1
|
Mukhopadhyay M, Pangrsic T. Synaptic transmission at the vestibular hair cells of amniotes. Mol Cell Neurosci 2022; 121:103749. [PMID: 35667549 DOI: 10.1016/j.mcn.2022.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
A harmonized interplay between the central nervous system and the five peripheral end organs is how the vestibular system helps organisms feel a sense of balance and motion in three-dimensional space. The receptor cells of this system, much like their cochlear equivalents, are the specialized hair cells. However, research over the years has shown that the vestibular endorgans and hair cells evolved very differently from their cochlear counterparts. The structurally unique calyceal synapse, which appeared much later in the evolutionary time scale, and continues to intrigue researchers, is now known to support several forms of synaptic neurotransmission. The conventional quantal transmission is believed to employ the ribbon structures, which carry several tethered vesicles filled with neurotransmitters. However, the field of vestibular hair cell synaptic molecular anatomy is still at a nascent stage and needs further work. In this review, we will touch upon the basic structure and function of the peripheral vestibular system, with the focus on the various modes of neurotransmission at the type I vestibular hair cells. We will also shed light on the current knowledge about the molecular anatomy of the vestibular hair cell synapses and vestibular synaptopathy.
Collapse
Affiliation(s)
- Mohona Mukhopadhyay
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
2
|
Lu J, Hu L, Ye B, Hu H, Tao Y, Shu Y, Hao Chiang, Borse V, Xiang M, Wu H, Edge ASB, Shi F. Increased Type I and Decreased Type II Hair Cells after Deletion of Sox2 in the Developing Mouse Utricle. Neuroscience 2019; 422:146-160. [PMID: 31678344 PMCID: PMC10858341 DOI: 10.1016/j.neuroscience.2019.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The vestibular system of the inner ear contains Type I and Type II hair cells (HCs) generated from sensory progenitor cells; however, little is known about how the HC subtypes are formed. Sox2 (encoding SRY-box 2) is expressed in Type II, but not in Type I, HCs. The present study aimed to investigate the role of SOX2 in cell fate determination in Type I vs. Type II HCs. First, we confirmed that Type I HCs developed from Sox2-expressing cells through lineage tracing of Sox2-positive cells using a CAG-tdTomato reporter mouse crossed with a Sox2-CreER mouse. Then, Sox2 loss of function was induced in HCs, using Sox2flox transgenic mice crossed with a Gfi1-Cre driver mouse. Knockout of Sox2 in HCs increased the number of Type I HCs and decreased the number of Type II HCs, while the total number of HCs and Sox2-positive supporting cells did not change. In addition, the effect of Sox2-knockout persisted into adulthood, resulting in an increased number of Type I HCs. These results demonstrate that SOX2 plays a critical role in the determination of Type II vs. Type I HC fate. The results suggested that Sox2 is a potential target for generating Type I HCs, which may be important for regenerative strategies for balance disorders.
Collapse
Affiliation(s)
- Jingrong Lu
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Lingxiang Hu
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Bin Ye
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Haixia Hu
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Yong Tao
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Hao Chiang
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Vikrant Borse
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Mingliang Xiang
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Hao Wu
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Fuxin Shi
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Decibel Therapeutics, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Nam JH, Grant JW, Rowe MH, Peterson EH. Multiscale modeling of mechanotransduction in the utricle. J Neurophysiol 2019; 122:132-150. [PMID: 30995138 DOI: 10.1152/jn.00068.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We review recent progress in using numerical models to relate utricular hair bundle and otoconial membrane (OM) structure to the functional requirements imposed by natural behavior in turtles. The head movements section reviews the evolution of experimental attempts to understand vestibular system function with emphasis on turtles, including data showing that accelerations occurring during natural head movements achieve higher magnitudes and frequencies than previously assumed. The structure section reviews quantitative anatomical data documenting topographical variation in the structures underlying macromechanical and micromechanical responses of the turtle utricle to head movement: hair bundles, OM, and bundle-OM coupling. The macromechanics section reviews macromechanical models that incorporate realistic anatomical and mechanical parameters and reveal that the system is significantly underdamped, contrary to previous assumptions. The micromechanics: hair bundle motion and met currents section reviews work based on micromechanical models, which demonstrates that topographical variation in the structure of hair bundles and OM, and their mode of coupling, result in regional specializations for signaling of low frequency (or static) head position and high frequency head accelerations. We conclude that computational models based on empirical data are especially promising for investigating mechanotransduction in this challenging sensorimotor system.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, Department of Biomedical Engineering, University of Rochester , Rochester, New York
| | - J W Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - M H Rowe
- Department of Biology, Neuroscience Program, Quantitative Biology Institute, Ohio University , Athens, Ohio
| | - E H Peterson
- Department of Biology, Neuroscience Program, Quantitative Biology Institute, Ohio University , Athens, Ohio
| |
Collapse
|
4
|
Rabbitt RD. Semicircular canal biomechanics in health and disease. J Neurophysiol 2019; 121:732-755. [PMID: 30565972 PMCID: PMC6520623 DOI: 10.1152/jn.00708.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The semicircular canals are responsible for sensing angular head motion in three-dimensional space and for providing neural inputs to the central nervous system (CNS) essential for agile mobility, stable vision, and autonomic control of the cardiovascular and other gravity-sensitive systems. Sensation relies on fluid mechanics within the labyrinth to selectively convert angular head acceleration into sensory hair bundle displacements in each of three inner ear sensory organs. Canal afferent neurons encode the direction and time course of head movements over a broad range of movement frequencies and amplitudes. Disorders altering canal mechanics result in pathological inputs to the CNS, often leading to debilitating symptoms. Vestibular disorders and conditions with mechanical substrates include benign paroxysmal positional nystagmus, direction-changing positional nystagmus, alcohol positional nystagmus, caloric nystagmus, Tullio phenomena, and others. Here, the mechanics of angular motion transduction and how it contributes to neural encoding by the semicircular canals is reviewed in both health and disease.
