1
|
Bianco V, Finisguerra A, D'Argenio G, Boscarol S, Urgesi C. Contextual expectations shape the motor coding of movement kinematics during the prediction of observed actions: A TMS study. Neuroimage 2024; 297:120702. [PMID: 38909762 DOI: 10.1016/j.neuroimage.2024.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024] Open
Abstract
Contextual information may shape motor resonance and support intention understanding during observation of incomplete, ambiguous actions. It is unclear, however, whether this effect is contingent upon kinematics ambiguity or contextual information is continuously integrated with kinematics to predict the overarching action intention. Moreover, a differentiation between the motor mapping of the intention suggested by context or kinematics has not been clearly demonstrated. In a first action execution phase, 29 participants were asked to perform reaching-to-grasp movements towards big or small food objects with the intention to eat or to move; electromyography from the First Dorsal Interosseous (FDI) and Abductor Digiti Minimi (ADM) was recorded. Depending on object size, the intentions to eat or to move were differently implemented by a whole-hand or a precision grip kinematics, thus qualifying an action-muscle dissociation. Then, in a following action prediction task, the same participants were asked to observe an actor performing the same actions and to predict his/her intention while motor resonance was assessed for the same muscles. Of note, videos were interrupted at early or late action phases, and actions were embedded in contexts pointing toward an eating or a moving intention, congruently or incongruently with kinematics. We found greater involvement of the FDI or ADM in the execution of precision or whole-hand grips, respectively. Crucially, this pattern of activation was mirrored during observation of the same actions in congruent contexts, but it was cancelled out or reversed in the incongruent ones, either when videos were interrupted at either early or long phases of action deployment. Our results extend previous evidence by showing that contextual information shapes motor resonance not only under conditions of perceptual uncertainty but also when more informative kinematics is available.
Collapse
Affiliation(s)
- Valentina Bianco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.
| | | | - Giulia D'Argenio
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy; Fondazione Progettoautismo FVG Onlus, Feletto Umberto, Udine, Italy
| | - Sara Boscarol
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy; University of Camerino, Center for Neuroscience, Camerino, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy; Scientific Institute, IRCCS E. Medea, Pasian di Prato, Udine, Italy
| |
Collapse
|
2
|
Critch AL, Snow NJ, Alcock LR, Chaves AR, Buragadda S, Ploughman M. Multiple sclerosis-related heat sensitivity linked to absence of DMT prescription and subjective hand impairment but not autonomic or corticospinal dysfunction. Mult Scler Relat Disord 2023; 70:104514. [PMID: 36669245 DOI: 10.1016/j.msard.2023.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Heat sensitivity (HS) describes a temporary worsening of multiple sclerosis (MS) symptoms with increased body temperature. The pathophysiology may relate to central nervous system conduction deficits and autonomic dysfunction. We conducted deep clinical phenotyping of a cohort of persons with MS to identify predictors of HS. METHODS We recruited 59 MS participants with HS or No HS. Participants self-reported symptom severity (Hospital Anxiety and Depression Scale, Multiple Sclerosis Impact Scale, and fatigue visual analog scale) and underwent maximal exercise and transcranial magnetic stimulation testing to characterize autonomic and corticospinal function. We examined associations with HS using binomial logistic regression. RESULTS People with HS (36/59) had significantly greater disability, depression, fatigue, and physical and psychological functional effects of MS. They also had significantly lower corticospinal excitability but not conduction. After controlling for disease-modifying therapy (DMT), disability, and disease type, self-reported difficulty using hands in everyday tasks was significantly associated with a large increase in the odds of HS. Autonomic and corticospinal dysfunction were not associated with HS. Lack of DMT use alone was also associated with a large increase in the odds of HS. DISCUSSION Following a comprehensive assessment of plausible contributors to HS, HS was most strongly associated with lack of a DMT prescription and self-reported hand dysfunction. Surprisingly, objective measurement of autonomic and corticospinal integrity did not contribute to HS.
