antiepileptic effect. Thus, a less specific and generalized optogenetic effect on entorhinal cortex neurons was more effective in suppressing ictal activity in the 4-aminopyridine model.
Collapse
Affiliation(s)
- Elena Y. Proskurina
- Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
| | - Anton V. Chizhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, 26 Polytekhnicheskaya Street, 194021 St. Petersburg, Russia
- MathNeuro Team, Inria Centre at Universite Cote d’Azur, 06902 Sophia Antipolis, France
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Toreza Prospekt, 194223 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
5
|
Avoli M, Lévesque M. GABA B Receptors: are they Missing in Action in Focal Epilepsy Research? Curr Neuropharmacol 2022; 20:1704-1716. [PMID: 34429053 PMCID: PMC9881065 DOI: 10.2174/1570159x19666210823102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when the excitatory ionotropic transmission is abolished; and (iii) their contribution to controlling seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, the main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of; ,Department of Experimental Medicine, Sapienza University of Rome, 00185Rome, Italy,Address correspondence to this author at the Montreal Neurological Institute-Hospital, 3801 University Street, Montréal, Canada, H3A 2B4, QC; Tels: +1 514 998 6790; +39 333 483 1060; E-mail:
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of;
| |
Collapse
|
6
|
Smirnova EY, Sinyak DS, Chizhov AV, Zaitsev AV. Age-Dependent Generation of Epileptiform
Activity
in the 4-Aminopyridine Model with Slices of the Rat Entorhinal Cortex. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Köksal Ersöz E, Modolo J, Bartolomei F, Wendling F. Neural mass modeling of slow-fast dynamics of seizure initiation and abortion. PLoS Comput Biol 2020; 16:e1008430. [PMID: 33166277 PMCID: PMC7676664 DOI: 10.1371/journal.pcbi.1008430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/19/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a dynamic and complex neurological disease affecting about 1% of the worldwide population, among which 30% of the patients are drug-resistant. Epilepsy is characterized by recurrent episodes of paroxysmal neural discharges (the so-called seizures), which manifest themselves through a large-amplitude rhythmic activity observed in depth-EEG recordings, in particular in local field potentials (LFPs). The signature characterizing the transition to seizures involves complex oscillatory patterns, which could serve as a marker to prevent seizure initiation by triggering appropriate therapeutic neurostimulation methods. To investigate such protocols, neurophysiological lumped-parameter models at the mesoscopic scale, namely neural mass models, are powerful tools that not only mimic the LFP signals but also give insights on the neural mechanisms related to different stages of seizures. Here, we analyze the multiple time-scale dynamics of a neural mass model and explain the underlying structure of the complex oscillations observed before seizure initiation. We investigate population-specific effects of the stimulation and the dependence of stimulation parameters on synaptic timescales. In particular, we show that intermediate stimulation frequencies (>20 Hz) can abort seizures if the timescale difference is pronounced. Those results have the potential in the design of therapeutic brain stimulation protocols based on the neurophysiological properties of tissue.
Collapse
Affiliation(s)
| | - Julien Modolo
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
| | - Fabrice Bartolomei
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | | |
Collapse
|
8
|
Presynaptic GABA B receptors underlie the antiepileptic effect of low-frequency electrical stimulation in the 4-aminopyridine model of epilepsy in brain slices of young rats. Brain Stimul 2020; 13:1387-1395. [PMID: 32717394 DOI: 10.1016/j.brs.2020.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Low-frequency electrical stimulation (LFES) of the brain is one of the promising methods for helping patients with pharmacoresistant epilepsy. However, the mechanism of the antiepileptic effect of LFES is still unclear. We applied electrophysiological and pharmacological tools and mathematical modeling to investigate it. Using the 4-aminopyridine (4-AP) model of epileptiform activity in juvenile rat brain slices, we found that LFES increased the interval between ictal discharges (IDs) in the entorhinal cortex. The blockade of GABAA, GABAB, AMPA, or NMDA synaptic receptors strongly affected the characteristics of epileptiform discharges in slices. However, only under the blockade of GABAB receptors, LFES becomes entirely ineffective, indicating that the activation of GABAB receptors underlies the main LFES antiepileptic effect. Further experiments allowed us to suggest that LFES activates mostly presynaptic GABAB receptors, which decrease the probability of glutamate release. In line with this hypothesis is the following data: 1) LFES reduces the short-term synaptic depression of excitatory postsynaptic currents similar to the agonist of GABAB receptors SKF-97541; 2) the blockade of excitatory amino acid transporters diminishes the antiepileptic effect of LFES; 3) modeling of the effects of LFES on the probability of glutamate release with a previously proposed mathematical model of epileptiform activity Epileptor-2 also shows the increase of the interval between IDs. Our findings point out a crucial role of presynaptic GABAB receptors in the antiepileptic effect of LFES in the 4-AP model in juvenile rat brain slices.
