1
|
Lischke A, Pahnke R, Mäder A, Martin AK, Meinzer M. Improving mentalizing deficits in older age with region-specific transcranial direct current stimulation. GeroScience 2024; 46:4111-4121. [PMID: 38878152 PMCID: PMC11336013 DOI: 10.1007/s11357-024-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/13/2024] [Indexed: 08/22/2024] Open
Abstract
Older adults have difficulties to detect the intentions, thoughts, and feelings of others, indicating an age-associated decline of socio-cognitive abilities that are known as "mentalizing". These deficits in mental state recognition are driven by neurofunctional alterations in brain regions that are implicated in mentalizing, such as the right temporo-parietal junction (rTPJ) and the dorso-medial prefrontal cortex (dmPFC). We tested whether focal transcranial current stimulation (tDCS) of the rTPJ and dmPFC has the potential to eliminate mentalizing deficits in older adults. Mentalizing deficits were assessed with a novel mindreading task that required the recognition of mental states in child faces. Older adults (n = 60) performed worse than younger adults (n = 30) on the mindreading task, indicating age-dependent deficits in mental state recognition. These mentalizing deficits were ameliorated in older adults who received sham-controlled andodal tDCS over the rTPJ (n = 30) but remained unchanged in older adults who received sham-controlled andodal tDCS over the dmPFC (n = 30). We, thus, showed for the first time that anodal tDCS over the rTPJ has the potential to remediate age-dependent mentalizing deficits in a region-specific way. This provides a rationale for exploring stimulation-based interventions targeting mentalizing deficits in older age.
Collapse
Affiliation(s)
- Alexander Lischke
- Department of Psychology, Medical School Hamburg, Am Kaierkai 1, 20457, Hamburg, Germany.
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany.
| | - Rike Pahnke
- Institute of Sports Science, University of Rostock, Rostock, Germany
| | - Anna Mäder
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Andrew K Martin
- Department of Psychology, University of Kent, Canterbury, UK
- Kent and Medway Medical School, University of Kent, Canterbury, UK
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Şahintürk S, Yıldırım E. Effects of tDCS on emotion recognition and brain oscillations. J Clin Exp Neuropsychol 2024; 46:504-521. [PMID: 38855946 DOI: 10.1080/13803395.2024.2364403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Emotion recognition, the ability to interpret the emotional state of individuals by looking at their facial expressions, is essential for healthy social interactions and communication. There is limited research on the effects of tDCS on emotion recognition in the literature. This study aimed to investigate the effects of anodal stimulation of the ventromedial prefrontal cortex (vmPFC), a key region for emotion recognition from facial expressions, on emotion recognition and brain oscillations. METHOD A single-blind randomized-controlled study was conducted with 54 healthy participants. Before and after brain stimulation emotion recognition tasks were administered and resting-state EEG were recorded. The changes in task performances and brain oscillations were analyzed using repeated-measures two-way ANOVA analysis. RESULTS There was no significant difference in the emotion recognition tasks between groups in pre-post measurements. The changes in delta, theta, alpha, beta and gamma frequency bands in the frontal, temporal, and posterio-occipital regions, which were determined as regions of interest in resting state EEG data before and after tDCS, were compared between groups. The results showed that there was a significant difference between groups only in delta frequency before and after tDCS in the frontal and temporal regions. While an increase in delta activity was observed in the experimental group in the frontal and temporal regions, a decrease was observed in the control group. CONCLUSIONS The tDCS may not have improved emotion recognition because it may not have had the desired effect on the vmPFC, which is in the lower part of the prefrontal lobe. The changes in EEG frequencies observed section tDCS may be similar to those seen in some pathological processes, which could explain the lack of improvement in emotion recognition. Future studies to be carried out for better understand this effect are important.
