1
|
Wang HY, Yu K, Yang Z, Zhang G, Guo SQ, Wang T, Liu DD, Jia RN, Zheng YT, Su YN, Lou Y, Weiss KR, Zhou HB, Liu F, Cropper EC, Yu Q, Jing J. A Single Central Pattern Generator for the Control of a Locomotor Rolling Wave in Mollusc Aplysia. RESEARCH (WASHINGTON, D.C.) 2023; 6:0060. [PMID: 36930762 PMCID: PMC10013812 DOI: 10.34133/research.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Locomotion in mollusc Aplysia is implemented by a pedal rolling wave, a type of axial locomotion. Well-studied examples of axial locomotion (pedal waves in Drosophila larvae and body waves in leech, lamprey, and fish) are generated in a segmented nervous system via activation of multiple coupled central pattern generators (CPGs). Pedal waves in molluscs, however, are generated by a single pedal ganglion, and it is unknown whether there are single or multiple CPGs that generate rhythmic activity and phase shifts between different body parts. During locomotion in intact Aplysia, bursting activity in the parapedal commissural nerve (PPCN) was found to occur during tail contraction. A cluster of 20 to 30 P1 root neurons (P1Ns) on the ventral surface of the pedal ganglion, active during the pedal wave, were identified. Computational cluster analysis revealed that there are 2 phases to the motor program: phase I (centered around 168°) and phase II (centered around 357°). PPCN activity occurs during phase II. The majority of P1Ns are motoneurons. Coactive P1Ns tend to be electrically coupled. Two classes of pedal interneurons (PIs) were characterized. Class 1 (PI1 and PI2) is active during phase I. Their axons make a loop within the pedal ganglion and contribute to locomotor pattern generation. They are electrically coupled to P1Ns that fire during phase I. Class 2 (PI3) is active during phase II and innervates the contralateral pedal ganglion. PI3 may contribute to bilateral coordination. Overall, our findings support the idea that Aplysia pedal waves are generated by a single CPG.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhe Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dan-Dan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruo-Nan Jia
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Tong Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan-Nan Su
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi Lou
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Quan Yu
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Peng Cheng Laboratory, Shenzhen 518000, China
| |
Collapse
|
2
|
Kearney G, Radice M, Merlinsky AS, Szczupak L. Intersegmental Interactions Give Rise to a Global Network. Front Neural Circuits 2022; 16:843731. [PMID: 35282329 PMCID: PMC8904721 DOI: 10.3389/fncir.2022.843731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Animal motor behaviors require the coordination of different body segments. Thus the activity of the networks that control each segment, which are distributed along the nerve cord, should be adequately matched in time. This temporal organization may depend on signals originated in the brain, the periphery or other segments. Here we evaluate the role of intersegmental interactions. Because of the relatively regular anatomy of leeches, the study of intersegmental coordination in these animals restricts the analysis to interactions among iterated units. We focused on crawling, a rhythmic locomotive behavior through which leeches move on solid ground. The motor pattern was studied ex vivo, in isolated ganglia and chains of three ganglia, and in vivo. Fictive crawling ex vivo (crawling) displayed rhythmic characteristics similar to those observed in vivo. Within the three-ganglion chains the motor output presented an anterior-posterior order, revealing the existence of a coordination mechanism that occurred in the absence of brain or peripheral signals. An experimental perturbation that reversibly abolished the motor pattern in isolated ganglia produced only a marginal effect on the motor activity recorded in three-ganglion chains. Therefore, the segmental central pattern generators present in each ganglion of the chain lost the autonomy observed in isolated ganglia, and constituted a global network that reduced the degrees of freedom of the system. However, the intersegmental phase lag in the three-ganglion chains was markedly longer than in vivo. This work suggests that intersegmental interactions operate as a backbone of correlated motor activity, but additional signals are required to enhance and speed coordination in the animal.
Collapse
Affiliation(s)
- Graciela Kearney
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Martina Radice
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Agustín Sanchez Merlinsky
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Lidia Szczupak
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22136835. [PMID: 34202085 PMCID: PMC8267724 DOI: 10.3390/ijms22136835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal circuits in the spinal cord are essential for the control of locomotion. They integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. For several decades, computational modeling has complemented experimental studies by providing a mechanistic rationale for experimental observations and by deriving experimentally testable predictions. This symbiotic relationship between experimental and computational approaches has resulted in numerous fundamental insights. With recent advances in molecular and genetic methods, it has become possible to manipulate specific constituent elements of the spinal circuitry and relate them to locomotor behavior. This has led to computational modeling studies investigating mechanisms at the level of genetically defined neuronal populations and their interactions. We review literature on the spinal locomotor circuitry from a computational perspective. By reviewing examples leading up to and in the age of molecular genetics, we demonstrate the importance of computational modeling and its interactions with experiments. Moving forward, neuromechanical models with neuronal circuitry modeled at the level of genetically defined neuronal populations will be required to further unravel the mechanisms by which neuronal interactions lead to locomotor behavior.
Collapse
|
4
|
Kano T, Ishiguro A. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes. Integr Comp Biol 2020; 60:232-247. [PMID: 32215573 DOI: 10.1093/icb/icaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Snakes have no limbs and can move in various environments using a simple elongated limbless body structure obtained through a long-term evolutionary process. Specifically, snakes have various locomotion patterns, which they change in response to conditions encountered. For example, on an unstructured terrain, snakes actively utilize the terrain's irregularities and move effectively by actively pushing their bodies against the "scaffolds" that they encounter. In a narrow aisle, snakes exhibit concertina locomotion, in which the tail part of the body is pulled forward with the head part anchored, and this is followed by the extension of the head part with the tail part anchored. Furthermore, snakes often exhibit three-dimensional (3-D) locomotion patterns wherein the points of ground contact change in a spatiotemporal manner, such as sidewinding and sinus-lifting locomotion. This ability is achieved possibly by a decentralized control mechanism, which is still mostly unknown. In this study, we address this aspect by employing a synthetic approach to understand locomotion mechanisms by developing mathematical models and robots. We propose a Tegotae-based decentralized control mechanism and use a 2-D snake-like robot to demonstrate that it can exhibit scaffold-based and concertina locomotion. Moreover, we extend the proposed mechanism to 3D and use a 3-D snake-like robot to demonstrate that it can exhibit sidewinding and sinus-lifting locomotion. We believe that our findings will form a basis for developing snake-like robots applicable to search-and-rescue operations as well as understanding the essential decentralized control mechanism underlying animal locomotion.
Collapse
Affiliation(s)
- Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba Ward, Sendai, Miyagi 980-8577, Japan
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba Ward, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
5
|
Hasselmo ME, Alexander AS, Hoyland A, Robinson JC, Bezaire MJ, Chapman GW, Saudargiene A, Carstensen LC, Dannenberg H. The Unexplored Territory of Neural Models: Potential Guides for Exploring the Function of Metabotropic Neuromodulation. Neuroscience 2020; 456:143-158. [PMID: 32278058 DOI: 10.1016/j.neuroscience.2020.03.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The space of possible neural models is enormous and under-explored. Single cell computational neuroscience models account for a range of dynamical properties of membrane potential, but typically do not address network function. In contrast, most models focused on network function address the dimensions of excitatory weight matrices and firing thresholds without addressing the complexities of metabotropic receptor effects on intrinsic properties. There are many under-explored dimensions of neural parameter space, and the field needs a framework for representing what has been explored and what has not. Possible frameworks include maps of parameter spaces, or efforts to categorize the fundamental elements and molecules of neural circuit function. Here we review dimensions that are under-explored in network models that include the metabotropic modulation of synaptic plasticity and presynaptic inhibition, spike frequency adaptation due to calcium-dependent potassium currents, and afterdepolarization due to calcium-sensitive non-specific cation currents and hyperpolarization activated cation currents. Neuroscience research should more effectively explore possible functional models incorporating under-explored dimensions of neural function.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States.