Collapse
Affiliation(s)
- R. D. Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Otolaryngology-Head Neck Surgery, University of Utah, Salt Lake City, Utah
- Neuroscience Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
Sellon JB, Azadi M, Oftadeh R, Nia HT, Ghaffari R, Grodzinsky AJ, Freeman DM. Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections. PHYSICAL REVIEW LETTERS 2019; 122:028101. [PMID: 30720330 PMCID: PMC6813812 DOI: 10.1103/physrevlett.122.028101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/14/2018] [Indexed: 06/09/2023]
Abstract
Stereociliary imprints in the tectorial membrane (TM) have been taken as evidence that outer hair cells are sensitive to shearing displacements of the TM, which plays a key role in shaping cochlear sensitivity and frequency selectivity via resonance and traveling wave mechanisms. However, the TM is highly hydrated (97% water by weight), suggesting that the TM may be flexible even at the level of single hair cells. Here we show that nanoscale oscillatory displacements of microscale spherical probes in contact with the TM are resisted by frequency-dependent forces that are in phase with TM displacement at low and high frequencies, but are in phase with TM velocity at transition frequencies. The phase lead can be as much as a quarter of a cycle, thereby contributing to frequency selectivity and stability of cochlear amplification.
Collapse
Affiliation(s)
- Jonathan B. Sellon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA 94132, USA
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ramin Oftadeh
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hadi Tavakoli Nia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alan J. Grodzinsky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dennis M. Freeman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Rossi ML, Rubbini G, Martini M, Canella R, Fesce R. Pre- and Postsynaptic Effects of Glutamate in the Frog Labyrinth. Neuroscience 2018; 385:198-214. [PMID: 29913242 DOI: 10.1016/j.neuroscience.2018.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/20/2022]
Abstract
The role of glutamate in quantal release at the cytoneural junction was examined by measuring mEPSPs and afferent spikes at the posterior canal in the intact frog labyrinth. Release was enhanced by exogenous glutamate, or dl-TBOA, a blocker of glutamate reuptake. Conversely, drugs acting on ionotropic glutamate receptors did not affect release; the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) blocker CNQX decreased mEPSP size in a dose-dependent manner; the NMDA-R blocker d-AP5 at concentrations <200 µM did not affect mEPSP size, either in the presence or absence of Mg and glycine. In isolated hair cells, glutamate did not modify Ca currents. Instead, it systematically reduced the compound delayed potassium current, IKD, whereas the metabotropic glutamate receptor (mGluR)-II inverse agonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY341495), increased it. Given mGluR-II decrease cAMP production, these finding are consistent with the reported sensitivity of IKD to protein kinase A (PKA)-mediated phosphorylation. LY341495 also enhanced transmitter release, presumably through phosphorylation-mediated facilitation of the release machinery. The observed enhancement of release by glutamate confirms previous literature data, and can be attributed to activation of mGluR-I that promotes Ca release from intracellular stores. Glutamate-induced reduction in the repolarizing IKD may contribute to facilitation of release. Overall, glutamate exerts both a positive feedback action on mGluR-I, through activation of the phospholipase C (PLC)/IP3 path, and the negative feedback, by interfering with substrate phosphorylation through Gi/0-coupled mGluRs-II/III. The positive feedback prevails, which may explain the increase in overall rates of release observed during mechanical stimulation (symmetrical in the excitatory and inhibitory directions). The negative feedback may protect the junction from over-activation.
Collapse
Affiliation(s)
- Maria Lisa Rossi
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy.
| | - Gemma Rubbini
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy
| | - Marta Martini
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy
| | - Rita Canella
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy
| | - Riccardo Fesce
- Centre of Neuroscience, DISTA, Insubria University, Varese, Italy
| |
Collapse
|
7
|
Nam JH. An operating principle of the turtle utricle to detect wide dynamic range. Hear Res 2017; 360:31-39. [PMID: 29037815 DOI: 10.1016/j.heares.2017.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023]
Abstract
The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from <0.05 to >2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (iMET) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (aHead). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
8
|
Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 2017; 117:1969-1986. [PMID: 28202575 DOI: 10.1152/jn.00895.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 01/14/2023] Open
Abstract
Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents.NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational modeling provides insights into how morphology impacts excitability and also reveals a new explanation for spike train irregularity based on relative numbers of multiple bouton contacts per hair cell. This mechanism is independent of other proposed mechanisms for spike train irregularity based on ionic conductances and can explain irregularity in dimorphic units and calyx endings.
