1
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology 2021; 197:108696. [PMID: 34274351 DOI: 10.1016/j.neuropharm.2021.108696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/06/2022]
Abstract
Presynaptic kainate (KA) receptors (KARs) modulate GABA and glutamate release in the central nervous system of mammals. While some of the actions of KARs are ionotropic, metabotropic actions for these receptors have also been seen to modulate both GABA and glutamate release. In general, presynaptic KARs modulate glutamate release through their metabotropic actions in a biphasic manner, with low KA concentrations producing an increase in glutamate release and higher concentrations of KA driving weaker release of this neurotransmitter. Different molecular mechanisms are involved in this modulation of glutamate release, with a G-protein independent, Ca2+-calmodulin adenylate cyclase (AC) and protein kinase A (PKA) dependent mechanism facilitating glutamate release, and a G-protein, AC and PKA dependent mechanism mediating the decrease in neurotransmitter release. Here, we describe the events underlying the KAR modulation of glutamatergic transmission in different brain regions, addressing the possible functions of this modulation and proposing future research lines in this field.
Collapse
|
3
|
Mulle C, Crépel V. Regulation and dysregulation of neuronal circuits by KARs. Neuropharmacology 2021; 197:108699. [PMID: 34246686 DOI: 10.1016/j.neuropharm.2021.108699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Kainate receptors (KARs) constitute a family of ionotropic glutamate receptors (iGluRs) with distinct physiological roles in synapses and neuronal circuits. Despite structural and biophysical commonalities with the other iGluRs, AMPA receptors and NMDA receptors, their role as post-synaptic receptors involved in shaping EPSCs to transmit signals across synapses is limited to a small number of synapses. On the other hand KARs regulate presynaptic release mechanisms and control ion channels and signaling pathways through non-canonical metabotropic actions. We review how these different KAR-dependent mechanisms concur to regulate the activity and plasticity of neuronal circuits in physiological conditions of activation of KARs by endogenous glutamate (as opposed to pharmacological activation by exogenous agonists). KARs have been implicated in neurological disorders, based on genetic association and on physiopathological studies. A well described example relates to temporal lobe epilepsy for which the aberrant recruitment of KARs at recurrent mossy fiber synapses takes part in epileptogenic neuronal activity. In conclusion, KARs certainly represent an underestimated actor in the regulation of neuronal circuits, and a potential therapeutic target awaiting more selective and efficient genetic tools and/or ligands.
Collapse
Affiliation(s)
- Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille Université, Marseille, France
| |
Collapse
|
4
|
Barmack NH, Pettorossi VE. Adaptive Balance in Posterior Cerebellum. Front Neurol 2021; 12:635259. [PMID: 33767662 PMCID: PMC7985352 DOI: 10.3389/fneur.2021.635259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Vestibular and optokinetic space is represented in three-dimensions in vermal lobules IX-X (uvula, nodulus) and hemisphere lobule X (flocculus) of the cerebellum. Vermal lobules IX-X encodes gravity and head movement using the utricular otolith and the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using optokinetic feedback about the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during perturbations of self-induced motion. Vestibular and optokinetic (self-motion detection) stimulation is encoded by cerebellar climbing and mossy fibers. These two afferent pathways excite the discharge of Purkinje cells directly. Climbing fibers preferentially decrease the discharge of Purkinje cells by exciting stellate cell inhibitory interneurons. We describe instances adaptive balance at a behavioral level in which prolonged vestibular or optokinetic stimulation evokes reflexive eye movements that persist when the stimulation that initially evoked them stops. Adaptation to prolonged optokinetic stimulation also can be detected at cellular and subcellular levels. The transcription and expression of a neuropeptide, corticotropin releasing factor (CRF), is influenced by optokinetically-evoked olivary discharge and may contribute to optokinetic adaptation. The transcription and expression of microRNAs in floccular Purkinje cells evoked by long-term optokinetic stimulation may provide one of the subcellular mechanisms by which the membrane insertion of the GABAA receptors is regulated. The neurosteroids, estradiol (E2) and dihydrotestosterone (DHT), influence adaptation of vestibular nuclear neurons to electrically-induced potentiation and depression. In each section of this review, we discuss how adaptive changes in the vestibular and optokinetic subsystems of lobule X, inferior olivary nuclei and vestibular nuclei may contribute to the control of balance.