| | - Andrew S Alexander
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Alec Hoyland
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Jennifer C Robinson
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Marianne J Bezaire
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - G William Chapman
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Ausra Saudargiene
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Lucas C Carstensen
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| |
Collapse
|
6
|
Yasui K, Kano T, Standen EM, Aonuma H, Ijspeert AJ, Ishiguro A. Decoding the essential interplay between central and peripheral control in adaptive locomotion of amphibious centipedes. Sci Rep 2019; 9:18288. [PMID: 31792255 PMCID: PMC6889372 DOI: 10.1038/s41598-019-53258-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/24/2019] [Indexed: 11/11/2022] Open
Abstract
Amphibious animals adapt their body coordination to compensate for changing substrate properties as they transition between terrestrial and aquatic environments. Using behavioural experiments and mathematical modelling of the amphibious centipede Scolopendra subspinipes mutilans, we reveal an interplay between descending command (brain), local pattern generation, and sensory feedback that controls the leg and body motion during swimming and walking. The elongated and segmented centipede body exhibits a gradual transition in the locomotor patterns as the animal crosses between land and water. Changing environmental conditions elicit a mechano-sensory feedback mechanism, inducing a gait change at the local segment level. The body segments operating downstream of a severed nerve cord (no descending control) can generate walking with mechano-sensory inputs alone while swimming behaviour is not recovered. Integrating the descending control for swimming initiation with the sensory feedback control for walking in a mathematical model successfully generates the adaptive behaviour of centipede locomotion, capturing the possible mechanism for flexible motor control in animals.
Collapse
Affiliation(s)
- Kotaro Yasui
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan. .,Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-Ward, Tokyo, 102-0083, Japan.
| | - Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan
| | - Emily M Standen
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, N12W7, Kita-Ward, Sapporo, 060-0812, Japan
| | - Auke J Ijspeert
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan
| |
Collapse
|
7
|
Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, Nose A. Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae. Nat Commun 2019; 10:2654. [PMID: 31201326 PMCID: PMC6572865 DOI: 10.1038/s41467-019-10695-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system. Locomotion involves the coordinated contraction of antagonistic muscles. Here, the authors report that in Drosophila larvae a pair of higher-order feedback neurons temporally regulates the intersegmental coordination of contraction of synergistic muscles enabling bidirectional movement.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Maarten F Zwart
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,School of Psychology and Neuroscience, University of St Andrews, KY16 9JP, Scotland, UK
| | - Akira Fushiki
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - James W Truman
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, 98250, USA
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. .,Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| |
Collapse
|
8
|
Denham JE, Ranner T, Cohen N. Signatures of proprioceptive control in Caenorhabditis elegans locomotion. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0208. [PMID: 30201846 DOI: 10.1098/rstb.2018.0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
Animal neuromechanics describes the coordinated self-propelled movement of a body, subject to the combined effects of internal neural control and mechanical forces. Here we use a computational model to identify effects of neural and mechanical modulation on undulatory forward locomotion of Caenorhabditis elegans, with a focus on proprioceptively driven neural control. We reveal a fundamental relationship between body elasticity and environmental drag in determining the dynamics of the body and demonstrate the manifestation of this relationship in the context of proprioceptively driven control. By considering characteristics unique to proprioceptive neurons, we predict the signatures of internal gait modulation that contrast with the known signatures of externally or biomechanically modulated gait. We further show that proprioceptive feedback can suppress neuromechanical phase lags during undulatory locomotion, contrasting with well studied advancing phase lags that have long been a signature of centrally generated, feed-forward control.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Jack E Denham
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Ranner
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Messina JA, St Paul A, Hargis S, Thompson WE, McClellan AD. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity. Front Neural Circuits 2017; 11:89. [PMID: 29225569 PMCID: PMC5705556 DOI: 10.3389/fncir.2017.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/06/2017] [Indexed: 11/21/2022] Open
Abstract
The contribution of left-right reciprocal coupling between spinal locomotor networks to the generation of locomotor activity was tested in adult lampreys. Muscle recordings were made from normal animals as well as from experimental animals with rostral midline (ML) spinal lesions (~13%→35% body length, BL), before and after spinal transections (T) at 35% BL. Importantly, in the present study actual locomotor movements and muscle burst activity, as well as other motor activity, were initiated in whole animals by descending brain-spinal pathways in response to sensory stimulation of the anterior head. For experimental animals with ML spinal lesions, sensory stimulation could elicit well-coordinated locomotor muscle burst activity, but with some significant differences in the parameters of locomotor activity compared to those for normal animals. Computer models representing normal animals or experimental animals with ML spinal lesions could mimic many of the differences in locomotor activity. For experimental animals with ML and T spinal lesions, right and left rostral hemi-spinal cords, disconnected from intact caudal cord, usually produced tonic or unpatterned muscle activity. Hemi-spinal cords sometimes generated spontaneous or sensory-evoked relatively high frequency “burstlet” activity that probably is analogous to the previously described in vitro “fast rhythm”, which is thought to represent lamprey locomotor activity. However, “burstlet” activity in the present study had parameters and features that were very different than those for lamprey locomotor activity: average frequencies were ~25 Hz, but individual frequencies could be >50 Hz; burst proportions (BPs) often varied with cycled time; “burstlet” activity usually was not accompanied by a rostrocaudal phase lag; and following ML spinal lesions alone, “burstlet” activity could occur in the presence or absence of swimming burst activity, suggesting the two were generated by different mechanisms. In summary, for adult lampreys, left and right hemi-spinal cords did not generate rhythmic locomotor activity in response to descending inputs from the brain, suggesting that left-right reciprocal coupling of spinal locomotor networks contributes to both phase control and rhythmogenesis. In addition, the present study indicates that extreme caution should be exercised when testing the operation of spinal locomotor networks using artificial activation of isolated or reduced nervous system preparations.
Collapse
Affiliation(s)
- J A Messina
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Alison St Paul
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Sarah Hargis
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Wengora E Thompson
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Andrew D McClellan
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Robust phase-waves in chains of half-center oscillators. J Math Biol 2016; 74:1627-1656. [DOI: 10.1007/s00285-016-1066-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 06/16/2016] [Indexed: 10/20/2022]
|
11
|
Sharples SA, Humphreys JM, Jensen AM, Dhoopar S, Delaloye N, Clemens S, Whelan PJ. Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord. J Neurophysiol 2015; 113:2500-10. [PMID: 25652925 DOI: 10.1152/jn.00849.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/29/2015] [Indexed: 01/08/2023] Open
Abstract
Dopamine is now well established as a modulator of locomotor rhythms in a variety of developing and adult vertebrates. However, in mice, while all five dopamine receptor subtypes are present in the spinal cord, it is unclear which receptor subtypes modulate the rhythm. Dopamine receptors can be grouped into two families-the D1/5 receptor group and the D2/3/4 group, which have excitatory and inhibitory effects, respectively. Our data suggest that dopamine exerts contrasting dose-dependent modulatory effects via the two receptor families. Our data show that administration of dopamine at concentrations >35 μM slowed and increased the regularity of a locomotor rhythm evoked by bath application of 5-hydroxytryptamine (5-HT) and N-methyl-d(l)-aspartic acid (NMA). This effect was independent of the baseline frequency of the rhythm that was manipulated by altering the NMA concentration. We next examined the contribution of the D1- and D2-like receptor families on the rhythm. Our data suggest that the D1-like receptor contributes to enhancement of the stability of the rhythm. Overall, the D2-like family had a pronounced slowing effect on the rhythm; however, quinpirole, the D2-like agonist, also enhanced rhythm stability. These data indicate a receptor-dependent delegation of the modulatory effects of dopamine on the spinal locomotor pattern generator.