Collapse
|
9
|
Pourzitaki C, Dardalas I, Poutoglidou F, Kouvelas D, Kimiskidis VK. The Combination of rTMS and Pharmacotherapy on In Vitro Models: A Mini-Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:220-226. [PMID: 32418533 DOI: 10.2174/1871527319666200518100716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive brain stimulation technique that is being actively explored as a potential therapeutic modality in various neuropsychiatric disorders, such as depression, neuropathic pain, epilepsy, multiple sclerosis, and neurodegenerative disorders, including the Parkinson's and Alzheimer's disease. The Food and Drug Administration (FDA) approved rTMS for the treatment of major depression, migraine-associated headaches, and Obsessive Compulsive Disorder (OCD). The fact that a significant proportion of patients suffering from these disorders fail to respond to current pharmacological interventions indicates the need for alternative therapies like rTMS. OBJECTIVE The objective was to find and summarize all studies combining the use of rTMS and pharmacological interference in vitro, in order to facilitate future studies. METHODS The results of studies combining the use of rTMS with pharmacological interference in vitro were focused on. The PubMed database was searched using the terms "rTMS", "repetitive", "transcranial", "magnetic", "stimulation", "in vitro", "in vivo", "cell cultures" untilMarch 2019 and 7 eligible studies were found. RESULTS Overall results show a synergistic effect of rTMS and pharmacotherapy in vitro with additive effectiveness, better prognosis, and superior potential management. CONCLUSION The limited amount of knowledge denotes the need for additional in vitro studies on the combination of rTMS and pharmacotherapy, which could be extended to in vivo studies and ultimately help design clinical trials so as to improve the therapeutic management of patients with a wide array of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chryssa Pourzitaki
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Frideriki Poutoglidou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54006, Thessaloniki, Greece
| |
Collapse
|
10
|
Kurada L, Bayat A, Joshi S, Chahine A, Koubeissi MZ. Antiepileptic effects of electrical stimulation of the piriform cortex. Exp Neurol 2020; 325:113070. [DOI: 10.1016/j.expneurol.2019.113070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
|
11
|
Focal Suppression of Epileptiform Activity in the Hippocampus by a High-frequency Magnetic Field. Neuroscience 2020; 432:1-14. [PMID: 32105740 DOI: 10.1016/j.neuroscience.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Electric current has been used for epilepsy treatment by targeting specific neural circuitries. Despite its success, direct contact between the electrode and tissue could cause side effects including pain, inflammation, and adverse biological reactions. Magnetic stimulation overcomes these limitations by offering advantages over biocompatibility and operational feasibility. However, the underlying neurological mechanisms of its action are largely unknown. In this work, a magnetic generating system was assembled that included a miniature coil. The coil was positioned above the CA3 area of mouse hippocampal slices. Epileptiform activity (EFA) was induced with low Mg2+/high K+ perfusion or with 100 µM 4-aminopyridine (4-AP). The miniature coil generated a sizable electric field that suppressed the local EFA in the hippocampus in the low-Mg2+/high-K+ model. The inhibition effect was dependent on the frequency and duration of the magnetic stimulus, with high frequency being more effective in suppressing EFA. EFA suppression by the magnetic field was also observed in the 4-AP model, in a frequency and duration - dependent manner. The study provides a platform for further investigation of cellular and molecular mechanisms underlying epilepsy treatment with time varying magnetic fields.
Collapse
|
12
|
Svejgaard B, Andreasen M, Nedergaard S. Role of GABA B receptors in proepileptic and antiepileptic effects of an applied electric field in rat hippocampus in vitro. Brain Res 2018; 1710:157-162. [PMID: 30599137 DOI: 10.1016/j.brainres.2018.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023]
Abstract
The mechanisms underlying antiepileptic effects of deep brain stimulation (DBS) are complex and poorly understood. Studies on the effects of applied electric fields on epileptic nervous tissue could enable future advances in DBS treatments. Applied electric fields are known to inhibit or enhance epileptic activity in vitro through direct effects on local neurons, but it is unclear whether trans-synaptic effects participate in such actions. The present study investigates, in an epileptic brain slice model, the influence of GABAB receptor activation on excitatory and suppressive effects of a short-duration (10 ms) electric field in rat hippocampus. The results show that perfusion of the GABAB receptor antagonist, CGP 55845 (2 μM), could abolish applied-field induced suppression of orthodromic-stimulus evoked epileptiform afterdischarge activity in the CA1 region. GABAB receptor blockade was associated with an enhanced excitatory (proepileptic) effect of the applied field. However, the suppressive effect, observed in isolation using weak field stimuli, was left unchanged. The G-protein-activated inwardly rectifying K+ channel (GIRK) antagonist, tertiapin (30-50 nM), mimicked the effects of CGP 55845. The results suggest that the applied field activate (elements of) local interneurons to release GABA onto GABAB receptors. The resulting activation of postsynaptic GIRK channels inhibits neuronal activity thereby dampening the direct stimulatory effect of the applied field. The study indicates that local-stimulus induced GABAB receptor activation can serve a protective role under antiepileptic paradigms by preventing electrical stimulation from causing hyperexcitation.
Collapse
Affiliation(s)
| | - Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
Lévesque M, Salami P, Shiri Z, Avoli M. Interictal oscillations and focal epileptic disorders. Eur J Neurosci 2017. [DOI: 10.1111/ejn.13628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maxime Lévesque
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Pariya Salami
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Zahra Shiri
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
| | - Massimo Avoli
- Department of Neurology & Neurosurgery; Montreal Neurological Institute; McGill University; 3801 University Street Montréal QC Canada H3A 2B4
- Dipartimento di Medicina Sperimentale; Sapienza University of Rome; Roma Italy
| |
Collapse
|