Collapse
Affiliation(s)
- Saliha Şahintürk
- The Research Institute for Health Sciences and Technologies (SABITA) fiNCAN Laboratory, Istanbul Medipol University, İstanbul, Türkiye
| | - Erol Yıldırım
- The Research Institute for Health Sciences and Technologies (SABITA) fiNCAN Laboratory, Istanbul Medipol University, İstanbul, Türkiye
- Department of Psychology, Istanbul Medipol University, İstanbul, Türkiye
| |
Collapse
|
3
|
Han SJ, Lee JH, Choi Y, Hong SM, Kim JH, Kim SK. Consecutive Dual-Session Transcranial Direct Current Stimulation in Chronic Subjective Severe to Catastrophic Tinnitus with Normal Hearing. J Pers Med 2024; 14:577. [PMID: 38929798 PMCID: PMC11205021 DOI: 10.3390/jpm14060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is emerging as a promising non-invasive intervention for tinnitus by aiming to modulate abnormal brain activity. This study investigated the efficacy of dual-session tDCS for the relief of perception, distress, and loudness in patients with severe chronic subjective tinnitus and assessed the duration of tinnitus suppression effects compared to single-session and control groups over a 2-month follow-up. In a prospective, randomized, single-blind, placebo-controlled trial, 30 participants with severe chronic subjective tinnitus underwent bifrontal tDCS. The control group (n = 9), single-session group (n = 10), and dual-session group (n = 11) received 2 mA stimulation for 20 min per session, twice a week for one month. The treatment response was monitored weekly using the Visual Analogue Scale (VAS), with additional assessments using the Tinnitus Handicap Inventory (THI) and Beck Depression Inventory (BDI) at the fourth and eighth weeks. The single- and dual-session groups showed statistically significant improvements in VAS, THI, and BDI scores compared to the control group. THI and BDI scores showed a significant difference between the single- and dual-session groups. The dual-session group demonstrated a more sustained tinnitus suppression effect than the single-session group. tDCS has been validated as an effective intervention for the suppression of tinnitus, with the dual-session protocol showing longer-term benefits. These findings support the potential of tDCS as a treatment for tinnitus, particularly in dual-session applications.
Collapse
Affiliation(s)
- Sung Jun Han
- Department of Otolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Ji Hye Lee
- Department of Otolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Yeso Choi
- Department of Otolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Seok Min Hong
- Department of Otolaryngology-Head & Neck Surgery, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Jun Hee Kim
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sung Kyun Kim
- Department of Otolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| |
Collapse
|
4
|
Wang S, Du SH, Wang XQ, Lu JY. Mechanisms of transcranial direct current stimulation (tDCS) for pain in patients with fibromyalgia syndrome. Front Mol Neurosci 2024; 17:1269636. [PMID: 38356687 PMCID: PMC10865494 DOI: 10.3389/fnmol.2024.1269636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Fibromyalgia syndrome (FMS) is a recurrent pain condition that can be challenging to treat. Transcranial direct current stimulation (tDCS) has become a promising non-invasive therapeutic option in alleviating FMS pain, but the mechanisms underlying its effectiveness are not yet fully understood. In this article, we discuss the most current research investigating the analgesic effects of tDCS on FMS and discuss the potential mechanisms. TDCS may exert its analgesic effects by influencing neuronal activity in the brain, altering cortical excitability, changing regional cerebral blood flow, modulating neurotransmission and neuroinflammation, and inducing neuroplasticity. Overall, evidence points to tDCS as a potentially safe and efficient pain relief choice for FMS by multiple underlying mechanisms. This article provides a thorough overview of our ongoing knowledge regarding the mechanisms underlying tDCS and emphasizes the possibility of further studies to improve the clinical utility of tDCS as a pain management tool.
Collapse
Affiliation(s)
- Shan Wang
- Department of Health School, Shanghai Normal University Tianhua College, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Rehabilitation Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jun-Yan Lu
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Rehabilitation Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Philippen S, Hanert A, Schönfeld R, Granert O, Yilmaz R, Jensen-Kondering U, Splittgerber M, Moliadze V, Siniatchkin M, Berg D, Bartsch T. Transcranial direct current stimulation of the right temporoparietal junction facilitates hippocampal spatial learning in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2024; 157:48-60. [PMID: 38056370 DOI: 10.1016/j.clinph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Spatial memory deficits are an early symptom in Alzheimer's disease (AD), reflecting the neurodegenerative processes in the neuronal navigation network such as in hippocampal and parietal cortical areas. As no effective treatment options are available, neuromodulatory interventions are increasingly evaluated. Against this backdrop, we investigated the neuromodulatory effect of anodal transcranial direct current stimulation (tDCS) on hippocampal place learning in patients with AD or mild cognitive impairment (MCI). METHODS In this randomized, double-blind, sham-controlled study with a cross-over design anodal tDCS of the right temporoparietal junction (2 mA for 20 min) was applied to 20 patients diagnosed with AD or MCI and in 22 healthy controls while they performed a virtual navigation paradigm testing hippocampal place learning. RESULTS We show an improved recall performance of hippocampal place learning after anodal tDCS in the patient group compared to sham stimulation but not in the control group. CONCLUSIONS These results suggest that tDCS can facilitate spatial memory consolidation via stimulating the parietal-hippocampal navigation network in AD and MCI patients. SIGNIFICANCE Our findings suggest that tDCS of the temporoparietal junction may restore spatial navigation and memory deficits in patients with AD and MCI.
