1
|
Herberholz J. The giant escape neurons of crayfish: Past discoveries and present opportunities. Front Physiol 2022; 13:1052354. [PMID: 36605900 PMCID: PMC9808059 DOI: 10.3389/fphys.2022.1052354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Crayfish are equipped with two prominent neural circuits that control rapid, stereotyped escape behaviors. Central to these circuits are bilateral pairs of giant neurons that transverse the nervous system and generate escape tail-flips in opposite directions away from threatening stimuli.
Collapse
|
2
|
Venuti LS, Pena-Flores NL, Herberholz J. Cellular interactions between social experience, alcohol sensitivity, and GABAergic inhibition in a crayfish neural circuit. J Neurophysiol 2020; 125:256-272. [PMID: 33174493 DOI: 10.1152/jn.00519.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We report here that prior social experience modified the behavioral responses of adult crayfish to acute alcohol exposure. Animals housed individually for 1 wk before alcohol exposure were less sensitive to the intoxicating effects of alcohol than animals housed in groups, and these differences are based on changes in the nervous system rather than differences in alcohol uptake. To elucidate the underlying neural mechanisms, we investigated the neurophysiological responses of the lateral giant (LG) interneurons after alcohol exposure. Specifically, we measured the interactions between alcohol and different GABAA-receptor antagonists and agonists in reduced crayfish preparations devoid of brain-derived tonic GABAergic inhibition. We found that alcohol significantly increased the postsynaptic potential of the LG neurons, but contrary to our behavioral observations, the results were similar for isolated and communal animals. The GABAA-receptor antagonist picrotoxin, however, facilitated LG postsynaptic potentials more strongly in communal crayfish, which altered the neurocellular interactions with alcohol, whereas TPMPA [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid], an antagonist directed against GABAA-receptors with ρ subunits, did not produce any effects. Muscimol, an agonist for GABAA-receptors, blocked the stimulating effects of alcohol, but this was independent of prior social history. THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol], an agonist directed against GABAA-receptors with δ subunits, which were not previously known to exist in the LG circuit, replicated the suppressing effects of muscimol. Together, our findings provide strong evidence that alcohol interacts with the crayfish GABAergic system, and the interplay between prior social experience and acute alcohol intoxication might be linked to changes in the expression and function of specific GABAA-receptor subtypes.NEW & NOTEWORTHY The complex interactions between alcohol and prior social experience are still poorly understood. Our work demonstrates that socially isolated crayfish exhibit lower neurobehavioral sensitivity to acute ethanol compared with communally housed animals, and this socially mediated effect is based on changes in the nervous systems rather than on differences in uptake or metabolism. By combining intracellular neurophysiology and neuropharmacology, we investigated the role of the main inhibitory neurotransmitter GABA, and its receptor subtypes, in shaping this process.
Collapse
Affiliation(s)
| | | | - Jens Herberholz
- Neuroscience and Cognitive Science Program.,Department of Psychology, University of Maryland, College Park, Maryland
| |
Collapse
|
3
|
Lybrand ZR, Martinez-Acosta VG, Zoran MJ. Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus. J Comp Neurol 2020; 528:468-480. [PMID: 31502251 DOI: 10.1002/cne.24769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/25/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022]
Abstract
The interneurons associated with rapid escape circuits are adapted for fast pathway activation and rapid conduction. An essential aspect of fast activation is the processing of sensory information with limited delays. Although aquatic annelid worms have some of the fastest escape responses in nature, the sensory networks that mediate their escape behavior are not well defined. Here, we demonstrate that the escape circuit of the mud worm, Lumbriculus variegatus, is a segmentally arranged network of sensory interneurons electrically coupled to the central medial giant fiber (MGF), the command-like interneuron for head withdrawal. Electrical stimulation of the body wall evoked fast, short-duration spikelets in the MGF, which we suggest are the product of intermediate giant fiber activation coupled to MGF collateral dendrites. Since these contact sites have immunoreactivity with a glutamate receptor antibody, and the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dion abolishes evoked MGF responses, we conclude that the afferent pathway for MGF-mediated escape is glutamatergic. This electrically coupled sensory network may facilitate rapid escape activation by enhancing the amplitude of giant axon depolarization.