Collapse
Affiliation(s)
- Amber L Critch
- Recovery & Performance Laboratory, Faculty of Medicine, Leonard A Miller Centre, Memorial University of Newfoundland, Rm. 400, 100 Forest Road, St. John's, Newfoundland and Labrador A1A 1E5, Canada
| | - Nicholas J Snow
- Recovery & Performance Laboratory, Faculty of Medicine, Leonard A Miller Centre, Memorial University of Newfoundland, Rm. 400, 100 Forest Road, St. John's, Newfoundland and Labrador A1A 1E5, Canada
| | - Lynsey R Alcock
- Recovery & Performance Laboratory, Faculty of Medicine, Leonard A Miller Centre, Memorial University of Newfoundland, Rm. 400, 100 Forest Road, St. John's, Newfoundland and Labrador A1A 1E5, Canada
| | - Arthur R Chaves
- Recovery & Performance Laboratory, Faculty of Medicine, Leonard A Miller Centre, Memorial University of Newfoundland, Rm. 400, 100 Forest Road, St. John's, Newfoundland and Labrador A1A 1E5, Canada
| | - Syamala Buragadda
- Recovery & Performance Laboratory, Faculty of Medicine, Leonard A Miller Centre, Memorial University of Newfoundland, Rm. 400, 100 Forest Road, St. John's, Newfoundland and Labrador A1A 1E5, Canada
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of Medicine, Leonard A Miller Centre, Memorial University of Newfoundland, Rm. 400, 100 Forest Road, St. John's, Newfoundland and Labrador A1A 1E5, Canada.
| |
Collapse
|
3
|
Li Y, Feng T. The Effect of Judgement Bias on Cue Utilization for Shot Prediction in Basketball Athletes. Brain Sci 2021; 11:brainsci11081058. [PMID: 34439677 PMCID: PMC8391667 DOI: 10.3390/brainsci11081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Concerning the judgments bias and cue utilization in basketball athletes, previous shot anticipation tasks were hard to examine in regards to whether the experts' judgement bias relies more on the cue of the player's body or the ball trajectory. METHODS Four types of body-ball cues shots were employed: IN-IN, IN-OUT, OUT-IN, and OUT-OUT. Four temporal stages (i.e., shooting, rising, high point, and falling) were divided during a shot. Forty-two participants predicted the fate of the ball after watching the shot videos. RESULTS The results suggested that for the shooting, rising, and high point phase, compared to the non-athletes, the experts provided superior predictions for IN-IN condition and OUT-IN condition but fewer accurate predictions for IN-OUT condition and OUT-OUT condition. Moreover, a higher bias toward predicting the shots as "in" for the athletes than the non-athletes under early temporal conditions was confirmed. CONCLUSIONS These findings strengthen the idea that the IN cues from both body information and ball trajectory could elicit the experts' judgement bias for made shots and then influence their response, thus rendered two distinct (e.g., impeding and facilitating) effects for the incongruent body-ball cues, respectively.
Collapse
Affiliation(s)
- Yawei Li
- Department of Sports, Physical Education College of Zhengzhou University, Zhengzhou 450044, China;
| | - Tian Feng
- Department of Physical Education, Physical Education College of Zhengzhou University, Zhengzhou 450044, China
- Correspondence: ; Tel.: +86-15515586037
| |
Collapse
|
4
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
5
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
6
|
Craighero L, Mele S. Proactive gaze is present during biological and non-biological motion observation. Cognition 2020; 206:104461. [PMID: 33010721 DOI: 10.1016/j.cognition.2020.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Others' action observation activates in the observer a coordinated hand-eye motor program, covert for the hand (i.e. motor resonance), and overt for the eye (i.e. proactive gaze), similar to that of the observed agent. The biological motion hypothesis of action anticipation claims that proactive gaze occurs only in the presence of biological motion, and that kinematic information is sufficient to determine the anticipation process. The results of the present study did not support the biological motion hypothesis of action anticipation. Specifically, proactive gaze was present during observation of both a biological accelerated-decelerated motion and a non-biological constant velocity motion (Experiment 1), in the presence of a barrier able to restrict differences between the two kinematics to the motion profile of individual markers prior to contact (Experiment 2), but only if an object was present at the end point of the movement trajectory (Experiment 3). Furthermore, proactive gaze was found independently of the presence of end effects temporally congruent with the instant in which the movement stopped (Experiments 4, and 5). We propose that the involvement of the observer's motor system is not restricted to when the agent moves with natural kinematics, and it is mandatory whenever the presence of an agent or a goal is evident, regardless of physical appearance, natural kinematics, and the possibility to identify the action behind the stimulus.