Collapse
Affiliation(s)
- S Philippen
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Hanert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Schönfeld
- Psychology Department, Halle University, Germany
| | - O Granert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Yilmaz
- Dept. of Neurology, University of Ankara, Medical School, Ankara, Turkey
| | - U Jensen-Kondering
- Dept. of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany; Dept. of Neuroradiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - M Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany; Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, University Clinics OWL, Bielefeld University, Germany
| | - D Berg
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - T Bartsch
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
6
|
Hemmerich K, Lupiáñez J, Luna FG, Martín-Arévalo E. The mitigation of the executive vigilance decrement via HD-tDCS over the right posterior parietal cortex and its association with neural oscillations. Cereb Cortex 2023:6988102. [PMID: 36646467 DOI: 10.1093/cercor/bhac540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Vigilance-maintaining a prolonged state of preparation to detect and respond to specific yet unpredictable environmental changes-usually decreases across prolonged tasks, causing potentially severe real-life consequences, which could be mitigated through transcranial direct current stimulation (tDCS). The present study aimed at replicating previous mitigatory effects observed with anodal high-definition tDCS (HD-tDCS) over the right posterior parietal cortex (rPPC) while extending the analyses on electrophysiological measures associated with vigilance. In sum, 60 participants completed the ANTI-Vea task while receiving anodal (1.5 mA, n = 30) or sham (0 mA, n = 30) HD-tDCS over the rPPC for ~ 28 min. EEG recordings were completed before and after stimulation. Anodal HD-tDCS specifically mitigated executive vigilance (EV) and reduced the alpha power increment across time-on-task while increasing the gamma power increment. To further account for the observed behavioral and physiological outcomes, a new index of Alphaparietal/Gammafrontal is proposed. Interestingly, the increment of this Alphaparietal/Gammafrontal Index with time-on-task is associated with a steeper EV decrement in the sham group, which was mitigated by anodal HD-tDCS. We highlight the relevance of replicating mitigatory effects of tDCS and the need to integrate conventional and novel physiological measures to account for how anodal HD-tDCS can be used to modulate cognitive performance.
Collapse
Affiliation(s)
- Klara Hemmerich
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain
| | - Juan Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain
| | - Fernando G Luna
- Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba 5010, Argentina
| | - Elisa Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain
| |
Collapse
|
7
|
Efficacy and safety of simultaneous rTMS-tDCS over bilateral angular gyrus on neuropsychiatric symptoms in patients with moderate Alzheimer's disease: A prospective, randomized, sham-controlled pilot study. Brain Stimul 2022; 15:1530-1537. [PMID: 36460293 DOI: 10.1016/j.brs.2022.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Treating neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) remains highly challenging. Noninvasive brain stimulation using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) is of considerable interest in this context. OBJECTIVE To investigate the efficacy and safety of a novel technique involving simultaneous application of rTMS and tDCS (rTMS-tDCS) over bilateral angular gyrus (AG, P5/P6 electrode site) for AD-related NPS. METHODS Eighty-four AD patients were randomized to receive rTMS-tDCS, single-rTMS, single-tDCS, or sham stimulation for 4 weeks, with evaluation at week-4 (W4, immediately after treatment) and week-12 (W12, follow-up period) after initial examination. Primary outcome comprising Neuropsychiatric Inventory (NPI) score and secondary outcomes comprising mini-mental state examination (MMSE), AD assessment scale-cognitive subscale (ADAS-cog), and Pittsburgh sleep quality index (PSQI) scores were collected and analyzed by a two-factor (time and treatment), mixed-design ANOVA. RESULTS rTMS-tDCS produced greater improvement in NPI scores than single-tDCS and sham at W4 and W12 (both P < 0.017) and trended better than single-rTMS (W4: P = 0.058, W12: P = 0.034). rTMS-tDCS improved MMSE scores compared with single-tDCS at W4 (P = 0.011) and sham at W4 and W12 (both P < 0.017). rTMS-tDCS also significantly improved PSQI compared with single-rTMS and sham (both P < 0.017). Interestingly, rTMS-tDCS-induced NPI/PSQI improvement was significantly associated with MMSE/ADAS-cog improvement. tDCS- and/or rTMS-related adverse events appeared slightly and briefly. CONCLUSIONS rTMS-tDCS application to bilateral AG can effectively improve AD-related NPS, cognitive function, and sleep quality with considerable safety.