Collapse
Affiliation(s)
- Zane R Lybrand
- Department of Biology, University of Texas, San Antonio, Texas
| | | | - Mark J Zoran
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
4
|
Not so fast: giant interneurons control precise movements of antennal scales during escape behavior of crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:687-698. [PMID: 31267220 DOI: 10.1007/s00359-019-01356-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
High-speed video recordings of escape responses in freely behaving crayfish revealed precisely coordinated movements of conspicuous head appendages, the antennal scales, during tail-flips that are produced by giant interneurons. For tail-flips that are generated by the medial giants (MG) in response to frontal attacks, the scales started to extend immediately after stimulation and extension was completed before the animal began to propel backwards. For tail-flips that are elicited by caudal stimuli and controlled by the lateral giants (LG), scale extensions began with significant delay after the tail-flip movement was initiated, and full extension of the scales coincided with full flexion of the tail. When we used implanted electrodes and stimulated the giant neurons directly, we observed the same patterns of scale extensions and corresponding timing. In addition, single action potentials of MG and LG neurons evoked with intracellular current injections in minimally restrained preparations were sufficient to activate scale extensions with similar delays as seen in freely behaving animals. Our results suggest that the giant interneurons, which have been assumed to be part of hardwired reflex circuits that lead to caudal motor outputs and stereotyped behavior, are also responsible for activating a pair of antennal scales with high temporal precision.
Collapse
|
5
|
Imeh-Nathaniel A, Orfanakos V, Wormack L, Huber R, Nathaniel TI. The crayfish model (Orconectes rusticus), epigenetics and drug addiction research. Pharmacol Biochem Behav 2019; 183:38-45. [PMID: 31202808 DOI: 10.1016/j.pbb.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
Fundamental signs of epigenetic effects are variations in the expression of genes or phenotypic traits among isogenic mates. Therefore, genetically identical animals are in high demand for epigenetic research. There are many genetically identical animals, including natural parthenogens and inbred laboratory lineages or clones. However, most parthenogenetic animal taxa are very small in combined epigenetic and drug addiction research. Orconectes rusticus has a unique phylogenetic position, with 2-3 years of life span, which undergoes metamorphosis that creates developmental stages with distinctly different morphologies, unique lifestyles, and broad behavioral traits, even among isogenic mates reared in the same environment offer novel inroads for epigenetics studies. Moreover, the establishment of crayfish as a novel system for drug addiction with evidence of an automated, operant self-administration and conditioned-reward, withdrawal, reinstatement of the conditioned drug-induced reward sets the stage to investigate epigenetic mechanisms of drug addiction. We discuss behavioral, pharmacological and molecular findings from laboratory studies that document a broad spectrum of molecular and, behavioral evidence including potential hypotheses that can be tested with the crayfish model for epigenetic study in drug addiction research.
Collapse
Affiliation(s)
| | | | - Leah Wormack
- University of South Carolina School of Medicine, SC, USA
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | | |
Collapse
|
6
|
Swierzbinski ME, Herberholz J. Effects of Ethanol on Sensory Inputs to the Medial Giant Interneurons of Crayfish. Front Physiol 2018; 9:448. [PMID: 29755370 PMCID: PMC5934690 DOI: 10.3389/fphys.2018.00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Crayfish are capable of two rapid, escape reflexes that are mediated by two pairs of giant interneurons, the lateral giants (LG) and the medial giants (MG), which respond to threats presented to the abdomen or head and thorax, respectively. The LG has been the focus of study for many decades and the role of GABAergic inhibition on the escape circuit is well-described. More recently, we demonstrated that the LG circuit is sensitive to the acute effects of ethanol and this sensitivity is likely mediated by interactions between ethanol and the GABAergic system. The MG neurons, however, which receive multi-modal sensory inputs and are located in the brain, have been less studied despite their established importance during many naturally occurring behaviors. Using a combination of electrophysiological and neuropharmacological techniques, we report here that the MG neurons are sensitive to ethanol and experience an increase in amplitudes of post-synaptic potentials following ethanol exposure. Moreover, they are affected by GABAergic mechanisms: the facilitatory effect of acute EtOH can be suppressed by pretreatment with a GABA receptor agonist whereas the inhibitory effects resulting from a GABA agonist can be occluded by ethanol exposure. Together, our findings suggest intriguing neurocellular interactions between alcohol and the crayfish GABAergic system. These results enable further exploration of potentially conserved neurochemical mechanisms underlying the interactions between alcohol and neural circuitry that controls complex behaviors.