Collapse
Affiliation(s)
- William R Holmes
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Janice A Huwe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Barbara Williams
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Michael H Rowe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Ellengene H Peterson
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| |
Collapse
|
9
|
Muscarinic Acetylcholine Receptors and M-Currents Underlie Efferent-Mediated Slow Excitation in Calyx-Bearing Vestibular Afferents. J Neurosci 2017; 37:1873-1887. [PMID: 28093476 DOI: 10.1523/jneurosci.2322-16.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/21/2022] Open
Abstract
Stimulation of vestibular efferent neurons excites calyx and dimorphic (CD) afferents. This excitation consists of fast and slow components that differ >100-fold in activation kinetics and response duration. In the turtle, efferent-mediated fast excitation arises in CD afferents when the predominant efferent neurotransmitter acetylcholine (ACh) activates calyceal nicotinic ACh receptors (nAChRs); however, it is unclear whether the accompanying efferent-mediated slow excitation is also attributed to cholinergic mechanisms. To identify synaptic processes underlying efferent-mediated slow excitation, we recorded from CD afferents innervating the turtle posterior crista during electrical stimulation of efferent neurons, in combination with pharmacological probes and mechanical stimulation. Efferent-mediated slow excitation was unaffected by nAChR compounds that block efferent-mediated fast excitation, but were mimicked by muscarine and antagonized by atropine, indicating that it requires ACh and muscarinic ACh receptor (mAChR) activation. Efferent-mediated slow excitation or muscarine application enhanced the sensitivity of CD afferents to mechanical stimulation, suggesting that mAChR activation increases afferent input impedance by closing calyceal potassium channels. These observations were consistent with suppression of a muscarinic-sensitive K+-current, or M-current. Immunohistochemistry for putative M-current candidates suggested that turtle CD afferents express KCNQ3, KCNQ4, and ERG1-3 potassium channel subunits. KCNQ channels were favored as application of the selective antagonist XE991 mimicked and occluded efferent-mediated slow excitation in CD afferents. These data highlight an efferent-mediated mechanism for enhancing afferent sensitivity. They further suggest that the clinical effectiveness of mAChR antagonists in treating balance disorders may also target synaptic mechanisms in the vestibular periphery, and that KCNQ channel modulators might offer similar therapeutic value.SIGNIFICANCE STATEMENT Targeting the efferent vestibular system (EVS) pharmacologically might prove useful in ameliorating some forms of vestibular dysfunction by modifying ongoing primary vestibular input. EVS activation engages several kinetically distinct synaptic processes that profoundly alter the discharge rate and sensitivity of first-order vestibular neurons. Efferent-mediated slow excitation of vestibular afferents is of considerable interest given its ability to elevate afferent activity over an extended time course. We demonstrate for the first time that efferent-mediated slow excitation of vestibular afferents is mediated by muscarinic acetylcholine receptor (mAChR) activation and the subsequent closure of KCNQ potassium channels. The clinical effectiveness of some anti-mAChR drugs in treating motion sickness suggest that we may, in fact, already be targeting the peripheral EVS.
Collapse
|
10
|
Pharmacologically distinct nicotinic acetylcholine receptors drive efferent-mediated excitation in calyx-bearing vestibular afferents. J Neurosci 2015; 35:3625-43. [PMID: 25716861 DOI: 10.1523/jneurosci.3388-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia.
Collapse
|
11
|
Martini M, Canella R, Rubbini G, Fesce R, Rossi ML. Sensory transduction at the frog semicircular canal: how hair cell membrane potential controls junctional transmission. Front Cell Neurosci 2015; 9:235. [PMID: 26157360 PMCID: PMC4477162 DOI: 10.3389/fncel.2015.00235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
At the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot be studied at the intact semicircular canal. To circumvent the problem, we combined patch-clamp recordings at the isolated hair cell and electrophysiological recordings at the cytoneural junction in the intact preparation. At isolated hair cells, the K channel blocker tetraethylammonium (TEA) is shown to block a fraction of total voltage-dependent K-conductance (IKD) that depends on TEA concentration but not on membrane potential (Vm). Considering the bioelectric properties of the hair cell, as previously characterized by this lab, a fixed fractional block of IKD is shown to induce a relatively fixed shift in Vm, provided it lies in the range −30 to −10 mV. The same concentrations of TEA were applied to the intact labyrinth while recording from single afferent fibers of the posterior canal, at rest and during mechanical stimulation. At the peak of stimulation, TEA produced increases in mEPSP rate that were linearly related to the shifts produced by the same TEA concentrations (0.1–3 mM) in hair cell Vm (0.7–5 mV), with a slope of 29.8 Hz/mV. The membrane potential of the hair cell is not linearly related to receptor conductance, so that the slope of quantal release vs. receptor conductance depends on the prevailing Vm (19.8 Hz/nS at −20 mV; 11 Hz/nS at −10 mV). Changes in mEPSP peak size were negligible at rest as well as during stimulation. Since ample spatial summation of mEPSPs occurs at the afferent terminal and threshold-governed spike firing is intrinsically nonlinear, the observed increases in mEPSP frequency, though not very large, may suffice to trigger afferent spike discharge.
Collapse
Affiliation(s)
- Marta Martini
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University Ferrara, Italy
| | - Rita Canella
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University Ferrara, Italy
| | - Gemma Rubbini
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University Ferrara, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, Insubria University Varese, Italy
| | - Maria Lisa Rossi
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University Ferrara, Italy
| |
Collapse
|
12
|
Goldberg JM, Holt JC. Discharge regularity in the turtle posterior crista: comparisons between experiment and theory. J Neurophysiol 2013; 110:2830-48. [PMID: 24004525 DOI: 10.1152/jn.00195.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intra-axonal recordings were made from bouton fibers near their termination in the turtle posterior crista. Spike discharge, miniature excitatory postsynaptic potentials (mEPSPs), and afterhyperpolarizations (AHPs) were monitored during resting activity in both regularly and irregularly discharging units. Quantal size (qsize) and quantal rate (qrate) were estimated by shot-noise theory. Theoretically, the ratio, σV/(dμV/dt), between synaptic noise (σV) and the slope of the mean voltage trajectory (dμV/dt) near threshold crossing should determine discharge regularity. AHPs are deeper and more prolonged in regular units; as a result, dμV/dt is larger, the more regular the discharge. The qsize is larger and qrate smaller in irregular units; these oppositely directed trends lead to little variation in σV with discharge regularity. Of the two variables, dμV/dt is much more influential than the nearly constant σV in determining regularity. Sinusoidal canal-duct indentations at 0.3 Hz led to modulations in spike discharge and synaptic voltage. Gain, the ratio between the amplitudes of the two modulations, and phase leads re indentation of both modulations are larger in irregular units. Gain variations parallel the sensitivity of the postsynaptic spike encoder, the set of conductances that converts synaptic input into spike discharge. Phase variations reflect both synaptic inputs to the encoder and postsynaptic processes. Experimental data were interpreted using a stochastic integrate-and-fire model. Advantages of an irregular discharge include an enhanced encoder gain and the prevention of nonlinear phase locking. Regular and irregular units are more efficient, respectively, in the encoding of low- and high-frequency head rotations, respectively.
