1
|
Martin A, Souffi S, Huetz C, Edeline JM. Can Extensive Training Transform a Mouse into a Guinea Pig? An Evaluation Based on the Discriminative Abilities of Inferior Colliculus Neurons. BIOLOGY 2024; 13:92. [PMID: 38392310 PMCID: PMC10886615 DOI: 10.3390/biology13020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Humans and animals maintain accurate discrimination between communication sounds in the presence of loud sources of background noise. In previous studies performed in anesthetized guinea pigs, we showed that, in the auditory pathway, the highest discriminative abilities between conspecific vocalizations were found in the inferior colliculus. Here, we trained CBA/J mice in a Go/No-Go task to discriminate between two similar guinea pig whistles, first in quiet conditions, then in two types of noise, a stationary noise and a chorus noise at three SNRs. Control mice were passively exposed to the same number of whistles as trained mice. After three months of extensive training, inferior colliculus (IC) neurons were recorded under anesthesia and the responses were quantified as in our previous studies. In quiet, the mean values of the firing rate, the temporal reliability and mutual information obtained from trained mice were higher than from the exposed mice and the guinea pigs. In stationary and chorus noise, there were only a few differences between the trained mice and the guinea pigs; and the lowest mean values of the parameters were found in the exposed mice. These results suggest that behavioral training can trigger plasticity in IC that allows mice neurons to reach guinea pig-like discrimination abilities.
Collapse
Affiliation(s)
- Alexandra Martin
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS & Université Paris-Saclay, 91400 Saclay, France
| | - Samira Souffi
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS & Université Paris-Saclay, 91400 Saclay, France
| | - Chloé Huetz
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS & Université Paris-Saclay, 91400 Saclay, France
| | - Jean-Marc Edeline
- Paris-Saclay Institute of Neuroscience (Neuro-PSI, UMR 9197), CNRS & Université Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
2
|
Souffi S, Nodal FR, Bajo VM, Edeline JM. When and How Does the Auditory Cortex Influence Subcortical Auditory Structures? New Insights About the Roles of Descending Cortical Projections. Front Neurosci 2021; 15:690223. [PMID: 34413722 PMCID: PMC8369261 DOI: 10.3389/fnins.2021.690223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
For decades, the corticofugal descending projections have been anatomically well described but their functional role remains a puzzling question. In this review, we will first describe the contributions of neuronal networks in representing communication sounds in various types of degraded acoustic conditions from the cochlear nucleus to the primary and secondary auditory cortex. In such situations, the discrimination abilities of collicular and thalamic neurons are clearly better than those of cortical neurons although the latter remain very little affected by degraded acoustic conditions. Second, we will report the functional effects resulting from activating or inactivating corticofugal projections on functional properties of subcortical neurons. In general, modest effects have been observed in anesthetized and in awake, passively listening, animals. In contrast, in behavioral tasks including challenging conditions, behavioral performance was severely reduced by removing or transiently silencing the corticofugal descending projections. This suggests that the discriminative abilities of subcortical neurons may be sufficient in many acoustic situations. It is only in particularly challenging situations, either due to the task difficulties and/or to the degraded acoustic conditions that the corticofugal descending connections bring additional abilities. Here, we propose that it is both the top-down influences from the prefrontal cortex, and those from the neuromodulatory systems, which allow the cortical descending projections to impact behavioral performance in reshaping the functional circuitry of subcortical structures. We aim at proposing potential scenarios to explain how, and under which circumstances, these projections impact on subcortical processing and on behavioral responses.