Collapse
Affiliation(s)
- Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - A Marley Jensen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Sunny Dhoopar
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Delaloye
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina; and
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Kohsaka H, Takasu E, Morimoto T, Nose A. A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae. Curr Biol 2014; 24:2632-42. [PMID: 25438948 DOI: 10.1016/j.cub.2014.09.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Animals control the speed of motion to meet behavioral demands. Yet, the underlying neuronal mechanisms remain poorly understood. Here we show that a class of segmentally arrayed local interneurons (period-positive median segmental interneurons, or PMSIs) regulates the speed of peristaltic locomotion in Drosophila larvae. RESULTS PMSIs formed glutamatergic synapses on motor neurons and, when optogenetically activated, inhibited motor activity, indicating that they are inhibitory premotor interneurons. Calcium imaging showed that PMSIs are rhythmically active during peristalsis with a short time delay in relation to motor neurons. Optogenetic silencing of these neurons elongated the duration of motor bursting and greatly reduced the speed of larval locomotion. CONCLUSIONS Our results suggest that PMSIs control the speed of axial locomotion by limiting, via inhibition, the duration of motor outputs in each segment. Similar mechanisms are found in the regulation of mammalian limb locomotion, suggesting that common strategies may be used to control the speed of animal movements in a diversity of species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Etsuko Takasu
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takako Morimoto
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akinao Nose
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
13
|
Wiggin TD, Peck JH, Masino MA. Coordination of fictive motor activity in the larval zebrafish is generated by non-segmental mechanisms. PLoS One 2014; 9:e109117. [PMID: 25275377 PMCID: PMC4183566 DOI: 10.1371/journal.pone.0109117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/25/2014] [Indexed: 01/15/2023] Open
Abstract
The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits.
Collapse
Affiliation(s)
- Timothy D. Wiggin
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jack H. Peck
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark A. Masino
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
14
|
Tupal S, Huang WH, Picardo MCD, Ling GY, Del Negro CA, Zoghbi HY, Gray PA. Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice. eLife 2014; 3:e02265. [PMID: 24842997 PMCID: PMC4060005 DOI: 10.7554/elife.02265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing.DOI: http://dx.doi.org/10.7554/eLife.02265.001.
Collapse
Affiliation(s)
- Srinivasan Tupal
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, United States
| | - Wei-Hsiang Huang
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, United States
| | | | - Guang-Yi Ling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, United States
| | | | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, United States Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, United States
| |
Collapse
|
15
|
Lamb DG, Calabrese RL. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS One 2013; 8:e79267. [PMID: 24260181 PMCID: PMC3832487 DOI: 10.1371/journal.pone.0079267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/23/2013] [Indexed: 11/26/2022] Open
Abstract
Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.
Collapse
Affiliation(s)
- Damon G. Lamb
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Ronald L. Calabrese
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Charrier V, Cabelguen JM. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders. Neuroscience 2013; 255:191-202. [PMID: 24161283 DOI: 10.1016/j.neuroscience.2013.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022]
Abstract
Most investigations into the role of the body axis in vertebrate locomotion have focused on the trunk, although in most tetrapods, the tail also plays an active role. In salamanders, the tail contributes to propulsion during swimming and to dynamic balance and maneuverability during terrestrial locomotion. The aim of the present study was to obtain information concerning the neural mechanisms that produce tail muscle contractions during locomotion in the salamander Pleurodeles waltlii. We recorded the ventral root activities in in vitro spinal cord preparations in which locomotor-like activity was induced via bath application of N-methyl-d-aspartate (20μM) and d-serine (10μM). Recordings showed that the tail spinal cord is capable of producing propagated waves of motor activity that alternate between the left and right sides. Lesion experiments further revealed that the tail rhythmogenic network is composed of a double chain of identical hemisegmental oscillators. Finally, using spinal cord preparations bathed in a chamber partitioned into two pools, we revealed efficient short-distance coupling between the trunk and tail networks. Together, our results demonstrate the existence of a pattern generator for rhythmic tail movements in the salamander and show that the global architecture of the tail network is similar to that previously proposed for the mid-trunk locomotor network in the salamander. Our findings further support the view that salamanders can control their trunk and tail independently during stepping movements. The relevance of our results in relation to the generation of tail muscle contractions in freely moving salamanders is discussed.
Collapse
Affiliation(s)
- V Charrier
- Neurocentre Magendie, INSERM U 862 - Université de Bordeaux, 146 rue Léo Saignat, F-33077 Bordeaux Cedex, France.
| | | |
Collapse
|
17
|
Kano T, Kawakatsu T, Ishiguro A. Generating Situation-Dependent Behavior: Decentralized Control of Multi-Functional Intestine-Like Robot that can Transport and Mix Contents. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most robots are designed to perform a specific task in a predefined environment and have difficulty in producing situation-dependent behavior. To tackle this problem, we focus here on a mammal intestine that either transports or mixes the contents depending on the encountered circumstances. We propose a simple model for the intestinal movement and design an autonomous decentralized control scheme for an intestine-like robot by using coupled oscillators with local sensory feedback. Simulation results show that different types of motions are generated depending on the the physical conditions of the intestine and its contents. Our simulated robot does not require any input from a higher center to switch between different types of motions but determines autonomously which motion to generate. This study thus paves the way for developing “multi-functional robots” whose behavior is changed flexibly and spontaneously depending on circumstances.
Collapse
|
18
|
Bicanski A, Ryczko D, Knuesel J, Harischandra N, Charrier V, Ekeberg Ö, Cabelguen JM, Ijspeert AJ. Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics. BIOLOGICAL CYBERNETICS 2013; 107:545-564. [PMID: 23430277 DOI: 10.1007/s00422-012-0543-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.
Collapse
Affiliation(s)
- Andrej Bicanski
- Biorobotics Laboratory, School of Engineering, École Polytechnique Fédérale de Lausanne, Station 14, 1015 , Lausanne, Vaud, Switzerland,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Knüsel J, Bicanski A, Ryczko D, Cabelguen JM, Ijspeert AJ. A salamander's flexible spinal network for locomotion, modeled at two levels of abstraction. Integr Comp Biol 2013; 53:269-82. [PMID: 23784700 DOI: 10.1093/icb/ict067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals have to coordinate a large number of muscles in different ways to efficiently move at various speeds and in different and complex environments. This coordination is in large part based on central pattern generators (CPGs). These neural networks are capable of producing complex rhythmic patterns when activated and modulated by relatively simple control signals. Although the generation of particular gaits by CPGs has been successfully modeled at many levels of abstraction, the principles underlying the generation and selection of a diversity of patterns of coordination in a single neural network are still not well understood. The present work specifically addresses the flexibility of the spinal locomotor networks in salamanders. We compare an abstract oscillator model and a CPG network composed of integrate-and-fire neurons, according to their ability to account for different axial patterns of coordination, and in particular the transition in gait between swimming and stepping modes. The topology of the network is inspired by models of the lamprey CPG, complemented by additions based on experimental data from isolated spinal cords of salamanders. Oscillatory centers of the limbs are included in a way that preserves the flexibility of the axial network. Similarly to the selection of forward and backward swimming in lamprey models via different excitation to the first axial segment, we can account for the modification of the axial coordination pattern between swimming and forward stepping on land in the salamander model, via different uncoupled frequencies in limb versus axial oscillators (for the same level of excitation). These results transfer partially to a more realistic model based on formal spiking neurons, and we discuss the difference between the abstract oscillator model and the model built with formal spiking neurons.