Collapse
Affiliation(s)
- Neal H. Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Vito Enrico Pettorossi
- Section of Human Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Valbuena S, Lerma J. Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity. Neuroscience 2019; 456:17-26. [PMID: 31866560 DOI: 10.1016/j.neuroscience.2019.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/16/2023]
Abstract
Extensive research over the past decades has characterized multiple forms of synaptic plasticity, identifying them as key processes that allow the brain to operate in a dynamic manner. Within the wide variety of synaptic plasticity modulators, kainate receptors are receiving increasing attention, given their diversity of signaling mechanisms and cellular expression profile. Here, we summarize the experimental evidence about the involvement of kainate receptor signaling in the regulation of short- and long-term plasticity, from the perspective of the regulation of neurotransmitter release. In light of this evidence, we propose that kainate receptors may be considered homeostatic modulators of neurotransmitter release, able to bidirectionally regulate plasticity depending on the functional history of the synapse.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| | - Juan Lerma
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
6
|
Zamudio-Bulcock PA, Homanics GE, Woodward JJ. Loss of Ethanol Inhibition of N-Methyl-D-Aspartate Receptor-Mediated Currents and Plasticity of Cerebellar Synapses in Mice Expressing the GluN1(F639A) Subunit. Alcohol Clin Exp Res 2018; 42:698-705. [PMID: 29323417 DOI: 10.1111/acer.13597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glutamatergic N-methyl-d-aspartate receptors (NMDARs) are well known for their sensitivity to ethanol (EtOH) inhibition. However, the specific manner in which EtOH inhibits channel activity and how such inhibition affects neurotransmission, and ultimately behavior, remains unclear. Replacement of phenylalanine 639 with alanine (F639A) in the GluN1 subunit reduces EtOH inhibition of recombinant NMDARs. Mice expressing this subunit show reduced EtOH-induced anxiolysis, blunted locomotor stimulation following low-dose EtOH administration, and faster recovery of motor function after moderate doses of EtOH, suggesting that cerebellar dysfunction may contribute to some of these behaviors. In the mature mouse cerebellum, NMDARs at the cerebellar climbing fiber (CF) to Purkinje cell (PC) synapse are inhibited by low concentrations of EtOH and the long-term depression (LTD) of parallel fiber (PF)-mediated currents induced by concurrent activation of PFs and CFs (PF-LTD) requires activation of EtOH-sensitive NMDARs. In this study, we examined cerebellar NMDA responses and NMDA-mediated synaptic plasticity in wild-type (WT) and GluN1(F639A) mice. METHODS Patch-clamp electrophysiological recordings were performed in acute cerebellar slices from adult WT and GluN1(F639A) mice. NMDAR-mediated currents at the CF-PC synapse and NMDAR-dependent PF-LTD induction were compared for genotype-dependent differences. RESULTS Stimulation of CFs evoked robust NMDA-mediated excitatory postsynaptic currents (EPSCs) in PCs that were similar in amplitude and kinetics between WT and GluN1(F639A) mice. NMDA-mediated CF-PC EPSCs in WT mice were significantly inhibited by EtOH (50 mM) while those in mutant mice were unaffected. Concurrent stimulation of CF and PF inputs induced synaptic depression of PF-PC EPSCs in both WT and mutant mice, and this depression was blocked by the NMDA antagonist DL-APV. The synaptic depression of PF-PC EPSCs in WT mice was also blocked by a low concentration of EtOH (10 mM) that had no effect on plasticity in GluN1(F639A) mice. CONCLUSIONS These results demonstrate that inhibition of cerebellar NMDARs may be a key mechanism by which EtOH affects cerebellar-dependent behaviors.
Collapse
Affiliation(s)
- Paula A Zamudio-Bulcock
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Gregg E Homanics
- Department of Anesthesiology, Univeristy of Pittsburgh, Pittsburgh, PA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Mouton-Liger F, Sahún I, Collin T, Lopes Pereira P, Masini D, Thomas S, Paly E, Luilier S, Même S, Jouhault Q, Bennaï S, Beloeil JC, Bizot JC, Hérault Y, Dierssen M, Créau N. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: implications for Down syndrome. Neurobiol Dis 2013; 63:92-106. [PMID: 24291518 DOI: 10.1016/j.nbd.2013.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.