Collapse
Affiliation(s)
- Laila Craighero
- Department of Biomedical and Surgical Specialist Sciences, University of Ferrara, Italy.
| | - Sonia Mele
- Department of Biomedical and Surgical Specialist Sciences, University of Ferrara, Italy
| |
Collapse
|
7
|
Galigani M, Castellani N, Donno B, Franza M, Zuber C, Allet L, Garbarini F, Bassolino M. Effect of tool-use observation on metric body representation and peripersonal space. Neuropsychologia 2020; 148:107622. [PMID: 32905815 DOI: 10.1016/j.neuropsychologia.2020.107622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 01/24/2023]
Abstract
In everyday life, we constantly act and interact with objects and with others' people through our body. To properly perform actions, the representations of the dimension of body-parts (metric body representation, BR) and of the space surrounding the body (peripersonal space, PPS) need to be constantly updated. Previous evidence has shown that BR and PPS representation are highly flexible, being modulated by sensorimotor experiences, such as the active use of tools to reach objects in the far space. In this study, we investigate whether the observation of another person using a tool to interact with objects located in the far space is sufficient to influence the plasticity of BR and PPS representation in a similar way to active tool-use. With this aim, two groups of young healthy participants were asked to perform 20 min trainings based on the active use of a tool to retrieve far cubes (active tool-use) and on the first-person observation of an experimenter doing the same tool-use training (observational tool-use). Behavioural tasks adapted from literature were used to evaluate the effects of the active and observational tool-use on BR (body-landmarks localization task-group 1), and PPS (audio-tactile interaction task - group 2). Results show that after active tool-use, participants perceived the length of their arm as longer than at baseline, while no significant differences appear after observation. Similarly, significant modifications in PPS representation, with comparable multisensory facilitation on tactile responses due to near and far sounds, were seen only after active tool-use, while this did not occur after observation. Together these results suggest that a mere observational training could not be sufficient to significantly modulate BR or PPS. The dissociation found in the active and observational tool-use points out differences between action execution and action observation, by suggesting a fundamental role of the motor planning, the motor intention, and the related sensorimotor feedback in driving BR and PPS plasticity.
Collapse
Affiliation(s)
- M Galigani
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - N Castellani
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - B Donno
- School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland
| | - M Franza
- Center for Neuroprosthetics, Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva and Campus SUVA, Sion, Switzerland
| | - C Zuber
- University of Applied Sciences of Western Switzerland, Switzerland
| | - L Allet
- School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland; Department of Community Medicine, University Hospitals and University of Geneva, Geneva, Switzerland
| | - F Garbarini
- MANIBUS Laboratory, Psychology Department, University of Turin, Turin, Italy
| | - M Bassolino
- School of Health Sciences, HES-SO Valais-Wallis, Sion, Switzerland; Center for Neuroprosthetics, Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Science Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne), Campus Biotech, Geneva and Campus SUVA, Sion, Switzerland.