Collapse
Affiliation(s)
- Jeremie Knüsel
- Biorobotics Laboratory, School of Engineering, École Polytechnique Fédérale de Lausanne, Station 14, CH 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
20
|
Gjorgjieva J, Berni J, Evers JF, Eglen SJ. Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling. Front Comput Neurosci 2013; 7:24. [PMID: 23576980 PMCID: PMC3616270 DOI: 10.3389/fncom.2013.00024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/14/2013] [Indexed: 12/22/2022] Open
Abstract
Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central pattern generator (CPG). We characterized crawling behavior of newly hatched Drosophila larvae by quantifying timing and duration of segmental boundary contractions. We developed a CPG network model that recapitulates these patterns based on segmentally repeated units of excitatory and inhibitory (EI) neuronal populations coupled with immediate neighboring segments. A single network with symmetric coupling between neighboring segments succeeded in generating both forward and backward propagation of activity. The CPG network was robust to changes in amplitude and variability of connectivity strength. Introducing sensory feedback via "stretch-sensitive" neurons improved wave propagation properties such as speed of propagation and segmental contraction duration as observed experimentally. Sensory feedback also restored propagating activity patterns when an inappropriately tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we demonstrated that two types of connectivity could synchronize the activity of two independent networks: connections from excitatory neurons on one side to excitatory contralateral neurons (E to E), and connections from inhibitory neurons on one side to excitatory contralateral neurons (I to E). To our knowledge, such I to E connectivity has not yet been found in any experimental system; however, it provides the most robust mechanism to synchronize activity between contralateral CPGs in our model. Our model provides a general framework for studying the conditions under which a single locally coupled network generates bilaterally synchronized and longitudinally propagating waves in either direction.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridge, UK
| | - Jimena Berni
- Department of Zoology, University of CambridgeCambridge, UK
| | | | - Stephen J. Eglen
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridge, UK
| |
Collapse
|
21
|
Kano T, Watanabe Y, Ishiguro A. Towards realization of multi-terrestrial locomotion: decentralized control of a sheet-like robot based on the scaffold-exploitation mechanism. BIOINSPIRATION & BIOMIMETICS 2012; 7:046012. [PMID: 23093049 DOI: 10.1088/1748-3182/7/4/046012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Autonomous decentralized control is an attractive concept for designing robots that can exhibit highly adaptive animal-like behaviour. However, despite its appeal, previous robots based on this scheme could only adapt to a limited number of environments. Our hypothesis it that this problem can be overcome by simply implementing a scaffold-exploitation mechanism. We draw our inspiration from flatworms, which move over various terrains using their two-dimensional sheet-like body, and we design an autonomous decentralized control scheme for a similar robot based on the scaffold-exploitation mechanism. Simulation results show that a robot with the proposed control scheme can move efficiently over various irregular terrains. Our control scheme is not specific to a certain environment, but will be applicable in any environment; it could thus form the basis for developing a multi-terrestrial robot whose working area covers land, sea and even air.
Collapse
Affiliation(s)
- Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
22
|
Kano T, Sato T, Kobayashi R, Ishiguro A. Local reflexive mechanisms essential for snakes' scaffold-based locomotion. BIOINSPIRATION & BIOMIMETICS 2012; 7:046008. [PMID: 22918023 DOI: 10.1088/1748-3182/7/4/046008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most robots are designed to work in predefined environments, and irregularities that exist in the environment interfere with their operation. For snakes, irregularities play the opposite role: snakes actively utilize terrain irregularities and move by effectively pushing their body against the scaffolds that they encounter. Autonomous decentralized control mechanisms could be the key to understanding this locomotion. We demonstrate through modelling and simulations that only two local reflexive mechanisms, which exploit sensory information about the stretching of muscles and the pressure on the body wall, are crucial for realizing locomotion. This finding will help develop robots that work in undefined environments and shed light on the understanding of the fundamental principles underlying adaptive locomotion in animals.
Collapse
Affiliation(s)
- Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | | | |
Collapse
|
23
|
Kano T, Suzuki S, Watanabe W, Ishiguro A. Ophiuroid robot that self-organizes periodic and non-periodic arm movements. BIOINSPIRATION & BIOMIMETICS 2012; 7:034001. [PMID: 22617431 DOI: 10.1088/1748-3182/7/3/034001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Autonomous decentralized control is a key concept for understanding the mechanism underlying adaptive and versatile locomotion of animals. Although the design of an autonomous decentralized control system that ensures adaptability by using coupled oscillators has been proposed previously, it cannot comprehensively reproduce the versatility of animal behaviour. To tackle this problem, we focus on using ophiuroids as a simple model that exhibits versatile locomotion including periodic and non-periodic arm movements. Our existing model for ophiuroid locomotion uses an active rotator model that describes both oscillatory and excitatory properties. In this communication, we develop an ophiuroid robot to confirm the validity of this proposed model in the real world. We show that the robot travels by successfully coordinating periodic and non-periodic arm movements in response to external stimuli.
Collapse
Affiliation(s)
- Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | | | |
Collapse
|
24
|
Fuchs E, Holmes P, David I, Ayali A. Proprioceptive feedback reinforces centrally generated stepping patterns in the cockroach. J Exp Biol 2012; 215:1884-91. [DOI: 10.1242/jeb.067488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The relative importance of sensory input for the production of centrally generated motor patterns is crucial to our understanding of how animals coordinate their body segments to locomote. In legged locomotion, where terrain heterogeneity may require stride-by-stride changes in leg placement, evidence suggests that sensory information is essential for the timing of leg movement. In a previous study we showed that in cockroaches, renowned for rapid and stable running, a coordinated pattern can be elicited from the motor centres driving the different legs in the absence of sensory feedback. In the present paper, we assess the role of movement-related sensory inputs in modifying this central pattern. We studied the effect of spontaneous steps as well as imposed transient and periodic movements of a single intact leg, and demonstrate that, depending on the movement properties, the resulting proprioceptive feedback can significantly modify phase relationships among segmental oscillators of other legs. Our analysis suggests that feedback from front legs is weaker but more phasically precise than from hind legs, selectively transferring movement-related information in a manner that strengthens the inherent rhythmic pattern and modulates local perturbations.
Collapse
Affiliation(s)
- Einat Fuchs
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Philip Holmes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- Program in Applied and Computational Mathematics, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Izhak David
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ayali
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Boyle JH, Berri S, Cohen N. Gait Modulation in C. elegans: An Integrated Neuromechanical Model. Front Comput Neurosci 2012; 6:10. [PMID: 22408616 PMCID: PMC3296079 DOI: 10.3389/fncom.2012.00010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/07/2012] [Indexed: 11/13/2022] Open
Abstract
Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. We present a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimental predictions, in particular with respect to non-linearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body.
Collapse
Affiliation(s)
| | | | - Netta Cohen
- School of Computing, University of LeedsLeeds, UK
- Institute of Membrane and Systems Biology, University of LeedsLeeds, UK
| |
Collapse
|
26
|
Mulloney B, Smarandache-Wellmann C. Neurobiology of the crustacean swimmeret system. Prog Neurobiol 2012; 96:242-67. [PMID: 22270044 PMCID: PMC3297416 DOI: 10.1016/j.pneurobio.2012.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
The crustacean swimmeret system includes a distributed set of local circuits that individually control movements of one jointed limb. These modular local circuits occur in pairs in each segmental ganglion, and normally operate synchronously to produce smoothly coordinated cycles of limb movements on different body segments. The system presents exceptional opportunities for computational and experimental investigation of neural mechanisms of coordination because: (a) The system will express in vitro the periodic motor pattern that normally drives cycles of swimmeret movements during forward swimming. (b) The intersegmental neurons which encode information that is necessary and sufficient for normal coordination have been identified, and their activity can be recorded. (c) The local commissural neurons that integrate this coordinating information and tune the phase of each swimmeret are known. (d) The complete set of synaptic connections between coordinating neurons and these commissural neurons have been described. (e). The synaptic connections onto each local pattern-generating circuit through which coordinating information tunes the circuit's phase have been discovered. These factors make possible for the first time a detailed, comprehensive cellular and synaptic explanation of how this neural circuit produces an effective, behaviorally significant output. This paper is the first comprehensive review of the system's neuroanatomy and neurophysiology, its local and intersegmental circuitry, its transmitter pharmacology, its neuromodulatory control mechanisms, and its interactions with other motor systems. Each of these topics is covered in detail in an attempt to provide a complete review of the literature as a foundation for new research. The series of hypotheses that have been proposed to account for the system's properties are reviewed critically in the context of experimental tests of their validity.