Collapse
Affiliation(s)
- Matthew E Swierzbinski
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States
| | - Jens Herberholz
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States
| |
Collapse
|
7
|
Mellon DF. Novel neurobiological properties of elements in the escape circuitry of the shrimp. ACTA ACUST UNITED AC 2017; 220:3771-3781. [PMID: 28819053 DOI: 10.1242/jeb.166413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022]
Abstract
Escape behaviors in penaeid shrimp are mediated by large myelinated medial giant fibers which course from the brain to the last abdominal ganglion in the ventral nerve cord. In each abdominal segment, the medial giant axons make synaptic connections with paired myelinated motor giant axons that excite the abdominal deep flexor muscles and drive the tailflips that constitute the escape behavior. I examined (1) anatomical features of the abdominal motor giant fibers and (2) electrical properties of both the medial and motor giant axons in the pink shrimp, Farfantepenaeus duorarum The motor giant axons in the paired third roots of shrimp abdominal ganglia emerge from a single fused neurite that originates from two clusters of cell bodies within the ganglion. Injection of large positive currents into the abdominal medial giant fibers generates action potentials that are transmitted to the opposite medial giant axon through putative collateral synapses within the ganglia. Transmission across the medial-to-motor giant synapse is fast and resistant to fatigue, with synaptic delays equal to or less than those previously documented at the lateral-to-motor giant electrical synapse in crayfish. Transmission was found to be extremely reliable even with presynaptic spike frequencies as high as 250 Hz. While action potentials within the medial giant fibers are transmitted across the medial-to-motor giant synapse with a large safety factor, neither prolonged positive nor prolonged negative currents pass through the synaptic nexus, irrespective of the site of injection. The lack of DC current passage along with the inability of neurobiotin or biocytin to spread through the synaptic nexus raises the possibility that the synaptic mechanism may be capacitative.
Collapse
Affiliation(s)
- De Forest Mellon
- University of Virginia, Department of Biology, 485 McCormick Road, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Swierzbinski ME, Lazarchik AR, Herberholz J. Prior social experience affects the behavioral and neural responses to acute alcohol in juvenile crayfish. ACTA ACUST UNITED AC 2017; 220:1516-1523. [PMID: 28424315 DOI: 10.1242/jeb.154419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
The effects of alcohol on society can be devastating, both as an immediate consequence of acute intoxication and as a powerful drug of abuse. However, the neurocellular mechanisms of alcohol intoxication are still elusive, partly because of the complex interactions between alcohol and nervous system function. We found that juvenile crayfish are behaviorally sensitive to acute alcohol exposure and progress through stages that are strikingly similar to those of most other intoxicated organisms. Most surprisingly, we found that the social history of the animals significantly modified the acute effects of alcohol. Crayfish taken from a rich social environment became intoxicated more rapidly than animals that were socially isolated before alcohol exposure. In addition, we found that the modulation of intoxicated behaviors by prior social experience was paralleled on the level of individual neurons. These results significantly improve our understanding of the mechanisms underlying the interplay between social experience, alcohol intoxication and nervous system function.
Collapse
Affiliation(s)
- Matthew E Swierzbinski
- Department of Psychology, University of Maryland, College Park, MD 20742, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Andrew R Lazarchik
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Jens Herberholz
- Department of Psychology, University of Maryland, College Park, MD 20742, USA .,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Schadegg AC, Herberholz J. Satiation level affects anti-predatory decisions in foraging juvenile crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:223-232. [PMID: 28247016 DOI: 10.1007/s00359-017-1158-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
Abstract
Moving shadows signify imminent threat to foraging juvenile crayfish, and the animals respond with one of two discrete anti-predatory behaviors: They either freeze in place or rapidly flex their tails, which quickly propels them away from the approaching danger signal. Although a freeze might be the more risky choice, it keeps the animal near the expected food reward, while a tail-flip is effective in avoiding the shadow, but puts critical distance between the animal and its next meal. We manipulated the satiation level of juvenile crayfish to determine whether their behavioral choices are affected by internal energy states. When facing the same visual danger signal, animals fed to satiation produced more tail-flips and fewer freezes than unfed animals, indicating that intrinsic physiological conditions shape value-based behavioral decisions. Escape tail-flip latencies, however, were unaffected by satiation level, and an increase in food quality only produced a minor behavioral shift toward more freezing in both fed and unfed animals. Thus, satiation level appears to be the dominant factor in regulating decision making and behavioral choices of crayfish.