| |
Collapse
|
8
|
Urgesi C, Alaerts K, Craighero L. Editorial: How Do Motivational States Influence Motor Resonance? Front Hum Neurosci 2020; 14:27. [PMID: 32116610 PMCID: PMC7033578 DOI: 10.3389/fnhum.2020.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.,Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Kaat Alaerts
- Research Group for Neuromotor Rehabilitation, KU Leuven, Leuven, Belgium
| | - Laila Craighero
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Motor cortical inhibition during concurrent action execution and action observation. Neuroimage 2020; 208:116445. [DOI: 10.1016/j.neuroimage.2019.116445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 11/23/2022] Open
|
10
|
Betti S, Deceuninck M, Sartori L, Castiello U. Action Observation and Effector Independency. Front Hum Neurosci 2019; 13:416. [PMID: 32038195 PMCID: PMC6988794 DOI: 10.3389/fnhum.2019.00416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
The finding of reasonably consistent spatial and temporal productions of actions across different body parts has been used to argue in favor of the existence of a high-order representation of motor programs. In these terms, a generalized motor program consists of an abstract memory structure apt to specify a class of non-specific instructions used to guide a broad range of movements (e.g., “grasp,” “bite”). Although a number of studies, using a variety of tasks, have assessed the issue of effector independence in terms of action execution, little is known regarding the issue of effector independence within an action observation context. Here corticospinal excitability (CSE) of the right hand’s first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles was assessed by means of single-pulse transcranial magnetic stimulation (spTMS) during observation of a grasping action performed by the hand, the foot, the mouth, the elbow, or the knee. The results indicate that observing a grasping action performed with different body parts activates the effector typically adopted to execute that action, i.e., the hand. We contend that, as far as grasping is concerned, motor activations by action observation are evident in the muscles typically used to perform the observed action, even when the action is executed with another effector. Nevertheless, some exceptions call for a deeper analysis of motor coding.
Collapse
Affiliation(s)
- Sonia Betti
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marie Deceuninck
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Amoruso L, Finisguerra A. Low or High-Level Motor Coding? The Role of Stimulus Complexity. Front Hum Neurosci 2019; 13:332. [PMID: 31680900 PMCID: PMC6798151 DOI: 10.3389/fnhum.2019.00332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces activity in the onlooker's motor system. In light of the muscle specificity and time-locked mirroring nature of the effect, this motor resonance has been traditionally viewed as an inner automatic replica of the observed movement. Notably, studies highlighting this aspect have classically considered movement in isolation (i.e., using non-realistic stimuli such as snapshots of hands detached from background). However, a few recent studies accounting for the role of contextual cues, motivational states, and social factors, have challenged this view by showing that motor resonance is not completely impervious to top-down modulations. A debate is still present. We reasoned that motor resonance reflects the inner replica of the observed movement only when its modulation is assessed during the observation of movements in isolation. Conversely, the presence of top-down modulations of motor resonance emerges when other high-level factors (i.e., contextual cues, past experience, social, and motivational states) are taken into account. Here, we attempt to lay out current TMS studies assessing this issue and discuss the results in terms of their potential to favor the inner replica or the top-down modulation hypothesis. In doing so, we seek to shed light on this actual debate and suggest specific avenues for future research, highlighting the need for a more ecological approach when studying motor resonance phenomenon.
Collapse
Affiliation(s)
- Lucia Amoruso
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
12
|
Hand perceptions induced by single pulse transcranial magnetic stimulation over the primary motor cortex. Brain Stimul 2019; 12:693-701. [DOI: 10.1016/j.brs.2018.12.972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
|
13
|
Motor system recruitment during action observation: No correlation between mu-rhythm desynchronization and corticospinal excitability. PLoS One 2018; 13:e0207476. [PMID: 30440042 PMCID: PMC6237396 DOI: 10.1371/journal.pone.0207476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022] Open
Abstract
Observing others’ actions desynchronizes electroencephalographic (EEG) rhythms and modulates corticospinal excitability as assessed by transcranial magnetic stimulation (TMS). However, it remains unclear if these measures reflect similar neurofunctional mechanisms at the individual level. In the present study, a within-subject experiment was designed to assess these two neurophysiological indexes and to quantify their mutual correlation. Participants observed reach-to-grasp actions directed towards a small (precision grip) or a large object (power grip). We focused on two specific time points for both EEG and TMS. The first time point (t1) coincided with the maximum hand aperture, i.e. the moment at which a significant modulation of corticospinal excitability is expected. The second (t2), coincided with the EEG resynchronization occurring at the end of the action, i.e. the moment at which a hypothetic minimum for action observation effect is expected. Results showed a Mu rhythm bilateral desynchronization at t1 with differential resynchronization at t2 in the two hemispheres. Beta rhythm was more desynchronized in the left hemisphere at both time points. These EEG differences, however, were not influenced by grip type. Conversely, motor potentials evoked by TMS in an intrinsic hand muscle revealed an interaction effect of grip and time. No significant correlations between Mu/Beta rhythms and motor evoked potentials were found. These findings are discussed considering the spatial and temporal resolution of the two investigated techniques and argue over two alternative explanations: i. each technique provides different measures of the same process or ii. they describe complementary features of the action observation network in humans.