Collapse
Affiliation(s)
- Brian Mulloney
- Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, University of California, Davis, CA 95616-8519, USA.
| | | |
Collapse
|
27
|
Coordination of distinct motor structures through remote axonal coupling of projection interneurons. J Neurosci 2011; 31:15438-49. [PMID: 22031890 DOI: 10.1523/jneurosci.3741-11.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complex behaviors often require coordinated movements of dissimilar motor structures. The underlying neural mechanisms are poorly understood. We investigated cycle-by-cycle coordination of two dissimilar feeding structures in Aplysia californica: the external lips and the internal radula. During feeding, the lips open while the radula protracts. Lip and radula motoneurons are located in the cerebral and buccal ganglia, respectively, and radula motoneurons are controlled by a well characterized buccal central pattern generator (CPG). Here, we examined whether the three electrically coupled lip motoneurons C15/16/17 are controlled by the buccal CPG or by a previously postulated cerebral CPG. Two buccal-cerebral projection interneurons, B34 and B63, which are part of the buccal CPG and mediate radula protraction, monosynaptically excite C15/16/17. Recordings from the B34 axon in the cerebral ganglion demonstrate its direct electrical coupling with C15/16/17, eliminating the need for a cerebral CPG. Moreover, when the multifunctional buccal CPG generates multiple forms of motor programs due to the activation of two inputs, the command-like neuron CBI-2 and the esophageal nerve (EN), C15/16 exhibit activity patterns that are distinct from C17. These distinct activity patterns result from combined activity of B34 and B63 and their differential excitation of C15/16 versus C17. In more general terms, we identified neuronal mechanisms that allow a single CPG to coordinate the phasing and activity of remotely located motoneurons innervating distinct structures that participate in the production of different motor outputs. We also demonstrated that axodendritic electrical coupling by projection interneurons plays a pivotal role in coordinating activity of these remotely located neurons.
Collapse
|
28
|
Srinivasan S, Lance K, Levine RB. Segmental differences in firing properties and potassium currents in Drosophila larval motoneurons. J Neurophysiol 2011; 107:1356-65. [PMID: 22157123 DOI: 10.1152/jn.00200.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Potassium currents play key roles in regulating motoneuron activity, including functional specializations that are important for locomotion. The thoracic and abdominal segments in the Drosophila larval ganglion have repeated arrays of motoneurons that innervate body-wall muscles used for peristaltic movements during crawling. Although abdominal motoneurons and their muscle targets have been studied in detail, owing, in part, to their involvement in locomotion, little is known about the cellular properties of motoneurons in thoracic segments. The goal of this study was to compare firing properties among thoracic motoneurons and the potassium currents that influence them. Whole-cell, patch-clamp recordings performed from motoneurons in two thoracic and one abdominal segment revealed both transient and sustained voltage-activated K(+) currents, each with Ca(++)-sensitive and Ca(++)-insensitive [A-type, voltage-dependent transient K(+) current (I(Av))] components. Segmental differences in the expression of voltage-activated K(+) currents were observed. In addition, we demonstrate that Shal contributes to I(Av) currents in the motoneurons of the first thoracic segment.
Collapse
|
29
|
Jinks SL, Andrada J. Validation and Insights of Anesthetic Action in an Early Vertebrate Network. Anesth Analg 2011; 113:1033-42. [DOI: 10.1213/ane.0b013e3182273c34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Lamb DG, Calabrese RL. Neural circuits controlling behavior and autonomic functions in medicinal leeches. NEURAL SYSTEMS & CIRCUITS 2011; 1:13. [PMID: 22329853 PMCID: PMC3278399 DOI: 10.1186/2042-1001-1-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/28/2011] [Indexed: 12/22/2022]
Abstract
In the study of the neural circuits underlying behavior and autonomic functions, the stereotyped and accessible nervous system of medicinal leeches, Hirudo sp., has been particularly informative. These leeches express well-defined behaviors and autonomic movements which are amenable to investigation at the circuit and neuronal levels. In this review, we discuss some of the best understood of these movements and the circuits which underlie them, focusing on swimming, crawling and heartbeat. We also discuss the rudiments of decision-making: the selection between generally mutually exclusive behaviors at the neuronal level.
Collapse
Affiliation(s)
- Damon G Lamb
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Ronald L Calabrese
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Mullins OJ, Hackett JT, Buchanan JT, Friesen WO. Neuronal control of swimming behavior: comparison of vertebrate and invertebrate model systems. Prog Neurobiol 2011; 93:244-69. [PMID: 21093529 PMCID: PMC3034781 DOI: 10.1016/j.pneurobio.2010.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/01/2010] [Accepted: 11/08/2010] [Indexed: 01/26/2023]
Abstract
Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function.
Collapse
Affiliation(s)
- Olivia J. Mullins
- Dept. of Biology University of Virginia Charlottesville, VA 22904-4328
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
| | - John T. Hackett
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
- Dept. of Molecular Physiology and Biological Physics University of Virginia Charlottesville, VA 22904-4328
| | - James T. Buchanan
- Dept. of Biological Sciences Marquette University Milwaukee, WI 53233
| | - W. Otto Friesen
- Dept. of Biology University of Virginia Charlottesville, VA 22904-4328
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
| |
Collapse
|
32
|
Fuchs E, Holmes P, Kiemel T, Ayali A. Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits. Front Neural Circuits 2011; 4:125. [PMID: 21369365 PMCID: PMC3043608 DOI: 10.3389/fncir.2010.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/28/2010] [Indexed: 11/17/2022] Open
Abstract
Animals’ ability to demonstrate both stereotyped and adaptive locomotor behavior is largely dependent on the interplay between centrally generated motor patterns and the sensory inputs that shape them. We utilized a combined experimental and theoretical approach to investigate the relative importance of CPG interconnections vs. intersegmental afferents in the cockroach: an animal that is renowned for rapid and stable locomotion. We simultaneously recorded coxal levator and depressor motor neurons (MN) in the thoracic ganglia of Periplaneta americana, while sensory feedback was completely blocked or allowed only from one intact stepping leg. In the absence of sensory feedback, we observed a coordination pattern with consistent phase relationship that shares similarities with a double-tripod gait, suggesting central, feedforward control. This intersegmental coordination pattern was then reinforced in the presence of sensory feedback from a single stepping leg. Specifically, we report on transient stabilization of phase differences between activity recorded in the middle and hind thoracic MN following individual front-leg steps, suggesting a role for afferent phasic information in the coordination of motor circuits at the different hemiganglia. Data were further analyzed using stochastic models of coupled oscillators and maximum likelihood techniques to estimate underlying physiological parameters, such as uncoupled endogenous frequencies of hemisegmental oscillators and coupling strengths and directions. We found that descending ipsilateral coupling is stronger than ascending coupling, while left–right coupling in both the meso- and meta-thoracic ganglia appear to be symmetrical. We discuss these results in comparison with recent findings in stick insects that share similar neural and body architectures, and argue that the two species may exemplify opposite extremes of a fast–slow locomotion continuum, mediated through different intersegment coordination strategies.