Collapse
|
8
|
Varied Response of EEG Rhythm to Different tDCS Protocols and Lesion Hemispheres in Stroke Subjects with Upper Limb Dysfunction. Neural Plast 2022; 2022:7790730. [PMID: 35941932 PMCID: PMC9356883 DOI: 10.1155/2022/7790730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) provides a way to modulate the cortical activity and promote motor rehabilitation following stroke. However, evidence indicates that the response to tDCS is highly variable. This study was aimed at exploring rhythmic response of Electroencephalography (EEG) to three tDCS protocols in stroke subjects. We hypothesize that tDCS protocols may interact with stoke characteristics, and electrode placement may affect cortical activity which could be reflected by the EEG rhythm. 32 subjects with unilateral stroke were recruited to a single-blinded, randomized, and controlled crossover experiment. All of the subjects underwent four tDCS protocols (anodal (atDCS), cathodal (ctDCS), and bilateral tDCS (bi-tDCS) and sham) with an interval of at least 1 week. Resting-state EEG was acquired before and after the stimulation. We tested the change of EEG spectral power after tDCS and the difference of change among four protocols using the paired-sample t-test and repeated measures analysis of variance. Then, we investigated the clinical factors affecting the above changes using the linear and quadratic regression model. According to the results, EEG responded to atDCS and bi-tDCS protocols on alpha and beta rhythm and subjects with a left lesion had higher response than those with the right lesion. Besides that, the change of alpha and beta power after atDCS and of beta power after bi-tDCS showed association with clinical characteristics only in subjects with the left lesion. In conclusion, the study found varied EEG response with different protocols, lesion hemispheres, and other clinical characteristics supporting the individualized cortical oscillatory effect induced by tDCS.
Collapse
|
9
|
Modulation of Interhemispheric Synchronization and Cortical Activity in Healthy Subjects by High-Definition Theta-Burst Electrical Stimulation. Neural Plast 2022; 2022:3593262. [PMID: 35529454 PMCID: PMC9076342 DOI: 10.1155/2022/3593262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Various forms of theta-burst stimulation (TBS) such as intermittent TBS (iTBS) and continuous TBS (cTBS) have been introduced as novel facilitation/suppression schemes during repetitive transcranial magnetic stimulation (rTMS), demonstrating a better efficacy than conventional paradigms. Herein, we extended the rTMS-TBS schemes to electrical stimulation of high-definition montage (HD-TBS) and investigated its neural effects on the human brain. Methods In a within-subject design, fifteen right-handed healthy adults randomly participated in 10 min and 2 mA HD-TBS sessions: unilateral (Uni)-iTBS, bilateral (Bi)-cTBS/iTBS, and sham stimulation over primary motor cortex regions. A 20-channel near-infrared spectroscopy (NIRS) system was covered on the bilateral prefrontal cortex (PFC), sensory motor cortex (SMC), and parietal lobe (PL) for observing cerebral hemodynamic responses in the resting-state and during fast finger-tapping tasks at pre-, during, and poststimulation. Interhemispheric correlation coefficient (IHCC) and wavelet phase coherence (WPCO) from resting-state NIRS and concentration of oxyhemoglobin during fast finger-tapping tasks were explored to reflect the symmetry between the two hemispheres and cortical activity, respectively. Results The IHCC and WPCO of NIRS data in the SMC region under Bi-cTBS/iTBS showed relatively small values at low-frequency bands III (0.06–0.15 Hz) and IV (0.02–0.06), indicating a significant desynchronization in both time and frequency domains. In addition, the SMC activation induced by fast finger-tapping exercise was significantly greater during Uni-iTBS as well as during and post Bi-cTBS/iTBS sessions. Conclusions It appears that a 10 min and 2 mA Bi-cTBS/iTBS applied over two hemispheres within the primary motor cortex region could effectively modulate the interhemispheric synchronization and cortical activation in the SMC of healthy subjects. Our study demonstrated that bilateral HD-TBS approaches is an effective noninvasive brain stimulation scheme which could be a novel therapeutic for inducing effects of neuromodulation on various neurological disorders caused by ischemic stroke or traumatic brain injuries.