Collapse
Affiliation(s)
- Jay M Goldberg
- Department of Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
13
|
Cortes C, Galindo F, Galicia S, Cebada J, Flores A. Excitatory actions of GABA in developing chick vestibular afferents: effects on resting electrical activity. Synapse 2013; 67:374-81. [PMID: 23401185 DOI: 10.1002/syn.21646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/31/2013] [Indexed: 11/09/2022]
Abstract
The aim of this study was to characterize the effect of γ-aminobutyric acid (GABA) in the resting multiunit activity of the vestibular afferents during development using the isolated inner ear of embryonic and postnatal chickens (E15-E21 and P5). GABA (10(-3) to 10(-5) M; n = 133) and muscimol (10(-3) M) elicited an increase in the frequency of the basal discharge of the vestibular afferents. We found that GABA action was dose-dependent and inversely related to animal age. Thus, the largest effect was observed in embryonic ages such as E15 and E17 and decreases in E21 and P5. The GABAA receptor antagonists, bicuculline (10(-5) M; n = 10) and picrotoxin (10(-4) M; n = 10), significantly decreased the excitatory action of GABA and muscimol (10(-3) M). Additionally, CNQX 10(-6) M, MCPG 10(-5) M and 7ClKyn 10(-5) M (n = 5) were co-applied by bath substitution (n = 5). Both the basal discharge and the GABA action significantly decreased in these experimental conditions. The chloride channel blocker 9-AC 0.5 mM produced an important reduction in the effect of GABA 10(-3) (n = 5) and 10(-4) M (n = 5). Thus, our results suggest an excitatory role of GABA in the resting activity of the vestibular afferents that can be explained by changes in the gradient of concentration of Cl(-) during development. We show for the first time that the magnitude of this GABA effect decreases at later stages of embryonic and early postnatal development. Taking into account the results with glutamatergic antagonists, we conclude that GABA has a presynaptic action but is not the neurotransmitter in the vestibular afferent synapses, although it could act as a facilitator of the spontaneous activity and may regulate glutamate release.
Collapse
Affiliation(s)
- Celso Cortes
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Av. 13 Sur 2702 Colonia Volcanes CP, 72410, Puebla, Pue., México
| | | | | | | | | |
Collapse
|
14
|
Rivera ARV, Davis J, Grant W, Blob RW, Peterson E, Neiman AB, Rowe M. Quantifying utricular stimulation during natural behavior. ACTA ACUST UNITED AC 2012; 317:467-80. [PMID: 22753360 DOI: 10.1002/jez.1739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/24/2012] [Accepted: 05/18/2012] [Indexed: 11/07/2022]
Abstract
The use of natural stimuli in neurophysiological studies has led to significant insights into the encoding strategies used by sensory neurons. To investigate these encoding strategies in vestibular receptors and neurons, we have developed a method for calculating the stimuli delivered to a vestibular organ, the utricle, during natural (unrestrained) behaviors, using the turtle as our experimental preparation. High-speed digital video sequences are used to calculate the dynamic gravito-inertial (GI) vector acting on the head during behavior. X-ray computed tomography (CT) scans are used to determine the orientation of the otoconial layer (OL) of the utricle within the head, and the calculated GI vectors are then rotated into the plane of the OL. Thus, the method allows us to quantify the spatio-temporal structure of stimuli to the OL during natural behaviors. In the future, these waveforms can be used as stimuli in neurophysiological experiments to understand how natural signals are encoded by vestibular receptors and neurons. We provide one example of the method, which shows that turtle feeding behaviors can stimulate the utricle at frequencies higher than those typically used in vestibular studies. This method can be adapted to other species, to other vestibular end organs, and to other methods of quantifying head movements.
Collapse
Affiliation(s)
- Angela R V Rivera
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Eatock RA, Songer JE. Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 2011; 34:501-34. [PMID: 21469959 DOI: 10.1146/annurev-neuro-061010-113710] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vestibular epithelia of the inner ear detect head motions over a wide range of amplitudes and frequencies. In mammals, afferent nerve fibers from central and peripheral zones of vestibular epithelia form distinct populations with different response dynamics and spike timing. Central-zone afferents are large, fast conduits for phasic signals encoded in irregular spike trains. The finer afferents from peripheral zones conduct more slowly and encode more tonic, linear signals in highly regular spike trains. The hair cells are also of two types, I and II, but the two types do not correspond directly to the two afferent populations. Zonal differences in afferent response dynamics may arise at multiple stages, including mechanoelectrical transduction, voltage-gated channels in hair cells and afferents, afferent transmission at calyceal and bouton synapses, and spike generation in regular and irregular afferents. In contrast, zonal differences in spike timing may depend more simply on the selective expression of low-voltage-activated ion channels by irregular afferents.