Collapse
Affiliation(s)
- Samira Souffi
- Department of Integrative and Computational Neurosciences, Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR CNRS 9197, Paris-Saclay University, Orsay, France
| | - Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Jean-Marc Edeline
- Department of Integrative and Computational Neurosciences, Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR CNRS 9197, Paris-Saclay University, Orsay, France
| |
Collapse
|
3
|
Homma NY, Hullett PW, Atencio CA, Schreiner CE. Auditory Cortical Plasticity Dependent on Environmental Noise Statistics. Cell Rep 2021; 30:4445-4458.e5. [PMID: 32234479 PMCID: PMC7326484 DOI: 10.1016/j.celrep.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 03/05/2020] [Indexed: 01/14/2023] Open
Abstract
During critical periods, neural circuits develop to form receptive fields that adapt to the sensory environment and enable optimal performance of relevant tasks. We hypothesized that early exposure to background noise can improve signal-in-noise processing, and the resulting receptive field plasticity in the primary auditory cortex can reveal functional principles guiding that important task. We raised rat pups in different spectro-temporal noise statistics during their auditory critical period. As adults, they showed enhanced behavioral performance in detecting vocalizations in noise. Concomitantly, encoding of vocalizations in noise in the primary auditory cortex improves with noise-rearing. Significantly, spectro-temporal modulation plasticity shifts cortical preferences away from the exposed noise statistics, thus reducing noise interference with the foreground sound representation. Auditory cortical plasticity shapes receptive field preferences to optimally extract foreground information in noisy environments during noise-rearing. Early noise exposure induces cortical circuits to implement efficient coding in the joint spectral and temporal modulation domain. After rearing rats in moderately loud spectro-temporally modulated background noise, Homma et al. investigated signal-in-noise processing in the primary auditory cortex. Noise-rearing improved vocalization-in-noise performance in both behavioral testing and neural decoding. Cortical plasticity shifted neuronal spectro-temporal modulation preferences away from the exposed noise statistics.
Collapse
Affiliation(s)
- Natsumi Y Homma
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick W Hullett
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Craig A Atencio
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Robustness to Noise in the Auditory System: A Distributed and Predictable Property. eNeuro 2021; 8:ENEURO.0043-21.2021. [PMID: 33632813 PMCID: PMC7986545 DOI: 10.1523/eneuro.0043-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background noise strongly penalizes auditory perception of speech in humans or vocalizations in animals. Despite this, auditory neurons are still able to detect communications sounds against considerable levels of background noise. We collected neuronal recordings in cochlear nucleus (CN), inferior colliculus (IC), auditory thalamus, and primary and secondary auditory cortex in response to vocalizations presented either against a stationary or a chorus noise in anesthetized guinea pigs at three signal-to-noise ratios (SNRs; −10, 0, and 10 dB). We provide evidence that, at each level of the auditory system, five behaviors in noise exist within a continuum, from neurons with high-fidelity representations of the signal, mostly found in IC and thalamus, to neurons with high-fidelity representations of the noise, mostly found in CN for the stationary noise and in similar proportions in each structure for the chorus noise. The two cortical areas displayed fewer robust responses than the IC and thalamus. Furthermore, between 21% and 72% of the neurons (depending on the structure) switch categories from one background noise to another, even if the initial assignment of these neurons to a category was confirmed by a severe bootstrap procedure. Importantly, supervised learning pointed out that assigning a recording to one of the five categories can be predicted up to a maximum of 70% based on both the response to signal alone and noise alone.
Collapse
|
5
|
Hosseini M, Rodriguez G, Guo H, Lim HH, Plourde E. The effect of input noises on the activity of auditory neurons using GLM-based metrics. J Neural Eng 2021; 18. [PMID: 33626516 DOI: 10.1088/1741-2552/abe979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
CONTEXT The auditory system is extremely efficient in extracting auditory information in the presence of background noise. However, people with auditory implants have a hard time understanding speech in noisy conditions. Understanding the mechanisms of perception in noise could lead to better stimulation or preprocessing strategies for such implants. OBJECTIVE The neural mechanisms related to the processing of background noise, especially in the inferior colliculus (IC) where the auditory midbrain implant is located, are still not well understood. We thus wish to investigate if there is a difference in the activity of neurons in the IC when presenting noisy vocalizations with different types of noise (stationary vs. non-stationary), input signal-to-noise ratios (SNR) and signal levels. APPROACH We developed novel metrics based on a generalized linear model (GLM) to investigate the effect of a given input noise on neural activity. We used these metrics to analyze neural data recorded from the IC in ketamine-anesthetized female Hartley guinea pigs while presenting noisy vocalizations. MAIN RESULTS We found that non-stationary noise clearly contributes to the multi-unit neural activity in the IC by causing excitation, regardless of the SNR, input level or vocalization type. However, when presenting white or natural stationary noises, a great diversity of responses was observed for the different conditions, where the multi-unit activity of some sites was affected by the presence of noise and the activity of others was not. SIGNIFICANCE The GLM-based metrics allowed the identification of a clear distinction between the effect of white or natural stationary noises and that of non-stationary noise on the multi-unit activity in the IC. This had not been observed before and indicates that the so-called noise invariance in the IC is dependent on the input noisy conditions. This could suggest different preprocessing or stimulation approaches for auditory midbrain implants depending on the noisy conditions.