Collapse
|
14
|
Amoruso L, Finisguerra A, Urgesi C. Autistic traits predict poor integration between top-down contextual expectations and movement kinematics during action observation. Sci Rep 2018; 8:16208. [PMID: 30385765 PMCID: PMC6212496 DOI: 10.1038/s41598-018-33827-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Autism is associated with difficulties in predicting and understanding other people’s actions. There is evidence that autistic traits are distributed across a spectrum and that subclinical forms of autistic impairments can also be measured in the typical population. To investigate the association between autistic traits and motor responses to others’ actions, we quantified these traits and measured cortico-spinal excitability modulations in M1 during the observation of actions embedded in congruent, incongruent and ambiguous contexts. In keeping with previous studies, we found that actions observed in congruent contexts elicited an early facilitation of M1 responses, and actions observed in incongruent contexts, resulted in a later inhibition. Correlational analysis revealed no association between autistic traits and the facilitation for congruent contexts. However, we found a significant correlation between motor inhibition and autistic traits, specifically related to social skills and attention to details. Importantly, the influence of these factors was independent from each other, and from the observer’s gender. Thus, results suggest that individuals with higher social deficits and greater detail-processing style are more impaired in suppressing action simulation in M1 when a mismatch between kinematics and context occurs. This points to difficult integration between kinematics and contextual representations in the autistic-like brain.
Collapse
Affiliation(s)
- L Amoruso
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy. .,Basque Center of Cognition, Brain and Language, San Sebastian, Spain.
| | - A Finisguerra
- Scientific Institute, IRCCS Eugenio Medea, Pasian di Prato, Udine, Italy
| | - C Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.,Scientific Institute, IRCCS Eugenio Medea, Pasian di Prato, Udine, Italy
| |
Collapse
|
15
|
Bassolino M, Franza M, Bello Ruiz J, Pinardi M, Schmidlin T, Stephan M, Solcà M, Serino A, Blanke O. Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback. Eur J Neurosci 2018; 47:790-799. [PMID: 29460981 PMCID: PMC5900900 DOI: 10.1111/ejn.13871] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
Abstract
Previous evidence highlighted the multisensory-motor origin of embodiment - that is, the experience of having a body and of being in control of it - and the possibility of experimentally manipulating it. For instance, an illusory feeling of embodiment towards a fake hand can be triggered by providing synchronous visuo-tactile stimulation to the hand of participants and to a fake hand or by asking participants to move their hand and observe a fake hand moving accordingly (rubber hand illusion). Here, we tested whether it is possible to manipulate embodiment not through stimulation of the participant's hand, but by directly tapping into the brain's hand representation via non-invasive brain stimulation. To this aim, we combined transcranial magnetic stimulation (TMS), to activate the hand corticospinal representation, with virtual reality (VR), to provide matching (as contrasted to non-matching) visual feedback, mimicking involuntary hand movements evoked by TMS. We show that the illusory embodiment occurred when TMS pulses were temporally matched with VR feedback, but not when TMS was administered outside primary motor cortex, (over the vertex) or when stimulating motor cortex at a lower intensity (that did not activate peripheral muscles). Behavioural (questionnaires) and neurophysiological (motor-evoked-potentials, TMS-evoked-movements) measures further indicated that embodiment was not explained by stimulation per se, but depended on the temporal coherence between TMS-induced activation of hand corticospinal representation and the virtual bodily feedback. This reveals that non-invasive brain stimulation may replace the application of external tactile hand cues and motor components related to volition, planning and anticipation.