Collapse
Affiliation(s)
- Ruth Anne Eatock
- Department of Otology and Laryngology, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
16
|
Rowe MH, Neiman AB. Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans. Brain Res 2011; 1434:226-42. [PMID: 21890114 DOI: 10.1016/j.brainres.2011.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 11/25/2022]
Abstract
We have used sinusoidal and band-limited Gaussian noise stimuli along with information measures to characterize the linear and non-linear responses of morpho-physiologically identified posterior canal (PC) afferents and to examine the relationship between mutual information rate and other physiological parameters. Our major findings are: 1) spike generation in most PC afferents is effectively a stochastic renewal process, and spontaneous discharges are fully characterized by their first order statistics; 2) a regular discharge, as measured by normalized coefficient of variation (cv*), reduces intrinsic noise in afferent discharges at frequencies below the mean firing rate; 3) coherence and mutual information rates, calculated from responses to band-limited Gaussian noise, are jointly determined by gain and intrinsic noise (discharge regularity), the two major determinants of signal to noise ratio in the afferent response; 4) measures of optimal non-linear encoding were only moderately greater than optimal linear encoding, indicating that linear stimulus encoding is limited primarily by internal noise rather than by non-linearities; and 5) a leaky integrate and fire model reproduces these results and supports the suggestion that the combination of high discharge regularity and high discharge rates serves to extend the linear encoding range of afferents to higher frequencies. These results provide a framework for future assessments of afferent encoding of signals generated during natural head movements and for comparison with coding strategies used by other sensory systems. This article is part of a Special Issue entitled: Neural Coding.
Collapse
Affiliation(s)
- Michael H Rowe
- Department of Biological Sciences, Ohio University, Athens, OH, USA.
| | | |
Collapse
|
17
|
Kalluri R, Xue J, Eatock RA. Ion channels set spike timing regularity of mammalian vestibular afferent neurons. J Neurophysiol 2010; 104:2034-51. [PMID: 20660422 DOI: 10.1152/jn.00396.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the mammalian vestibular nerve, some afferents have highly irregular interspike intervals and others have highly regular intervals. To investigate whether spike timing is determined by the afferents' ion channels, we studied spiking activity in their cell bodies, isolated from the vestibular ganglia of young rats. Whole cell recordings were made with the perforated-patch method. As previously reported, depolarizing current steps revealed distinct firing patterns. Transient neurons fired one or two onset spikes, independent of current level. Sustained neurons were more heterogeneous, firing either trains of spikes or a spike followed by large voltage oscillations. We show that the firing pattern categories are robust, occurring at different temperatures and ages, both in mice and in rats. A difference in average resting potential did not cause the difference in firing patterns, but contributed to differences in afterhyperpolarizations. A low-voltage-activated potassium current (I(LV)) was previously implicated in the transient firing pattern. We show that I(LV) grew from the first to second postnatal week and by the second week comprised Kv1 and Kv7 (KCNQ) components. Blocking I(LV) converted step-evoked firing patterns from transient to sustained. Separated from their normal synaptic inputs, the neurons did not spike spontaneously. To test whether the firing-pattern categories might correspond to afferent populations of different regularity, we injected simulated excitatory postsynaptic currents at pseudorandom intervals. Sustained neurons responded to a given pattern of input with more regular firing than did transient neurons. Pharmacological block of I(LV) made firing more regular. Thus ion channel differences that produce transient and sustained firing patterns in response to depolarizing current steps can also produce irregular and regular spike timing.
Collapse
Affiliation(s)
- Radha Kalluri
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA.
| | | | | |
Collapse
|
18
|
Pharmacological modulation of transmitter release by inhibition of pressure-dependent potassium currents in vestibular hair cells. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:531-8. [PMID: 19830405 DOI: 10.1007/s00210-009-0463-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
Vestibular vertigo may be induced by increases in the endolymphatic pressure that activate pressure-dependent K(+) currents (I(K,p)) in vestibular hair cells. I(K,p) have been demonstrated to modulate transmitter release and are inhibited by low concentrations of cinnarizine. Beneficial effects against vestibular vertigo of cinnarizine have been attributed to its inhibition of calcium currents. Our aim was to determine the extent by which the inhibition of I(K,p) by cinnarizine may alter the voltage response to stimulating currents and to analyze whether such alterations may be sufficient to modulate the activation of Ca(2+) currents and transmitter release. Vestibular type II hair cells from guinea pigs were studied using the whole-cell patch-clamp technique. In current clamp, voltage responses to trains of stimulating currents were recorded. In voltage clamp, transmitter release was assessed from changes in the cell capacitance, as calculated from the phase shift during application of sine waves. Cinnarizine (0.05-3 microM) concentration dependently reversed the depressing effects of increases in the hydrostatic pressure (from 0.2 to 0.5 cm H(2)O) on the voltage responses to stimulating currents. Voltage protocols that simulated these responses were applied in voltage clamp and revealed a significantly enhanced transmitter release in conditions mimicking an inhibition of I(K,p). Cinnarizine (< or =0.5 microM) did not inhibit calcium currents. We conclude that cinnarizine, in pharmacologically relevant concentrations, enhances transmitter release in the presence of elevated hydrostatic pressure by an indirect mechanism, involving inhibition of I(K,p), enhancing depolarization, and increasing the voltage-dependent activation of Ca(2+) currents, without directly affecting Ca(2+) current.