Collapse
Affiliation(s)
- Maryam Hosseini
- Electrical engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Quebec, J1K 2R1, CANADA
| | - Gerardo Rodriguez
- Biomedical engineering, University of Minnesota, 312 Church St SE, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Hongsun Guo
- Biomedical engineering, University of Minnesota, 312 Church St SE, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA, Minneapolis, Minnesota, 55455, UNITED STATES
| | - Eric Plourde
- Electrical engineering, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Quebec, J1K 2R1, CANADA
| |
Collapse
|
6
|
Noise-Sensitive But More Precise Subcortical Representations Coexist with Robust Cortical Encoding of Natural Vocalizations. J Neurosci 2020; 40:5228-5246. [PMID: 32444386 DOI: 10.1523/jneurosci.2731-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 01/30/2023] Open
Abstract
Humans and animals maintain accurate sound discrimination in the presence of loud sources of background noise. It is commonly assumed that this ability relies on the robustness of auditory cortex responses. However, only a few attempts have been made to characterize neural discrimination of communication sounds masked by noise at each stage of the auditory system and to quantify the noise effects on the neuronal discrimination in terms of alterations in amplitude modulations. Here, we measured neural discrimination between communication sounds masked by a vocalization-shaped stationary noise from multiunit responses recorded in the cochlear nucleus, inferior colliculus, auditory thalamus, and primary and secondary auditory cortex at several signal-to-noise ratios (SNRs) in anesthetized male or female guinea pigs. Masking noise decreased sound discrimination of neuronal populations in each auditory structure, but collicular and thalamic populations showed better performance than cortical populations at each SNR. In contrast, in each auditory structure, discrimination by neuronal populations was slightly decreased when tone-vocoded vocalizations were tested. These results shed new light on the specific contributions of subcortical structures to robust sound encoding, and suggest that the distortion of slow amplitude modulation cues conveyed by communication sounds is one of the factors constraining the neuronal discrimination in subcortical and cortical levels.SIGNIFICANCE STATEMENT Dissecting how auditory neurons discriminate communication sounds in noise is a major goal in auditory neuroscience. Robust sound coding in noise is often viewed as a specific property of cortical networks, although this remains to be demonstrated. Here, we tested the discrimination performance of neuronal populations at five levels of the auditory system in response to conspecific vocalizations masked by noise. In each acoustic condition, subcortical neurons better discriminated target vocalizations than cortical ones and in each structure, the reduction in discrimination performance was related to the reduction in slow amplitude modulation cues.
Collapse
|
7
|
Hosseini M, Rodriguez G, Guo H, Lim H, Plourde E. Novel metrics to measure the effect of additive inputs on the activity of sensory system neurons. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5141-5145. [PMID: 31947016 DOI: 10.1109/embc.2019.8857622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sensory systems, such as the visual or auditory system, are highly non linear. It is therefore not easy to predict the effect of additive inputs on the spiking activity of related brain structures. Here, we propose two metrics to study the effect of additive covariates on the spiking activity of neurons. These metrics are directly obtained from a generalized linear model. We apply these metrics to the study of the effect of additive input audio noise on the spiking activity of neurons in the auditory system. To do so, we combine clean vocalisations with natural stationary or non-stationary noises and record activity in the auditory system while presenting the noisy vocalisations. We found that non-stationary noise has a greater effect on the neural activity than stationary noise. We observe that the results, obtained using the proposed metrics, is more consistent with current knowledge in auditory neuroscience than the results obtained when using a common metric from the literature, the extraction index.
Collapse
|