Collapse
Affiliation(s)
- Abigail C Schadegg
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Jens Herberholz
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA. .,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
10
|
Fregin T, Bickmeyer U. Electrophysiological Investigation of Different Methods of Anesthesia in Lobster and Crayfish. PLoS One 2016; 11:e0162894. [PMID: 27642755 PMCID: PMC5028027 DOI: 10.1371/journal.pone.0162894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In search for methods of anesthesia of crustaceans, an implanted electrode into lobster and crayfish CNS enabled us to monitor signal propagation in the nerve system of animals undergoing different protocols. RESULTS Cooling (tap water 0°C, sea water -1,8°C) and anesthesia with MgCl2 (10%) were both discarded as anesthetic procedures because responses to external stimuli were still detectable under treatment. Contrarily, bubbling the aquarium water with CO2 can be considered a "partially successful" anesthesia, because signal propagation is inhibited but before that the animals show discomfort. The procedure of "electro-stunning" induces epileptic-form seizures in the crustacean CNS (lobster, crayfish), which overlay but do not mitigate the response to external stimuli. After several minutes the activity declines before the nervous system starts to recover. A feasible way to sacrifice lobsters is to slowly raise the water temperature (1°C min-1), as all electrical activities in the CNS cease at temperatures above ~30°C, whereas below this temperature the animals do not show signs of stress or escape behavior (e.g. tail flips) in the warming water. CONCLUSION CO2 is efficient to anaesthetize lobster and crayfish but due to low pH in water is stressful to the animals previous to anesthesia. Electrical stunning induces epileptiform seizures but paralyses the animals and leads to a reversible decline of nerve system activity after seizure. Electric stunning or slowly warming just before preparation may meet ethical expectations regarding anaesthesia and to sacrifice crustaceans.
Collapse
Affiliation(s)
- Torsten Fregin
- Alfred Wegener Institut – Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Ulf Bickmeyer
- Alfred Wegener Institut – Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
11
|
Abstract
In the present study, we performed behavioral analyses of the habituation of backward escape swimming in the marbled crayfish, Procambarus fallax. Application of rapid mechanical stimulation to the rostrum elicited backward swimming following rapid abdominal flexion of crayfish. Response latency was very short-tens of msec-suggesting that backward swimming is mediated by MG neurons. When stimulation was repeated with 10 sec interstimulus intervals the MG-like tailflip did not occur, as the animals showed habituation. Retention of habituation was rather short, with most animals recovering from habituation within 10 min. Previous experience of habituation was remembered and animals habituated faster during a second series of experiments with similar repetitive stimuli. About half the number of stimulus trials was necessary to habituate in the second test compared to the first test. This promotion of habituation was observed in animals with delay periods of rest within 60 min following the first habituation. After 90 min of rest from the first habitation, animals showed a similar time course for the second habituation. With five stimuli at 15 min interval during 90 min of the rest, trained animals showed rapid habituation, indicating reinforcement of the memory of previous experiments. Crayfish also showed dishabituation when mechanical stimulation was applied to the tail following habituation.
Collapse
Affiliation(s)
- Azusa Kasuya
- Department of Biology, Faculty of Science, Yamagata University, 990 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990 Yamagata, Japan
| |
Collapse
|
12
|
Herberholz J, Marquart GD. Decision Making and Behavioral Choice during Predator Avoidance. Front Neurosci 2012; 6:125. [PMID: 22973187 PMCID: PMC3428584 DOI: 10.3389/fnins.2012.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/08/2012] [Indexed: 12/21/2022] Open
Abstract
One of the most important decisions animals have to make is how to respond to an attack from a potential predator. The response must be prompt and appropriate to ensure survival. Invertebrates have been important models in studying the underlying neurobiology of the escape response due to their accessible nervous systems and easily quantifiable behavioral output. Moreover, invertebrates provide opportunities for investigating these processes at a level of analysis not available in most other organisms. Recently, there has been a renewed focus in understanding how value-based calculations are made on the level of the nervous system, i.e., when decisions are made under conflicting circumstances, and the most desirable choice must be selected by weighing the costs and benefits for each behavioral choice. This article reviews samples from the current literature on anti-predator decision making in invertebrates, from single neurons to complex behaviors. Recent progress in understanding the mechanisms underlying value-based behavioral decisions is also discussed.
Collapse
Affiliation(s)
- Jens Herberholz
- Department of Psychology, University of Maryland College Park, MD, USA
| | | |
Collapse
|