Collapse
|
19
|
Spikes and membrane potential oscillations in hair cells generate periodic afferent activity in the frog sacculus. J Neurosci 2009; 29:10025-37. [PMID: 19675236 DOI: 10.1523/jneurosci.1798-09.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To look for membrane potential oscillations that may contribute to sensory coding or amplification in the ear, we made whole-cell and perforated-patch recordings from hair cells and postsynaptic afferent neurites in the explanted frog sacculus, with mechanoelectrical transduction (MET) blocked. Small depolarizing holding currents, which may serve to replace the in vivo resting MET current, evoked all-or-none calcium spikes (39-75 mV amplitude) in 37% of hair cells tested, and continuous membrane potential oscillations (14-28 mV; 15-130 Hz) in an additional 14% of cells. Spiking hair cells were on average taller and thinner than nonspiking hair cells, and had smaller outward currents through delayed rectifier channels (I(KV)) and noninactivating calcium-activated potassium channels (I(BK,steady)), and larger inward rectifier currents (I(K1)). Some spiking hair cells fired only a brief train at the onset of a current step, but others could sustain repetitive firing (3-70 Hz). Partial blockade of I(BK) changed the amplitude and frequency of oscillations and spikes, and converted some nonspiking cells into spiking cells. Oscillatory hair cells preferentially amplified sinusoidal stimuli at frequencies near their natural oscillation frequency. Postsynaptic recordings revealed regularly timed bursts of EPSPs in some afferent neurites. EPSP bursts were able to trigger afferent spikes, which may be initiated at the sodium channel cluster located adjacent to the afferent axon's most peripheral myelin segment. These results show that some frog saccular hair cells can generate spontaneous rhythmic activity that may drive periodic background activity in afferent axons.
Collapse
|
20
|
Neubauer H, Köppl C, Heil P. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions. J Neurophysiol 2009; 101:3169-91. [PMID: 19357334 DOI: 10.1152/jn.90779.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vertebrate auditory systems, the conversion from graded receptor potentials across the hair-cell membrane into stochastic spike trains of the auditory nerve (AN) fibers is performed by ribbon synapses. The statistics underlying this process constrain auditory coding but are not precisely known. Here, we examine the distributions of interspike intervals (ISIs) from spontaneous activity of AN fibers of the barn owl (Tyto alba), a nocturnal avian predator whose auditory system is specialized for precise temporal coding. The spontaneous activity of AN fibers, with the exception of those showing preferred intervals, is commonly thought to result from excitatory events generated by a homogeneous Poisson point process, which lead to spikes unless the fiber is refractory. We show that the ISI distributions in the owl are better explained as resulting from the action of a brief refractory period ( approximately 0.5 ms) on excitatory events generated by a homogeneous stochastic process where the distribution of interevent intervals is a mixture of an exponential and a gamma distribution with shape factor 2, both with the same scaling parameter. The same model was previously shown to apply to AN fibers in the cat. However, the mean proportions of exponentially versus gamma-distributed intervals in the mixture were different for cat and owl. Furthermore, those proportions were constant across fibers in the cat, whereas they covaried with mean spontaneous rate and with characteristic frequency in the owl. We hypothesize that in birds, unlike in mammals, more than one ribbon may provide excitation to most fibers, accounting for the different proportions, and that variation in the number of ribbons may underlie the variation in the proportions.
Collapse
|
21
|
Lysakowski A, Goldberg JM. Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). J Comp Neurol 2008; 511:47-64. [PMID: 18729176 DOI: 10.1002/cne.21827] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Type I hair cells outnumber type II hair cells (HCs) in squirrel monkey (Saimiri sciureus) cristae by a nearly 3:1 ratio. Associated with this type I HC preponderance, calyx fibers make up a much larger fraction of the afferent innervation than in rodents (Fernández et al. [1995] J. Neurophysiol. 73:1253-1269). To study how this affects synaptic architecture, we used disector methods to estimate various features associated with type I and type II HCs in central (CZ) and peripheral (PZ) zones of monkey cristae. Each type I HC makes, on average, 5-10 ribbon synapses with the inner face of a calyx ending. Inner-face synapses outnumber those on calyx outer faces by a 40:1 ratio. Expressed per afferent, there are, on average, 15 inner-face ribbon synapses, 0.38 outer-face ribbons, and 2.6 efferent boutons on calyx-bearing endings. Calyceal invaginations per type I HC range from 19 in CZ to 3 in PZ. For type II HCs, there are many more ribbons and afferent boutons in PZ than in CZ, whereas efferent innervation is relatively uniform throughout the neuroepithelium. Despite outer-face ribbons being more numerous in chinchilla than in squirrel monkey, afferent discharge properties are similar (Lysakowski et al. [1995] J. Neurophysiol. 73:1270-1281), reinforcing the importance of inner-face ribbons in synaptic transmission. Comparisons across mammalian species suggest that the prevalence of type I HCs is a primate characteristic, rather than an arboreal life-style adaptation. Unlike cristae, type II HCs predominate in monkey maculae. Differences in hair-cell counts may reflect the stimulus magnitudes handled by semicircular canals and otolith organs.
Collapse
Affiliation(s)
- Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Illinois 60612, USA.
| | | |
Collapse
|
22
|
Jones TA, Jones SM, Hoffman LF. Resting discharge patterns of macular primary afferents in otoconia-deficient mice. J Assoc Res Otolaryngol 2008; 9:490-505. [PMID: 18661184 DOI: 10.1007/s10162-008-0132-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 07/07/2008] [Indexed: 10/21/2022] Open
Abstract
Vestibular primary afferents in the normal mammal are spontaneously active. The consensus hypothesis states that such discharge patterns are independent of stimulation and depend instead on excitation by vestibular hair cells due to background release of synaptic neurotransmitter. In the case of otoconial sensory receptors, it is difficult to test the independence of resting discharge from natural tonic stimulation by gravity. We examined this question by studying discharge patterns of single vestibular primary afferent neurons in the absence of gravity stimulation using two mutant strains of mice that lack otoconia (OTO-; head tilt, het-Nox3, and tilted, tlt-Otop1). Our findings demonstrated that macular primary afferent neurons exhibit robust resting discharge activity in OTO- mice. Spike interval coefficient of variation (CV = SD/mean spike interval) values reflected both regular and irregular discharge patterns in OTO- mice, and the range of values for rate-normalized CV was similar to mice and other mammals with intact otoconia although there were proportionately fewer irregular fibers. Mean discharge rates were slightly higher in otoconia-deficient strains even after accounting for proportionately fewer irregular fibers [OTO- = 75.4 +/- 31.1(113) vs OTO+ = 68.1 +/- 28.5(143) in sp/s]. These results confirm the hypothesis that resting activity in macular primary afferents occurs in the absence of ambient stimulation. The robust discharge rates are interesting in that they may reflect the presence of a functionally 'up-regulated' tonic excitatory process in the absence of natural sensory stimulation.
