1
|
Ito T, Ono M, Ohmori H. Convergence of bilateral auditory midbrain inputs on neurons in the auditory thalamus of chicken. J Comp Neurol 2022; 531:170-185. [PMID: 36215105 DOI: 10.1002/cne.25422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
In the avian ascending auditory pathway, the nucleus mesencephalicus lateralis pars dorsalis (MLd; the auditory midbrain center) receives inputs from virtually all lower brainstem auditory nuclei and sends outputs bilaterally to the nucleus ovoidalis (Ov; the auditory thalamic nucleus). Axons from part of the MLd terminate in a particular domain of Ov, thereby suggesting a formation of segregated pathways point-to-point from lower brainstem nuclei via MLd to the thalamus. However, it has not yet been demonstrated whether any spatial clustering of thalamic neurons that receive inputs from specific domains of MLd exists. Ov neurons receive input from bilateral MLds; however, the degree of laterality has not been reported yet. In this study, we injected a recombinant avian adeno-associated virus, a transsynaptic anterograde vector into the MLd of the chick, and analyzed the distribution of labeled postsynaptic neurons on both sides of the Ov. We found that fluorescent protein-labeled neurons on both sides of the Ov were clustered in domains corresponding to subregions of the MLd. The laterality of projections was calculated as the ratio of neurons labeled by comparing ipsilateral to contralateral projections from the MLd, and it was 1.86 on average, thereby indicating a slight ipsilateral projection dominance. Bilateral inputs from different subdomains of the MLd converged on several single Ov neurons, thereby implying a possibility of a de novo binaural processing of the auditory information in the Ov.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Harunori Ohmori
- Department of Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Combination of Interaural Level and Time Difference in Azimuthal Sound Localization in Owls. eNeuro 2018; 4:eN-NWR-0238-17. [PMID: 29379866 PMCID: PMC5779116 DOI: 10.1523/eneuro.0238-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022] Open
Abstract
A function of the auditory system is to accurately determine the location of a sound source. The main cues for sound location are interaural time (ITD) and level (ILD) differences. Humans use both ITD and ILD to determine the azimuth. Thus far, the conception of sound localization in barn owls was that their facial ruff and asymmetrical ears generate a two-dimensional grid of ITD for azimuth and ILD for elevation. We show that barn owls also use ILD for azimuthal sound localization when ITDs are ambiguous. For high-frequency narrowband sounds, midbrain neurons can signal multiple locations, leading to the perception of an auditory illusion called a phantom source. Owls respond to such an illusory percept by orienting toward it instead of the true source. Acoustical measurements close to the eardrum reveal a small ILD component that changes with azimuth, suggesting that ITD and ILD information could be combined to eliminate the illusion. Our behavioral data confirm that perception was robust against ambiguities if ITD and ILD information was combined. Electrophysiological recordings of ILD sensitivity in the owl’s midbrain support the behavioral findings indicating that rival brain hemispheres drive the decision to orient to either true or phantom sources. Thus, the basis for disambiguation, and reliable detection of sound source azimuth, relies on similar cues across species as similar response to combinations of ILD and narrowband ITD has been observed in humans.
Collapse
|
3
|
Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl's Auditory Forebrain. eNeuro 2017; 4:eN-NWR-0144-17. [PMID: 28674698 PMCID: PMC5492684 DOI: 10.1523/eneuro.0144-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/21/2022] Open
Abstract
While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space.
Collapse
|
4
|
Wasmuht DF, Pena JL, Gutfreund Y. Stimulus-specific adaptation to visual but not auditory motion direction in the barn owl's optic tectum. Eur J Neurosci 2016; 45:610-621. [PMID: 27987375 DOI: 10.1111/ejn.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022]
Abstract
Whether the auditory and visual systems use a similar coding strategy to represent motion direction is an open question. We investigated this question in the barn owl's optic tectum (OT) testing stimulus-specific adaptation (SSA) to the direction of motion. SSA, the reduction of the response to a repetitive stimulus that does not generalize to other stimuli, has been well established in OT neurons. SSA suggests a separate representation of the adapted stimulus in upstream pathways. So far, only SSA to static stimuli has been studied in the OT. Here, we examined adaptation to moving auditory and visual stimuli. SSA to motion direction was examined using repeated presentations of moving stimuli, occasionally switching motion to the opposite direction. Acoustic motion was either mimicked by varying binaural spatial cues or implemented in free field using a speaker array. While OT neurons displayed SSA to motion direction in visual space, neither stimulation paradigms elicited significant SSA to auditory motion direction. These findings show a qualitative difference in how auditory and visual motion is processed in the OT and support the existence of dedicated circuitry for representing motion direction in the early stages of visual but not the auditory system.