Collapse
Affiliation(s)
- Einat Fuchs
- Department of Mechanical and Aerospace Engineering, Princeton University Princeton, NJ, USA
| | | | | | | |
Collapse
|
33
|
Puhl JG, Mesce KA. Keeping it together: mechanisms of intersegmental coordination for a flexible locomotor behavior. J Neurosci 2010; 30:2373-83. [PMID: 20147563 PMCID: PMC2833357 DOI: 10.1523/jneurosci.5765-09.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 12/20/2022] Open
Abstract
The coordination of multiple neural oscillators is key for the generation of productive locomotor movements. In the medicinal leech, we determined that activation and coordination of the segmental crawl oscillators, or unit burst generators, are dependent on signals descending from the cephalic ganglion. In nearly intact animals, removing descending input (reversibly with a sucrose block) prevented overt crawling, but not swimming. Cephalic depolarization was sufficient for coordination. To determine whether descending signals were necessary for the generation and maintenance of posterior-directed intersegmental phase delays, we induced fictive crawling in isolated whole nerve cords using dopamine (DA) and blocked descending inputs. After blockade, we observed a significant loss of intersegmental coordination. Appropriate phase delays were also absent in DA-treated chains of ganglia. In chains, when one ganglion was removed from its neighbors, crawling in that ganglion emerged robust and stable, underscoring that these oscillators operate best with either all or none of their intersegmental inputs. To study local oscillator coupling, we induced fictive crawling (with DA) in a single oscillator within a chain. Although appropriate intersegmental phase delays were always absent, when one ganglion was treated with DA, neighboring ganglia began to show crawl-like bursting, with motoneuron spikes/burst greatest in untreated posterior ganglia. We further determined that this local excitatory drive excluded the swim-gating cell, 204. In conclusion, both long-distance descending and local interoscillator coupling contribute to crawling. This dual contribution helps to explain the inherent flexibility of crawling, and provides a foundation for understanding other dynamic locomotor behaviors across animal groups.
Collapse
Affiliation(s)
- Joshua G. Puhl
- Graduate Program in Neuroscience and Departments of Entomology and Neuroscience, University of Minnesota, Saint Paul, Minnesota 55108
| | - Karen A. Mesce
- Graduate Program in Neuroscience and Departments of Entomology and Neuroscience, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
34
|
Coordination of rhythmic motor activity by gradients of synaptic strength in a neural circuit that couples modular neural oscillators. J Neurosci 2009; 29:9351-60. [PMID: 19625525 DOI: 10.1523/jneurosci.1744-09.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synchronization of distributed neural circuits is required for many behavioral tasks, but the mechanisms that coordinate these circuits are largely unknown. The modular local circuits that control crayfish swimmerets are distributed in four segments of the CNS, but when the swimmeret system is active their outputs are synchronized with a stable intersegmental phase difference of 0.25, an example of metachronal synchronization (Izhikevich, 2007). In each module, coordinating neurons encode detailed information about each cycle of the module's motor output as bursts of spikes, and their axons conduct this information to targets in other segments. This information is both necessary and sufficient for normal intersegmental coordination. In a comprehensive set of recordings, we mapped the synaptic connections of two types of coordinating neurons onto their common target neurons in other segments. Both types of coordinating axons caused large, brief EPSPs in their targets. The shape indices of these EPSPs are tuned to transmit the information from each axon precisely. In each target neuron's own module, these bursts of EPSPs modified the phase of the module's motor output. Each axon made its strongest synapse onto the target neuron in the nearest neighboring segment. Its synapses onto homologous targets in more remote segments were progressively weaker. Each target neuron decodes information from several coordinating axons, and the strengths of their synapses differ systematically. These differences in synaptic strength weight information from each segment differently, which might account for features of the system's characteristic metachronal synchronization.
Collapse
|
35
|
Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 2009; 29:2972-83. [PMID: 19261892 DOI: 10.1523/jneurosci.3155-08.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Legged locomotion results from a combination of central pattern generating network (CPG) activity and intralimb and interlimb sensory feedback. Data on the neural basis of interlimb coordination are very limited. We investigated here the influence of stepping in one leg on the activities of neighboring-leg thorax-coxa (TC) joint CPGs in the stick insect (Carausius morosus). We used a new approach combining single-leg stepping with pharmacological activation of segmental CPGs, sensory stimulation, and additional stepping legs. Stepping of a single front leg could activate the ipsilateral mesothoracic TC CPG. Activation of the metathoracic TC CPG required that both ipsilateral front and middle legs were present and that one of these legs was stepping. Unlike the situation in real walking, ipsilateral mesothoracic and metathoracic TC CPGs activated by front-leg stepping fired in phase with the front-leg stepping. Local (intralimb) sensory feedback from load sensors could override this intersegmental influence of front-leg stepping, shifting retractor motoneuron activity relative to the front-leg step cycle and thereby uncoupling them from front-leg stepping. These data suggest that front-leg stepping in isolation would result in in-phase activity of all ipsilateral legs, and functional stepping gaits (in which the three ipsilateral legs do not step in synchrony) emerge because of local load sensory feedback overriding this in-phase influence.
Collapse
|
36
|
Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles. J Comput Neurosci 2009; 27:291-308. [PMID: 19288183 PMCID: PMC2731935 DOI: 10.1007/s10827-009-0143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/14/2008] [Accepted: 02/10/2009] [Indexed: 12/21/2022]
Abstract
When frog tadpoles hatch their swimming requires co-ordinated contractions of trunk muscles, driven by motoneurons and controlled by a Central Pattern Generator (CPG). To study this co-ordination we used a 3.5 mm long population model of the young tadpole CPG with continuous distributions of neurons and axon lengths as estimated anatomically. We found that: (1) alternating swimming-type activity fails to self-sustain unless some excitatory interneurons have ascending axons, (2) a rostro-caudal (R-C) gradient in the distribution of excitatory premotor interneurons with short axons is required to obtain the R-C gradient in excitation and resulting progression of motoneuron firing necessary for forward swimming, (3) R-C delays in motoneuron firing decrease if excitatory motoneuron to premotor interneuron synapses are present, (4) these feedback connections and the electrical synapses between motoneurons synchronise motoneuron discharges locally, (5) the above findings are independent of the detailed membrane properties of neurons.
Collapse
|
37
|
Zhang M, Chung SH, Fang-Yen C, Craig C, Kerr RA, Suzuki H, Samuel ADT, Mazur E, Schafer WR. A self-regulating feed-forward circuit controlling C. elegans egg-laying behavior. Curr Biol 2008; 18:1445-55. [PMID: 18818084 DOI: 10.1016/j.cub.2008.08.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Egg laying in Caenorhabditis elegans has been well studied at the genetic and behavioral levels. However, the neural basis of egg-laying behavior is still not well understood; in particular, the roles of specific neurons and the functional nature of the synaptic connections in the egg-laying circuit remain uncharacterized. RESULTS We have used in vivo neuroimaging and laser surgery to address these questions in intact, behaving animals. We have found that the HSN neurons play a central role in driving egg-laying behavior through direct excitation of the vulval muscles and VC motor neurons. The VC neurons play a dual role in the egg-laying circuit, exciting the vulval muscles while feedback-inhibiting the HSNs. Interestingly, the HSNs are active in the absence of synaptic input, suggesting that egg laying may be controlled through modulation of autonomous HSN activity. Indeed, body touch appears to inhibit egg laying, in part by interfering with HSN calcium oscillations. CONCLUSIONS The egg-laying motor circuit comprises a simple three-component system combining feed-forward excitation and feedback inhibition. This microcircuit motif is common in the C. elegans nervous system, as well as in the mammalian cortex; thus, understanding its functional properties in C. elegans may provide insight into its computational role in more complex brains.