Collapse
Affiliation(s)
- T A Jones
- Communication Sciences and Disorders, School of Allied Health Sciences, East Carolina University, Health Sciences Building, Rm 3310P, Greenville, NC 27858-4353, USA.
| | | | | |
Collapse
|
23
|
Holt JC, Chatlani S, Lysakowski A, Goldberg JM. Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista. J Neurophysiol 2007; 98:1083-101. [PMID: 17596419 PMCID: PMC3397384 DOI: 10.1152/jn.00332.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular recordings were made from nerve fibers in the posterior ampullary nerve near the neuroepithelium. Calyx-bearing afferents were identified by their distinctive efferent-mediated responses. Such fibers receive inputs from both type I and type II hair cells. Type II inputs are made by synapses on the outer face of the calyx ending and on the boutons of dimorphic fibers. Quantal activity, consisting of brief mEPSPs, is reduced by lowering the external concentration of Ca2+ and blocked by the AMPA-receptor antagonist CNQX. Poisson statistics govern the timing of mEPSPs, which occur at high rates (250-2,500/s) in the absence of mechanical stimulation. Excitation produced by canal-duct indentation can increase mEPSP rates to nearly 5,000/s. As the rate increases, mEPSPs can change from a monophasic depolarization to a biphasic depolarizing-hyperpolarizing sequence, both of whose components are blocked by CNQX. Blockers of voltage-gated currents affect mEPSP size, which is decreased by TTX and is increased by linopirdine. mEPSP size decreases severalfold after impalement. The size decrease, although it may be triggered by the depolarization occurring during impalement, persists even at hyperpolarized membrane potentials. Nonquantal transmission is indicated by shot-noise calculations and by the presence of voltage modulations after quantal activity is abolished pharmacologically. An ultrastructural study shows that inner-face inputs from type I hair cells outnumber outer-face inputs from type II hair cells by an almost 6:1 ratio.
Collapse
Affiliation(s)
- Joseph C Holt
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | |
Collapse
|
24
|
Holt JC, Lysakowski A, Goldberg JM. Mechanisms of efferent-mediated responses in the turtle posterior crista. J Neurosci 2006; 26:13180-93. [PMID: 17182768 PMCID: PMC4157627 DOI: 10.1523/jneurosci.3539-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 10/12/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022] Open
Abstract
To study the cellular mechanisms of efferent actions, we recorded from vestibular-nerve afferents close to the turtle posterior crista while efferent fibers were electrically stimulated. Efferent-mediated responses were obtained from calyx-bearing (CD, calyx and dimorphic) afferents and from bouton (B) afferents distinguished by their neuroepithelial locations into BT units near the torus and BM units at intermediate sites. The spike discharge of CD units is strongly excited by efferent stimulation, whereas BT and BM units are inhibited, with BM units also showing a postinhibitory excitation. Synaptic activity was recorded intracellularly after spikes were blocked. Responses of BT/BM units to single efferent shocks consist of a brief depolarization followed by a prolonged hyperpolarization. Both components reflect variations in hair-cell quantal release rates and are eliminated by pharmacological antagonists of alpha9/alpha10 nicotinic receptors. Blocking calcium-dependent SK potassium channels converts the biphasic response into a prolonged depolarization. Results can be explained, as in other hair-cell systems, by the sequential activation of alpha9/alpha10 and SK channels. In BM units, the postinhibitory excitation is based on an increased rate of hair-cell quanta and depends on the preceding inhibition. There is, in addition, an efferent-mediated, direct depolarization of BT/BM and CD fibers. In CD units, it is the exclusive efferent response. Nicotinic antagonists have different effects on hair-cell efferent actions and on the direct depolarization of CD and BT/BM units. Ultrastructural studies, besides confirming the efferent innervation of type II hair cells and calyx endings, show that turtle efferents commonly contact afferent boutons terminating on type II hair cells.
Collapse
Affiliation(s)
- Joseph C Holt
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
25
|
Moser T, Brandt A, Lysakowski A. Hair cell ribbon synapses. Cell Tissue Res 2006; 326:347-59. [PMID: 16944206 PMCID: PMC4142044 DOI: 10.1007/s00441-006-0276-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/08/2006] [Indexed: 11/24/2022]
Abstract
Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the apical compartment. Transmitter release occurs at several active zones along the basolateral membrane. The astonishing capability of the hair cell ribbon synapse for temporally precise and reliable sensory coding has been the subject of intense investigation over the past few years. This research has been facilitated by the excellent experimental accessibility of the hair cell. For the same reason, the hair cell serves as an important model for studying presynaptic Ca(2+) signaling and stimulus-secretion coupling. In addition to common principles, hair cell synapses differ in their anatomical and functional properties among species, among the auditory and vestibular organs, and among hair cell positions within the organ. Here, we briefly review synaptic morphology and connectivity and then focus on stimulus-secretion coupling at hair cell synapses.