Collapse
|
10
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
11
|
Padrón I, García-Marco E, Moreno I, Birba A, Silvestri V, León I, Álvarez C, López J, de Vega M. Multisession Anodal tDCS on the Right Temporo-Parietal Junction Improves Mentalizing Processes in Adults with Autistic Traits. Brain Sci 2021; 12:brainsci12010030. [PMID: 35053774 PMCID: PMC8773564 DOI: 10.3390/brainsci12010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Persons with autism spectrum disorder (ASD) have impaired mentalizing skills. In this study, a group of persons with ASD traits (high-AQ scores) initially received sham tDCS before completing a pre-test in two mentalizing tasks: false belief and self-other judgments. Over the next week, on four consecutive days, they received sessions of anodal electrical stimulation (a-tDCS) over the right temporo-parietal junction (rTPJ), a region frequently associated with the theory of mind. On the last day, after the stimulation session, they completed a new set of mentalizing tasks. A control group (with low-AQ scores) matched in age, education and intelligence received just sham stimulation and completed the same pre-test and post-test. The results showed that the high-AQ group improved their performance (faster responses), after a-tDCS, in the false belief and in the self-other judgments of mental features, whereas they did not change performance in the false photographs or the self-other judgments of physical features. These selective improvements cannot be attributed to increased familiarity with the tasks, because the performance of the low-AQ control group remained stable about one week later. Therefore, our study provides initial proof that tDCS could be used to improve mentalizing skills in persons with ASD traits.
Collapse
Affiliation(s)
- Iván Padrón
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Enrique García-Marco
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
- Facultad de Ciencias de la Salud, Universidad Europea de Canarias, 38300 La Orotava, Spain
- Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Iván Moreno
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Valentina Silvestri
- Department of Psychology, University of Milan-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy;
| | - Inmaculada León
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Carlos Álvarez
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
| | - Joana López
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
- Department of Psychology, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK
| | - Manuel de Vega
- Instituto Universitario de Neurociencia, Universidad de La Laguna, 38200 La Laguna, Spain; (I.P.); (E.G.-M.); (I.M.); (I.L.); (C.Á.); (J.L.)
- Correspondence: ; Tel.: +34-630027293
| |
Collapse
|
12
|
Chan MMY, Yau SSY, Han YMY. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci Biobehav Rev 2021; 125:392-416. [PMID: 33662444 DOI: 10.1016/j.neubiorev.2021.02.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The neurobiological mechanisms underlying prefrontal transcranial direct current stimulation (tDCS) remain elusive. Randomized, sham-controlled trials in humans and rodents applying in vivo prefrontal tDCS were included to explore whether prefrontal tDCS modulates resting-state and event-related functional connectivity, neural oscillation and synaptic plasticity. Fifty studies were included in the systematic review and 32 in the meta-analyses. Neuroimaging meta-analysis indicated anodal prefrontal tDCS significantly enhanced bilateral median cingulate activity [familywise error (FWE)-corrected p < .005]; meta-regression revealed a positive relationship between changes in median cingulate activity after tDCS and current density (FWE-corrected p < .005) as well as electric current strength (FWE-corrected p < .05). Meta-analyses of electroencephalography and magnetoencephalography data revealed nonsignificant changes (ps > .1) in both resting-state and event-related oscillatory power across all frequency bands. Applying anodal tDCS over the rodent hippocampus/prefrontal cortex enhanced long-term potentiation and brain-derived neurotrophic factor expression in the stimulated brain regions (ps <.005). Evidence supporting prefrontal tDCS administration is preliminary; more methodologically consistent studies evaluating its effects on cognitive function that include brain activity measurements are needed.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
13
|