Collapse
Affiliation(s)
- Mi Zhang
- San Diego State University and University of California, San Diego Joint Doctoral Program, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Locomotion in segmented animals is thought to be based on the coupling of "unit burst generators," but the biological nature of the unit burst generator has been revealed in only a few animal systems. We determined that dopamine (DA), a universal modulator of motor activity, is sufficient to activate fictive crawling in the medicinal leech, and can exert its actions within the smallest division of the animal's CNS, the segmental ganglion. In the entire isolated nerve cord or in the single ganglion, DA induced slow antiphasic bursting (approximately 15 s period) of motoneurons known to participate in the two-step elongation-contraction cycle underlying crawling behavior. During each cycle, the dorsal (DE-3) and ventral (VE-4) longitudinal excitor motoneurons fired approximately 180 degrees out of phase from the ventrolateral circular excitor motoneuron (CV), which marks the elongation phase. In many isolated whole nerve cords, DE-3 bursting progressed in an anterior to posterior direction with intersegmental phase delays appropriate for crawling. In the single ganglion, the dorsal (DI-1) and ventral (VI-2) inhibitory longitudinal motoneurons fired out of phase with each DE-3 burst, further confirming that the crawl unit burst generator exists in the single ganglion. All isolated ganglia of the CNS were competent to produce DA-induced robust fictive crawling, which typically lasted uninterrupted for 5-15 min. A quantitative analysis indicated that DA-induced crawling was not significantly different from electrically evoked or spontaneous crawling. We conclude that DA is sufficient to activate the full crawl motor program and that the kernel for crawling resides within each segmental ganglion.
Collapse
|
39
|
Norris BJ, Weaver AL, Wenning A, García PS, Calabrese RL. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons. J Neurophysiol 2007; 98:2992-3005. [PMID: 17804574 DOI: 10.1152/jn.00877.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.
Collapse
Affiliation(s)
- Brian J Norris
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
40
|
Mulloney B, Hall WM. Local and Intersegmental Interactions of Coordinating Neurons and Local Circuits in the Swimmeret System. J Neurophysiol 2007; 98:405-13. [PMID: 17507502 DOI: 10.1152/jn.00345.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During forward swimming, periodic movements of swimmerets on different segments of the crayfish abdomen progress from back to front with the same period. Information encoded as bursts of spikes by coordinating neurons in each segmental ganglion is necessary for this coherent organization. This information is conducted to targets in other ganglia. When an individual coordinating neuron is stimulated at different phases in the system's cycle of activity, the timing of motor output from other ganglia may be altered. In models of this coordinating circuit, we assumed that each coordinating neuron encodes information about the state of the local pattern-generating circuit in its home ganglion but is not part of that local circuit. We tested this assumption by stimulating individual coordinating neurons of two kinds—ASCE and DSC—at different phases under two conditions: with the target ganglion functional, and with the target ganglion silenced. Blocking a DSC neuron's target ganglion did not alter its negligible influence on the output from its home ganglion; the phase-response curves (PRC) remained flat. Blocking an ASCE neuron's target ganglion significantly affected its influence on the output from its home ganglion. We had predicted that ASCE's modest phase-dependent influence would disappear with the target silenced, but instead the amplitude of the PRCs increased significantly. Thus we have two different results: DSC neurons conformed to prediction based on the models’ assumptions, but ASCE neurons showed an unexpected property, one that is partially masked when the bidirectional flow of information between neighboring ganglia is operating normally.
Collapse
Affiliation(s)
- Brian Mulloney
- Section of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616-8519, USA.
| | | |
Collapse
|
41
|
Ayali A, Fuchs E, Ben-Jacob E, Cohen A. The function of intersegmental connections in determining temporal characteristics of the spinal cord rhythmic output. Neuroscience 2007; 147:236-46. [PMID: 17507171 PMCID: PMC2041883 DOI: 10.1016/j.neuroscience.2007.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Recent renewed interest in the study of rhythmic behaviors and pattern-generating circuits has been inspired by the currently well-established role of oscillating neuronal networks in all aspects of the function of our nervous system: from sensory integration to central processing, and of course motor control. An integrative rather than reductionist approach in the study of pattern-generating circuits is in accordance with current developments. The lamprey spinal cord, a relatively simple and much-studied preparation, is a useful model for such a study. It is an example of a chain of coupled oscillatory units that is characterized by its ability to demonstrate robust coordinated rhythmic output when isolated in vitro. The preparation allows maximum control over the chemical (neuromodulators and hormones) as well as neuronal environment (sensory and descending inputs) of the single oscillatory unit: the pattern-generating circuit. The current study made use of recently developed tools for nonlinear analysis of time-series, specifically neurophysiological signals. These tools allow us to reveal and characterize biological-functional complexity and information capacity of the neuronal output recorded from the lamprey model network. We focused on the importance of different types of inputs to an oscillatory network and their effect on the network's functional output. We show that the basic circuit, when isolated from short- and long-range neuronal inputs, demonstrates its full potential of information capacity: maximal variation quantities and elevated functional complexity. Morphological and functional constraints result in the network exhibiting only a limited range of the above. This constitutes an important substrate for plasticity in neuronal network function.
Collapse
Affiliation(s)
- A Ayali
- Department of Zoology, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | | | |
Collapse
|
42
|
Akay T, Ludwar BC, Göritz ML, Schmitz J, Büschges A. Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J Neurosci 2007; 27:3285-94. [PMID: 17376989 PMCID: PMC6672458 DOI: 10.1523/jneurosci.5202-06.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In terrestrial locomotion, sensory feedback from load sensors is important for altering ongoing motor output on a step-by-step basis. We investigated the influence of load signals from the leg on motoneuron pools of the thorax-coxa (ThC) joint in the stick insect walking system. Load sensors were stimulated during rhythmic, alternating activity in protractor coxae (ProCx) and retractor coxae (RetCx) motoneuron pools. Alternating activity in the segment of interest was induced by mechanical stimulation of the animal or pharmacological activation of the isolated thoracic ganglia. Load signals from the legs altered the timing of ThC motoneuron activity by resetting and entraining the activity of the central rhythm generating network of the ThC joint. In the front and middle legs, load signals induced or promoted RetCx activity and decreased or terminated ProCx activity. In the hindleg, reverse transitions were elicited, with increasing load terminating RetCx and initiating ProCx activity. Studies in semi-intact walking animals showed that the effect of load on the ThC-joint motoneurons depended on walking direction, with increased load promoting the functional stance phase motoneuron pool (in forward walking, RetCx activity; in backward walking, ProCx activity). Thus, we show that modifications of sensory feedback in a locomotor system are related to walking direction. In a final set of ablation experiments, we show that the load influence is mediated by the three groups of trochanteral campaniform sensilla.
Collapse
Affiliation(s)
- Turgay Akay
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50923 Cologne, Germany, and
| | - Björn Ch. Ludwar
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50923 Cologne, Germany, and
| | - Marie L. Göritz
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50923 Cologne, Germany, and
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50923 Cologne, Germany, and
| |
Collapse
|
43
|
|
44
|
Zheng M, Iwasaki T, Friesen WO. Systems approach to modeling the neuronal CPG for leech swimming. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2006:703-6. [PMID: 17271774 DOI: 10.1109/iembs.2004.1403255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper proposes a mathematical model of the neuronal central pattern generator (CPG) for leech swimming. The model is developed through the "systems approach" where dynamical components and their connections are first identified through input/output data from physiological experiments and then integrated into a chain of nonlinear oscillators. Our approach leads to a model of moderate complexity when compared with existing models developed through biophysical principles. We show through numerical simulations that our model can successfully reproduce the phase coordination observed in the isolated nerve cord of the leech CPG. As a byproduct, a prediction is obtained for the intrinsic period gradient along the nerve cord.