Collapse
Affiliation(s)
- Dante F Wasmuht
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Bat-Galim, Haifa, 31096, Israel
| | - Jose L Pena
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoram Gutfreund
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Bat-Galim, Haifa, 31096, Israel
| |
Collapse
|
5
|
Vonderschen K, Wagner H. Detecting interaural time differences and remodeling their representation. Trends Neurosci 2014; 37:289-300. [DOI: 10.1016/j.tins.2014.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
6
|
Netser S, Dutta A, Gutfreund Y. Ongoing activity in the optic tectum is correlated on a trial-by-trial basis with the pupil dilation response. J Neurophysiol 2014; 111:918-29. [DOI: 10.1152/jn.00527.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selection of the appropriate stimulus to induce an orienting response is a basic task thought to be partly achieved by tectal circuitry. Here we addressed the relationship between neural activity in the optic tectum (OT) and orienting behavioral responses. We recorded multiunit activity in the intermediate/deep layers of the OT of the barn owl simultaneously with pupil dilation responses (PDR, a well-known orienting response common to birds and mammals). A trial-by-trial analysis of the responses revealed that the PDR generally did not correlate with the evoked neural responses but significantly correlated with the rate of ongoing neural activity measured shortly before the stimulus. Following this finding, we characterized ongoing activity in the OT and showed that in the intermediate/deep layers it tended to fluctuate spontaneously. It is characterized by short periods of high ongoing activity during which the probability of a PDR to an auditory stimulus inside the receptive field is increased. These high-ongoing activity periods were correlated with increase in the power of gamma band local field potential oscillations. Through dual recordings, we showed that the correlation coefficients of ongoing activity decreased as a function of distance between recording sites in the tectal map. Significant correlations were also found between recording sites in the OT and the forebrain entopallium. Our results suggest that an increase of ongoing activity in the OT reflects an internal state during which coupling between sensory stimulation and behavioral responses increases.
Collapse
Affiliation(s)
- Shai Netser
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Arkadeb Dutta
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Yoram Gutfreund
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| |
Collapse
|
7
|
Patel M, Reed M. Stimulus encoding within the barn owl optic tectum using gamma oscillations vs. spike rate: a modeling approach. NETWORK (BRISTOL, ENGLAND) 2013; 24:52-74. [PMID: 23406211 DOI: 10.3109/0954898x.2013.763405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The optic tectum of the barn owl is a multimodal structure with multiple layers, with each layer topographically organized according to spatial receptive field. The response of a site to a stimulus can be measured as either spike rate or local field potential (LFP) gamma (25-90 Hz) power; within superficial layers, spike rate and gamma power spatial tuning curves are narrow and contrast-response functions rise slowly. Within deeper layers, however, spike rate tuning curves broaden and gamma power contrast-response functions sharpen. In this work, we employ a computational model to describe the inputs required to generate these transformations from superficial to deep layers and show that gamma power and spike rate can act as parallel information processing streams.
Collapse
Affiliation(s)
- Mainak Patel
- Department of Mathematics, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
8
|
Population-wide bias of surround suppression in auditory spatial receptive fields of the owl's midbrain. J Neurosci 2012; 32:10470-8. [PMID: 22855796 DOI: 10.1523/jneurosci.0047-12.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physical arrangement of receptive fields (RFs) within neural structures is important for local computations. Nonuniform distribution of tuning within populations of neurons can influence emergent tuning properties, causing bias in local processing. This issue was studied in the auditory system of barn owls. The owl's external nucleus of the inferior colliculus (ICx) contains a map of auditory space in which the frontal region is overrepresented. We measured spatiotemporal RFs of ICx neurons using spatial white noise. We found a population-wide bias in surround suppression such that suppression from frontal space was stronger. This asymmetry increased with laterality in spatial tuning. The bias could be explained by a model of lateral inhibition based on the overrepresentation of frontal space observed in ICx. The model predicted trends in surround suppression across ICx that matched the data. Thus, the uneven distribution of spatial tuning within the map could explain the topography of time-dependent tuning properties. This mechanism may have significant implications for the analysis of natural scenes by sensory systems.
Collapse
|
9
|
Singheiser M, Gutfreund Y, Wagner H. The representation of sound localization cues in the barn owl's inferior colliculus. Front Neural Circuits 2012; 6:45. [PMID: 22798945 PMCID: PMC3394089 DOI: 10.3389/fncir.2012.00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/21/2012] [Indexed: 11/13/2022] Open
Abstract
The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation.
Collapse
|
10
|
Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway. J Neurosci 2012; 32:5911-23. [PMID: 22539852 DOI: 10.1523/jneurosci.5429-11.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.
Collapse
|
11
|
Singheiser M, Ferger R, von Campenhausen M, Wagner H. Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation. Eur J Neurosci 2012; 35:445-56. [PMID: 22288481 DOI: 10.1111/j.1460-9568.2011.07967.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons.