Collapse
Affiliation(s)
- Tobias Moser
- Department of Otolaryngology and Center for Molecular Physiology of the Brain, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | |
Collapse
|
26
|
Bonsacquet J, Brugeaud A, Compan V, Desmadryl G, Chabbert C. AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse. J Physiol 2006; 576:63-71. [PMID: 16887871 PMCID: PMC1995632 DOI: 10.1113/jphysiol.2006.116467] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamate is thought to be the main neurotransmitter at the synapse between the type I vestibular hair cell and its cognate calyx afferent. The present study was designed to identify the type of glutamate receptors involved in neurotransmission at this unusual synapse. Immunocytochemistry showed that AMPA GluR2, NMDA NR1 and NR2A/B subunits of the glutamate receptors were confined to the synaptic contact. We then examined the electrical activity at calyx terminals using direct electrophysiological recordings from intact dendritic terminals in explanted turtle posterior crista. We found that sodium-based action potentials support a background discharge that could be modulated by the mechanical stimulation of the hair bundle of the sensory cells. These activities were prevented by blocking both the mechano-electrical transduction channels and L-type voltage-gated Ca(2+) channels involved in synaptic transmission. Although pharmacological analysis revealed that NMDA receptors could operate, our results show that AMPA receptors are mainly involved in synaptic neurotransmission. We conclude that although both AMPA and NMDA glutamate receptor subunits are present at the calyx synapse, only AMPA receptors appear to be involved in the synaptic transmission between the type I vestibular hair cell and the calyx afferent.
Collapse
Affiliation(s)
- Jérémie Bonsacquet
- INSERM U583, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, BP74 103, 80 Rue Fliche, 34091 Montpellier Cedex 5 France.
| | | | | | | | | |
Collapse
|
27
|
Mercado F, López IA, Acuna D, Vega R, Soto E. Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol 2006; 96:1615-24. [PMID: 16790596 DOI: 10.1152/jn.00378.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ionic channels (ASICs) are members of the epithelial Na+ channel/degenerin (ENaC/DEG) superfamily. ASICs are widely distributed in the central and peripheral nervous system. They have been implicated in synaptic transmission, pain perception, and the mechanoreception in peripheral tissues. Our objective was to characterize proton-gated currents mediated by ASICs and to determine their immunolocation in the rat vestibular periphery. Voltage clamp of cultured afferent neurons from P7 to P10 rats showed a proton-gated current with rapid activation and complete desensitization, which was carried almost exclusively by sodium ions. The current response to protons (H+) has a pH0.5 of 6.2. This current was reversibly decreased by amiloride, gadolinium, lead, acetylsalicylic acid, and enhanced by FMRFamide and zinc, and negatively modulated by raising the extracellular calcium concentration. Functional expression of the current was correlated with smaller-capacitance neurons. Acidification of the extracellular pH generated action potentials in vestibular neurons, suggesting a functional role of ASICs in their excitability. Immunoreactivity to ASIC1a and ASIC2a subunits was found in small vestibular ganglion neurons and afferent fibers that run throughout the macula utricle and crista stroma. ASIC2b, ASIC3, and ASIC4 were expressed to a lesser degree in vestibular ganglion neurons. The ASIC1b subunit was not detected in the vestibular endorgans. No acid-pH-sensitive currents or ASIC immunoreactivity was found in hair cells. Our results indicate that proton-gated current is carried through ASICs and that ionic current activated by H+ contributes to shape the vestibular afferent neurons' response to its synaptic input.
Collapse
Affiliation(s)
- Francisco Mercado
- Instituto de Fisiología, Universidad Autónoma de Pubela, Puebla, Mexico.
| | | | | | | | | |
Collapse
|
28
|
Metts BA, Kaufman GD, Perachio AA. Polysynaptic inputs to vestibular efferent neurons as revealed by viral transneuronal tracing. Exp Brain Res 2006; 172:261-74. [PMID: 16421729 DOI: 10.1007/s00221-005-0328-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
The Bartha strain of the alpha-herpes pseudorabies virus (PrV) was used as a retrograde transneuronal tracer to map synaptic inputs to the vestibular efferent neurons of the Mongolian gerbil, Meriones unguiculatus. Although previous experiments have shown that vestibular efferent neurons respond to visual motion and somatosensory stimuli, the anatomic connections mediating those responses are unknown. PrV was injected unilaterally into the horizontal semicircular canal neuroepithelium of gerbils, where it was taken up by efferent axon terminals. The virus was then retrogradely transported to efferent cell bodies, replicated, and transported into synaptic endings projecting onto the efferent cells. Thirty animals were sacrificed at approximately 5-h increments between 75 and 105 h post-infection after determining that shorter time points had no central infection. Infected cells were visualized immunohistochemically. Temporal progression of neuronal infection was used to determine the nature of primary and higher order projections to the vestibular efferent neurons. Animals sacrificed at 80-94 h post-inoculation exhibited immunostaining in the dorsal and ventral group of vestibular efferent neurons, predominately on the contralateral side. Neurons within the medial, gigantocellular, and lateral reticular formations were among the first cells infected thereafter. At 95 h, additional virus-labeled cell groups included the solitary, area postrema, pontine reticular, prepositus, dorsal raphe, tegmental, the subcoeruleus nuclei, the nucleus of Darkschewitsch, and the inferior olivary beta and ventrolateral subnuclei. Analysis beyond 95 h revealed virus-infected neurons located in the vestibulo-cerebellar and motor cortices. Paraventricular, lateral, and posterior hypothalamic cells, as well as central amygdala cells, were also labeled. Spinal cord tissue exhibited no labeling in the intermediolateral cell column, but scattered cells were found in the central cervical nucleus. The results suggest functional associations among efferent feedback regulation of labyrinthine sensory input and both behavioral and autonomic systems, and support a closed-looped vestibular feedback model with additional open-loop polysynaptic inputs.
Collapse
Affiliation(s)
- Brent A Metts
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|