Collapse
Affiliation(s)
- M Zheng
- Dept. of Mech. & Aerosp. Eng., Virginia Univ., Charlottesville, VA 22904, USA.
| | | | | |
Collapse
|
45
|
Abstract
In 1900, Ramón y Cajal advanced the neuron doctrine, defining the neuron as the fundamental signaling unit of the nervous system. Over a century later, neurobiologists address the circuit doctrine: the logic of the core units of neuronal circuitry that control animal behavior. These are circuits that can be called into action for perceptual, conceptual, and motor tasks, and we now need to understand whether there are coherent and overriding principles that govern the design and function of these modules. The discovery of central motor programs has provided crucial insight into the logic of one prototypic set of neural circuits: those that generate motor patterns. In this review, I discuss the mode of operation of these pattern generator networks and consider the neural mechanisms through which they are selected and activated. In addition, I will outline the utility of computational models in analysis of the dynamic actions of these motor networks.
Collapse
Affiliation(s)
- Sten Grillner
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, SE 171 77 Stockholm, Sweden.
| |
Collapse
|
46
|
Gutfreund Y, Matzner H, Flash T, Hochner B. Patterns of motor activity in the isolated nerve cord of the octopus arm. THE BIOLOGICAL BULLETIN 2006; 211:212-22. [PMID: 17179381 DOI: 10.2307/4134544] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.
Collapse
Affiliation(s)
- Yoram Gutfreund
- Department of Neurobiology and Center for Neuronal Computation, Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
47
|
Mulloney B, Hall WM. Not by spikes alone: responses of coordinating neurons and the swimmeret system to local differences in excitation. J Neurophysiol 2006; 97:436-50. [PMID: 17050832 DOI: 10.1152/jn.00580.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Swimmeret coordinating neurons in the crayfish CNS collectively encode a detailed cycle-by-cycle report on features of the motor output to each swimmeret. This information coordinates the motor output that drives swimmeret movements. To see how coordinating neurons responded to forced changes in intersegmental phase, we used a split-bath, repeated-measures experimental design to expose different regions of isolated abdominal nerve cords to different levels of excitation. We present a quantitative description of the firing of power-stroke (PS) motor units and two kinds of coordinating interneurons, ASC(E) and DSC, recorded simultaneously from each swimmeret ganglion under uniform and nonuniform excitation. When anterior and posterior ganglia were excited differently, several parameters of the swimmeret motor pattern were affected. Strengths of PS bursts in each ganglion were determined by local excitation. The phase of PS bursts in neighboring ganglia changed at the excitation boundary. Coordinating neurons from the two ganglia closest to the excitation boundary were most affected by nonuniform excitation. ASC(E) neurons tracked the timing and duration of each PS burst in their home ganglion, but did not follow changes in PS burst strength. DSC neurons changed the duration, phase, and number of spikes per burst. We propose two models to explain these results. First, the period expressed under nonuniform conditions is the sum of local intersegmental latencies and these latencies are determined by local excitation. Second, the phase change at the excitation boundary is determined by local modulation of the targets of the intersegmental coordinating neurons, not by modulation of the coordinating neurons themselves.
Collapse
Affiliation(s)
- Brian Mulloney
- Section of Neurobiology, Psychology, and Behavior, 196 Briggs Hall, University of California-Davis, One Shields Drive, Davis, CA 95616-8519, USA.
| | | |
Collapse
|
48
|
Zheng M, Friesen WO, Iwasaki T. Systems-level modeling of neuronal circuits for leech swimming. J Comput Neurosci 2006; 22:21-38. [PMID: 16998641 DOI: 10.1007/s10827-006-9648-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 06/07/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
This paper describes a mathematical model of the neuronal central pattern generator (CPG) that controls the rhythmic body motion of the swimming leech. The systems approach is employed to capture the neuronal dynamics essential for generating coordinated oscillations of cell membrane potentials by a simple CPG architecture with a minimal number of parameters. Based on input/output data from physiological experiments, dynamical components (neurons and synaptic interactions) are first modeled individually and then integrated into a chain of nonlinear oscillators to form a CPG. We show through numerical simulations that the values of a few parameters can be estimated within physiologically reasonable ranges to achieve good fit of the data with respect to the phase, amplitude, and period. This parameter estimation leads to predictions regarding the synaptic coupling strength and intrinsic period gradient along the nerve cord, the latter of which agrees qualitatively with experimental observations.
Collapse
Affiliation(s)
- M Zheng
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
49
|
Akay T, McVea DA, Tachibana A, Pearson KG. Coordination of fore and hind leg stepping in cats on a transversely-split treadmill. Exp Brain Res 2006; 175:211-22. [PMID: 16733696 DOI: 10.1007/s00221-006-0542-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 04/26/2006] [Indexed: 11/26/2022]
Abstract
To gain insight into the mechanism of coordination of stepping in the fore and hind legs of quadrupeds, we examined the kinematics of leg movements and the motor patterns in fore and hind leg flexor muscles in decerebrate walking cats when the two pairs of legs stepped on separate treadmills running at different speeds. When the front treadmill was slowed progressively from 0.6 to 0.3 m/s with the rear treadmill running at 0.6 m/s, the rate of stepping in both the fore and hind legs decreased and a 1:1 stepping ratio was maintained. The decrease in the rate of stepping in the hind legs was due primarily to an increase in the duration of the swing phase. Slowing the speed of the rear treadmill while keeping the front treadmill speed at 0.6 m/s decreased the rate of stepping of the hind legs, but had relatively little influence on the average rate of stepping in the forelegs. In this situation stepping in the fore and hind legs was uncoupled and the time of stepping in one hind leg relative to the ipsilateral foreleg progressively shifted during a walking sequence. Analysis of the timing of electromyographic (EMG) recordings from flexor muscles of the hip and elbow joints yielded insight into the neuronal mechanisms underlying the asymmetry in slowing either the front or rear treadmill. We propose that ipsilateral pattern generating networks are asymmetrically coupled via descending inhibitory pathways and an ascending excitatory pathway. We discuss how the characteristics of these linkages are functionally appropriate for establishing the normal timing of stepping in the hind and forelegs during slow walking.
Collapse
Affiliation(s)
- T Akay
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
50
|
Carroll TJ, Baldwin ERL, Collins DF, Zehr EP. Corticospinal Excitability Is Lower During Rhythmic Arm Movement Than During Tonic Contraction. J Neurophysiol 2006; 95:914-21. [PMID: 16251263 DOI: 10.1152/jn.00684.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans perform rhythmic, locomotor movements with the arms and legs every day. Studies using reflexes to probe the functional role of the CNS suggest that spinal circuits are an important part of the neural control system for rhythmic arm cycling and walking. Here, by studying motor-evoked potentials (MEPs) in response to transcranial magnetic stimulation (TMS) of the motor cortex, and H-reflexes induced by electrical stimulation of peripheral nerves, we show a reduction in corticospinal excitability during rhythmic arm movement compared with tonic, voluntary contraction. Responses were compared between arm cycling and tonic contraction at four positions, while participants generated similar levels of muscle activity. Both H-reflexes and MEPs were significantly smaller during arm cycling than during tonic contraction at the midpoint of arm flexion ( F = 13.51, P = 0.006; F = 11.83, P = 0.009). Subthreshold TMS significantly facilitated the FCR H-reflex during tonic contractions, but did not significantly modulate H-reflex amplitude during arm cycling. The data indicate a reduction in the responsiveness of cells constituting the fast, monosynaptic, corticospinal pathway during arm cycling and suggest that the motor cortex may contribute less to motor drive during rhythmic arm movement than during tonic, voluntary contraction. Our results are consistent with the idea that subcortical regions contribute to the control of rhythmic arm movements despite highly developed corticospinal projections to the human upper limb.
Collapse
Affiliation(s)
- Timothy J Carroll
- Health and Sports Science, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|