Collapse
Affiliation(s)
- Martin Singheiser
- Department of Zoology, RWTH Aachen University, Mies-van-der-Rohe-Strasse 15, D-52074 Aachen, Germany
| | | | | | | |
Collapse
|
12
|
Abstract
Habituation is the most basic form of learning, yet many gaps remain in our understanding of its underlying neural mechanisms. We demonstrate that in the owl's optic tectum (OT), a single, low-level, relatively short auditory stimulus is sufficient to induce a significant reduction in the neural response to a stimulus presented up to 60 s later. This type of neural adaptation was absent in neurons from the central nucleus of the inferior colliculus and from the auditory thalamus; however, it was apparent in the OT and the forebrain entopallium. By presenting sequences that alternate between two different auditory stimuli, we show that this long-lasting adaptation is stimulus specific. The response to an odd stimulus in the sequence was not smaller than the response to the same stimulus when it was first in the sequence. Finally, we measured the habituation of reflexive eye movements and show that the behavioral habituation is correlated with the neural adaptation. The finding of a long-lasting specific adaptation in areas related to the gaze control system and not elsewhere suggests its involvement in habituation processes and opens new directions for research on mechanisms of habituation.
Collapse
|
13
|
Gutiérrez-Ibáñez C, Iwaniuk AN, Wylie DR. Relative size of auditory pathways in symmetrically and asymmetrically eared owls. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:286-301. [PMID: 21921575 DOI: 10.1159/000330359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022]
Abstract
Owls are highly efficient predators with a specialized auditory system designed to aid in the localization of prey. One of the most unique anatomical features of the owl auditory system is the evolution of vertically asymmetrical ears in some species, which improves their ability to localize the elevational component of a sound stimulus. In the asymmetrically eared barn owl, interaural time differences (ITD) are used to localize sounds in azimuth, whereas interaural level differences (ILD) are used to localize sounds in elevation. These two features are processed independently in two separate neural pathways that converge in the external nucleus of the inferior colliculus to form an auditory map of space. Here, we present a comparison of the relative volume of 11 auditory nuclei in both the ITD and the ILD pathways of 8 species of symmetrically and asymmetrically eared owls in order to investigate evolutionary changes in the auditory pathways in relation to ear asymmetry. Overall, our results indicate that asymmetrically eared owls have much larger auditory nuclei than owls with symmetrical ears. In asymmetrically eared owls we found that both the ITD and ILD pathways are equally enlarged, and other auditory nuclei, not directly involved in binaural comparisons, are also enlarged. We suggest that the hypertrophy of auditory nuclei in asymmetrically eared owls likely reflects both an improved ability to precisely locate sounds in space and an expansion of the hearing range. Additionally, our results suggest that the hypertrophy of nuclei that compute space may have preceded that of the expansion of the hearing range and evolutionary changes in the size of the auditory system occurred independently of phylogeny.
Collapse
|
14
|
Fischer BJ, Peña JL. Owl's behavior and neural representation predicted by Bayesian inference. Nat Neurosci 2011; 14:1061-6. [PMID: 21725311 PMCID: PMC3145020 DOI: 10.1038/nn.2872] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/29/2011] [Indexed: 11/10/2022]
Abstract
The owl captures prey using sound localization. In the classical model, the owl infers sound direction from the position of greatest activity in a brain map of auditory space. However, this model fails to describe the actual behavior. Although owls accurately localize sources near the center of gaze, they systematically underestimate peripheral source directions. We found that this behavior is predicted by statistical inference, formulated as a Bayesian model that emphasizes central directions. We propose that there is a bias in the neural coding of auditory space, which, at the expense of inducing errors in the periphery, achieves high behavioral accuracy at the ethologically relevant range. We found that the owl's map of auditory space decoded by a population vector is consistent with the behavioral model. Thus, a probabilistic model describes both how the map of auditory space supports behavior and why this representation is optimal.
Collapse
Affiliation(s)
- Brian J Fischer
- Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France.
| | | |
Collapse
|
15
|
Amin N, Gill P, Theunissen FE. Role of the zebra finch auditory thalamus in generating complex representations for natural sounds. J Neurophysiol 2010; 104:784-98. [PMID: 20554842 DOI: 10.1152/jn.00128.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We estimated the spectrotemporal receptive fields of neurons in the songbird auditory thalamus, nucleus ovoidalis, and compared the neural representation of complex sounds in the auditory thalamus to those found in the upstream auditory midbrain nucleus, mesencephalicus lateralis dorsalis (MLd), and the downstream auditory pallial region, field L. Our data refute the idea that the primary sensory thalamus acts as a simple, relay nucleus: we find that the auditory thalamic receptive fields obtained in response to song are more complex than the ones found in the midbrain. Moreover, we find that linear tuning diversity and complexity in ovoidalis (Ov) are closer to those found in field L than in MLd. We also find prevalent tuning to intermediate spectral and temporal modulations, a feature that is unique to Ov. Thus even a feed-forward model of the sensory processing chain, where neural responses in the sensory thalamus reveals intermediate response properties between those in the sensory periphery and those in the primary sensory cortex, is inadequate in describing the tuning found in Ov. Based on these results, we believe that the auditory thalamic circuitry plays an important role in generating novel complex representations for specific features found in natural sounds.
Collapse
Affiliation(s)
- Noopur Amin
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-1650, USA
| | | | | |
Collapse
|