Collapse
Affiliation(s)
- M. Bassolino
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de LausanneClinique Romande de RéadaptationSionSwitzerland
| | - M. Franza
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de LausanneClinique Romande de RéadaptationSionSwitzerland
| | - J. Bello Ruiz
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
| | - M. Pinardi
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de LausanneClinique Romande de RéadaptationSionSwitzerland
| | - T. Schmidlin
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de LausanneClinique Romande de RéadaptationSionSwitzerland
| | - M.A. Stephan
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
| | - M. Solcà
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
| | - A. Serino
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
- MySpace LabDepartment of Clinical NeurosciencesUniversity Hospital Lausanne (CHUV)LausanneSwitzerland
| | - O. Blanke
- Laboratory of Cognitive NeuroscienceBrain Mind InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Center for NeuroprostheticsSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne9 Chemin des Mines1202GenevaSwitzerland
- Department of NeurologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
16
|
Action observation effects reflect the modular organization of the human motor system. Cortex 2017; 95:104-118. [PMID: 28866300 DOI: 10.1016/j.cortex.2017.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 11/21/2022]
Abstract
Action observation, similarly to action execution, facilitates the observer's motor system and Transcranial Magnetic Stimulation (TMS) has been instrumental in exploring the nature of these motor activities. However, contradictory findings question some of the fundamental assumptions regarding the neural computations run by the Action Observation Network (AON). To better understand this issue, we delivered TMS over the observers' motor cortex at two timings of two reaching-grasping actions (precision vs power grip) and we recorded Motor-Evoked Potentials (4 hand/arm muscles; MEPs). At the same time, we also recorded whole-hand TMS Evoked Kinematics (8 hand elevation angles; MEKs) that capture the global functional motor output, as opposed to the limited view offered by recording few muscles. By repeating the same protocol twice, and a third time after continuous theta burst stimulation (cTBS) over the motor cortex, we observe significant time-dependent grip-specific MEPs and MEKs modulations, that disappeared after cTBS. MEKs, differently from MEPs, exhibit a consistent significant modulation across pre-cTBS sessions. Beside clear methodological implications, the multidimensionality of MEKs opens a window on muscle synergies needed to overcome system redundancy. By providing better access to the AON computations, our results strengthen the idea that action observation shares key organizational similarities with action execution.
Collapse
|
17
|
Finisguerra A, Amoruso L, Makris S, Urgesi C. Dissociated Representations of Deceptive Intentions and Kinematic Adaptations in the Observer's Motor System. Cereb Cortex 2016; 28:33-47. [DOI: 10.1093/cercor/bhw346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alessandra Finisguerra
- Dipartimento di Lingue e Letterature, Comunicazione, Formazione e Società, Università degli Studi di Udine, I-33100 Udine, Italy
| | - Lucia Amoruso
- Dipartimento di Lingue e Letterature, Comunicazione, Formazione e Società, Università degli Studi di Udine, I-33100 Udine, Italy
| | - Stergios Makris
- Department of Psychology, Edge Hill University, Ormskirk, Lancashire L394QP, UK
| | - Cosimo Urgesi
- Dipartimento di Lingue e Letterature, Comunicazione, Formazione e Società, Università degli Studi di Udine, I-33100 Udine, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Eugenio Medea, Polo Friuli Venezia Giulia, I-33078 San Vito al Tagliamento, Pordenone, Italy
| |
Collapse
|
18
|
Amoruso L, Urgesi C. Familiarity modulates motor activation while other species' actions are observed: a magnetic stimulation study. Eur J Neurosci 2016; 43:765-72. [DOI: 10.1111/ejn.13154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Lucia Amoruso
- Laboratory of Cognitive Neuroscience; Department of Human Sciences; University of Udine; via Margreth 3 I-33100 Udine Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience; Department of Human Sciences; University of Udine; via Margreth 3 I-33100 Udine Italy
- Polo Friuli Venezia Giulia; Scientific Institute (IRRCS) Eugenio Medea; Udine Italy
- School of Psychology; Bangor University; Bangor Wales, UK
| |
Collapse
|