Cerreta AGB, Mruczek REB, Berryhill ME. Predicting Working Memory Training Benefits From Transcranial Direct Current Stimulation Using Resting-State fMRI. Front Psychol 2020; 11:570030. [PMID: 33154728 PMCID: PMC7591503 DOI: 10.3389/fpsyg.2020.570030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of transcranial direct current stimulation (tDCS) on working memory (WM) performance are promising but variable and contested. In particular, designs involving one session of tDCS are prone to variable outcomes with notable effects of individual differences. Some participants benefit, whereas others are impaired by the same tDCS protocol. In contrast, protocols including multiple sessions of tDCS more consistently report WM improvement across participants. The objective of the current project was to test whether differences in resting-state connectivity between stimulation site and two WM-relevant networks [default mode network (DMN) and central executive network (CEN)] could account for initial and longitudinal responses to tDCS. Healthy young adults completed 5 days of visual WM training during sham or anodal right frontal tDCS. The behavioral data showed that only the active tDCS group significantly improved over the visual WM training period. There were no significant correlations between initial response to tDCS and resting-state activity. DMN activity in the anterior cingulate cortex significantly correlated with WM training slope. These data underscore the importance of sampling in studies applying tDCS; homogeneity (e.g., of gender, special population, and WM capacity) may produce more consistent data in a single experiment with limited power, whereas heterogeneity is important in determining the mechanism(s) and potential for tDCS-linked protocols. This issue is a limitation in tDCS findings that continues to hamper its optimization and translational value.
Collapse
Affiliation(s)
- Adelle G B Cerreta
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| | - Ryan E B Mruczek
- Department of Psychology, College of the Holy Cross, Worcester, MA, United States
| | - Marian E Berryhill
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| |
Collapse
|
14
|
Zink N, Kang K, Li SC, Beste C. Anodal transcranial direct current stimulation enhances the efficiency of functional brain network communication during auditory attentional control. J Neurophysiol 2020; 124:207-217. [PMID: 32233902 DOI: 10.1152/jn.00074.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Attentional control is crucial for selectively attending to relevant information when our brain is confronted with a multitude of sensory signals. Graph-theoretical measures provide a powerful tool for investigating the efficiency of brain network communication in separating and integrating information. Albeit, it has been demonstrated that anodal transcranial direct current stimulation (atDCS) can boost auditory attention in situations with high control demands, its effect on neurophysiological mechanisms of functional brain network communication in situations when attentional focus conflicts with perceptual saliency remain unclear. This study investigated the effects of atDCS on network connectivity and θ-oscillatory power under different levels of attentional-perceptual conflict. We hypothesized that the benefit of atDCS on network communication efficiency would be particularly apparent in conditions requiring high attentional control. Thirty young adults participated in a dichotic listening task with intensity manipulation, while EEG activity was recorded. In a cross-over design, participants underwent right frontal atDCS and sham stimulations in two separate sessions. Time-frequency decomposition and graph-theoretical analyses of network efficiency (using "small-world" properties) were used to quantify θ-oscillatory power and brain network efficiency, respectively. The atDCS-induced effect on task efficiency in the most demanding condition was mirrored only by an increase in network efficiency during atDCS compared with the sham stimulation. These findings are corroborated by Bayesian analyses. AtDCS-induced performance enhancement under high levels of attentional-perceptual conflicts is accompanied by an increase in network efficiency. Graph-theoretical measures can serve as a metric to quantify the effects of noninvasive brain stimulation on the separation and integration of information in the brain.NEW & NOTEWORTHY As compared with sham stimulation, application of atDCS enhances θ-oscillation-based network efficiency, but it has no impact on θ-oscillation power. Individual differences in θ-oscillation-based network efficiency correlated with performance efficiency under the sham stimulation.
Collapse
Affiliation(s)
- Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | - Kathleen Kang
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| |
Collapse
|
15
|
Martin AK, Kessler K, Cooke S, Huang J, Meinzer M. The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking. J Neurosci 2020; 40:3089-3095. [PMID: 32132264 PMCID: PMC7141886 DOI: 10.1523/jneurosci.2637-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning.SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner.
Collapse
Affiliation(s)
- Andrew K Martin
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029,
- Department of Psychology, University of Kent, Canterbury, United Kingdom CT2 7NP
| | - Klaus Kessler
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom B4 7ET, and
| | - Shena Cooke
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029
| | - Jasmine Huang
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029
| | - Marcus Meinzer
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany 17489
| |
Collapse
|