1
|
Cregg JM, Mirdamadi JL, Fortunato C, Okorokova EV, Kuper C, Nayeem R, Byun AJ, Avraham C, Buonocore A, Winner TS, Mildren RL. Highlights from the 31st Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2023; 129:220-234. [PMID: 36541602 PMCID: PMC9844973 DOI: 10.1152/jn.00500.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jared M Cregg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Cátia Fortunato
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Clara Kuper
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rashida Nayeem
- Department of Electrical Engineering, Northeastern University, Boston, Massachusetts
| | - Andrew J Byun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, Italy
| | - Taniel S Winner
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Robyn L Mildren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Russo M, Ozeri-Engelhard N, Hupfeld K, Nettekoven C, Thibault S, Sedaghat-Nejad E, Buchwald D, Xing D, Zobeiri O, Kilteni K, Albert ST, Ariani G. Highlights from the 30th Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2021; 126:967-975. [PMID: 34406885 PMCID: PMC8560412 DOI: 10.1152/jn.00334.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marta Russo
- Department of Neurology, Tor Vergata Polyclinic, Rome, Italy
- Department of Biology, Northeastern University, Boston, Massachusetts
| | - Nofar Ozeri-Engelhard
- WM Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kathleen Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Caroline Nettekoven
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Thibault
- ImpAct team, Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, University of Lyon 1, Lyon, France
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniela Buchwald
- Ottobock SE & Co. KGaA, Software & Electronics Engineering, Duderstadt, Germany
| | - David Xing
- Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Omid Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | | | - Scott T Albert
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Giacomo Ariani
- The Brain and Mind Institute, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Hernandez-Castillo CR, Maeda RS, Pruszynski JA, Diedrichsen J. Sensory information from a slipping object elicits a rapid and automatic shoulder response. J Neurophysiol 2020; 123:1103-1112. [PMID: 32073916 DOI: 10.1152/jn.00672.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humans have the remarkable ability to hold, grasp, and manipulate objects. Previous work has reported rapid and coordinated reactions in hand and shoulder muscles in response to external perturbations to the arm during object manipulation; however, little is known about how somatosensory feedback of an object slipping in the hand influences responses of the arm. We built a handheld device to stimulate the sensation of slipping at all five fingertips. The device was integrated into an exoskeleton robot that supported it against gravity. The setup allowed us to decouple somatosensory stimulation in the fingers from forces applied to the arm, two variables that are highly interdependent in real-world scenarios. Fourteen participants performed three experiments in which we measured their arm feedback responses during slip stimulation. Slip stimulations were applied horizontally in one of two directions, and participants were instructed to either follow the slip direction or move the arm in the opposite direction. Participants showed shoulder muscle responses within ∼67 ms of slip onset when following the direction of slip but significantly slower responses when instructed to move in the opposite direction. Shoulder responses were modulated by the speed but not the distance of the slip. Finally, when slip stimulation was combined with mechanical perturbations to the arm, we found that sensory information from the fingertips significantly modulated the shoulder feedback responses. Overall, the results demonstrate the existence of a rapid feedback system that stabilizes handheld objects.NEW & NOTEWORTHY We tested whether the sensation of an object slipping from the fingers modulates shoulder feedback responses. We found rapid shoulder feedback responses when participants were instructed to follow the slip direction with the arm. Shoulder responses following mechanical joint perturbations were also potentiated when combined with slipping. These results demonstrate the existence of fast and automatic feedback responses in the arm in reaction to sensory input to the fingertips that maintain grip on handheld objects.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada
| | - Rodrigo S Maeda
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Jörn Diedrichsen
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Chowdhury RH, Glaser JI, Miller LE. Area 2 of primary somatosensory cortex encodes kinematics of the whole arm. eLife 2020; 9:e48198. [PMID: 31971510 PMCID: PMC6977965 DOI: 10.7554/elife.48198] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022] Open
Abstract
Proprioception, the sense of body position, movement, and associated forces, remains poorly understood, despite its critical role in movement. Most studies of area 2, a proprioceptive area of somatosensory cortex, have simply compared neurons' activities to the movement of the hand through space. Using motion tracking, we sought to elaborate this relationship by characterizing how area 2 activity relates to whole arm movements. We found that a whole-arm model, unlike classic models, successfully predicted how features of neural activity changed as monkeys reached to targets in two workspaces. However, when we then evaluated this whole-arm model across active and passive movements, we found that many neurons did not consistently represent the whole arm over both conditions. These results suggest that 1) neural activity in area 2 includes representation of the whole arm during reaching and 2) many of these neurons represented limb state differently during active and passive movements.
Collapse
Affiliation(s)
- Raeed H Chowdhury
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonUnited States
- Systems Neuroscience InstituteUniversity of PittsburghPittsburghUnited States
| | - Joshua I Glaser
- Interdepartmental Neuroscience ProgramNorthwestern UniversityChicagoUnited States
- Department of StatisticsColumbia UniversityNew YorkUnited States
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkUnited States
| | - Lee E Miller
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonUnited States
- Department of PhysiologyNorthwestern UniversityChicagoUnited States
- Department of Physical Medicine and RehabilitationNorthwestern UniversityChicagoUnited States
- Shirley Ryan AbilityLabChicagoUnited States
| |
Collapse
|
5
|
Mathis A, Pack AR, Maeda RS, McDougle SD. Highlights from the 29th Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2019; 122:1777-1783. [PMID: 31461364 PMCID: PMC6843106 DOI: 10.1152/jn.00484.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alexander Mathis
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Andrea R Pack
- Department of Biology, Emory University, Atlanta, Georgia
| | - Rodrigo S Maeda
- Brain and Mind Institute, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Psychology, Western University, London, Ontario, Canada
| | - Samuel D McDougle
- Department of Psychology, University of California, Berkeley, California
| |
Collapse
|