Collapse
Affiliation(s)
- François Mouton-Liger
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Ignasi Sahún
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Thibault Collin
- CNRS UMR8118, Brain Physiology Laboratory, Universite Paris-Descartes, Centre universitaire des Saints-Pères, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Patricia Lopes Pereira
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France
| | - Debora Masini
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Sophie Thomas
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Sabrina Luilier
- Key-Obs SAS, 13 avenue Buffon, 45071 Orléans Cedex 2, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Quentin Jouhault
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | | | | | - Yann Hérault
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France; Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France; Institut de Génétique Biologie Moléculaire et Cellulaire, Translational medicine and Neuroscience program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France.
| |
Collapse
|
8
|
Sihra TS, Flores G, Rodríguez-Moreno A. Kainate receptors: multiple roles in neuronal plasticity. Neuroscientist 2013; 20:29-43. [PMID: 23439589 DOI: 10.1177/1073858413478196] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ionotropic glutamate receptors of the N-methyl-d-aspartate (NMDA)- and AMPA-type, as well as metabotropic glutamate receptors have been extensively invoked in plasticity. Until relatively recently, however, kainate-type receptors (KARs) had been the most elusive to study because of the lack of appropriate pharmacological tools to specifically address their roles. With the development of selective glutamate receptor antagonists, and knockout mice with specific KAR subunits deleted, the functions of KARs in neuromodulation and synaptic transmission, together with their involvement in some types of plasticity, have been extensively probed in the central nervous system. In this review, we summarize the findings related to the roles of KARs in short- and long-term forms of plasticity, primarily in the hippocampus, where KAR function and synaptic plasticity have received avid attention.
Collapse
Affiliation(s)
- Talvinder S Sihra
- 1Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | |
Collapse
|
9
|
Crépel F, Galante M, Habbas S, McLean H, Daniel H. Role of the vesicular transporter VGLUT3 in retrograde release of glutamate by cerebellar Purkinje cells. J Neurophysiol 2010; 105:1023-32. [PMID: 21177991 DOI: 10.1152/jn.00736.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the cerebellum, retrograde release of glutamate (Glu) by Purkinje cells (PCs) participates in the control of presynaptic neurotransmitter release responsible for the late component of depolarization-induced suppression of excitation (DSE), as well as for depolarization-induced potentiation of inhibition (DPI). It might also participate in the depolarization-induced slow current (DISC) in PCs, although this contribution was later challenged. We also know that both DPI and DISC are soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent processes, although the molecular nature of the vesicular transporter was not determined. In PCs, VGLUT3 is the only known vesicular glutamate transporter identified and is expressed during the same developmental frame as when DPI, DISC, and the Glu-dependent component of DSE are observed. We therefore tested the hypothesis that all these processes depend on the presence of VGLUT3 by comparing the Glu-dependent component of DSE, DPI, and DISC in nearly mature (2- to 3-wk-old) wild-type and VGLUT3 knockout mice. Our data demonstrate that, in nearly mature mice, the slow component of DSE occurs through vesicular release of Glu that involves VGLUT3. This Glu-dependent component of DSE is no longer present in fully mature mice. This study also establishes that, in nearly mature mice, DPI also depends on the presence of VGLUT3, whereas this is not the case for DISC. Finally, the unusually large basal paired-pulse facilitation observed in nearly mature VGLUT3(-/-) mice but not in adult ones suggests that some basal retrograde release of Glu occurs during development and contributes to basal concentrations of extracellular Glu.
Collapse
Affiliation(s)
- Françis Crépel
- Pharmacologie de la Synapse, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
10
|
Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci 2010; 30:15330-5. [PMID: 21068337 DOI: 10.1523/jneurosci.4344-10.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at ∼2 months after birth. Here, we show that in the mature mouse cerebellum LTD (induced by paired PF and CF activation), but not long-term potentiation (LTP; PF stimulation alone) at PF to Purkinje cell synapses is blocked by bath application of the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV). A blockade of LTD, but not LTP, was also observed when the noncompetitive NMDA channel blocker MK-801 was added to the patch-pipette saline, suggesting that postsynaptically expressed NMDA receptors are required for LTD induction. Using confocal calcium imaging, we show that CF-evoked calcium transients in dendritic spines are reduced in the presence of D-APV. This observation confirms that NMDA receptor signaling occurs at CF synapses and suggests that NMDA receptor-mediated calcium transients at the CF input site might contribute to LTD induction. Finally, we performed dendritic patch-clamp recordings from rat Purkinje cells. Dendritically recorded CF responses were reduced when D-APV was bath applied. Together, these data suggest that the late developmental expression of postsynaptic NMDA receptors at CF synapses onto Purkinje cells is associated with a switch toward an NMDA receptor-dependent LTD induction mechanism.
Collapse
|