1
|
Curthoys IS, Zee DS, Dumas G, Pastras CJ, Dlugaiczyk J. Skull vibration induced nystagmus, velocity storage and self-stability. Front Neurol 2025; 16:1533842. [PMID: 39968451 PMCID: PMC11832403 DOI: 10.3389/fneur.2025.1533842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
In this paper we give an introduction to the area, followed by brief reviews of the neural response to sound and vibration, and then the velocity storage integrator, before putting forward our hypothesis about the neural input to the velocity storage integrator. Finally we discuss some of the implications of our hypothesis. There are two pathways conveying neural information from the vestibular periphery (the semicircular canals and the otoliths) to central neural mechanisms-a direct and an indirect pathway. Within the indirect pathway there is a unique neural mechanism called the velocity storage integrator (VSI) which is part of a neural network generating prolonged nystagmus, afternystagmus and the sensation of self-motion and its converse self-stability. It is our hypothesis that only neural input from primary afferent neurons with irregular resting discharge projects in the direct pathway, whereas the primary afferent input in the indirect pathway consists of neurons with regular resting discharge. The basis for this hypothesis is that vibration is a selective stimulus for vestibular neurons with irregular resting discharge. 100 Hz mastoid vibration, while capable of generating nystagmus (skull vibration induced nystagmus SVIN), is ineffective in generating afternystagmus (in the condition of an encased labyrinth) which is a marker of the action of the VSI, leading to the conclusion that irregular afferents bypass the indirect pathway and the VSI. In order to present this hypothesis we review the evidence that irregular neurons are selectively activated by sound and vibration, whereas regular neurons are not so activated. There are close similarities between the temporal characteristics of the irregular afferent neural response to vibration and the temporal characteristics of SVIN. SVIN is a simple clinical indicator of whether a patient has an imbalance between the two vestibular labyrinths and our hypothesis ties SVIN to irregular primary vestibular neurons.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - David S. Zee
- Departments of Neurology, Neuroscience, Ophthalmology, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Georges Dumas
- Department of Oto-Rhino-Laryngology Head and Neck Surgery, University Hospital, Grenoble, France
- Research Unit DevAH — Development, Adaptation and Handicap, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery & Interdisciplinary Center for Vertigo, Balance and Ocular Motor Disorders, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
2
|
Schoenmaekers C, De Smet D, Deblieck C, Van Riel J, Zarowski A, Wuyts FL. Virtual reality application matches the most established treatment for Mal de Debarquement Syndrome: A non-inferiority, randomized, open clinical trial. Neurotherapeutics 2024; 21:e00390. [PMID: 38942708 PMCID: PMC11579859 DOI: 10.1016/j.neurot.2024.e00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Mal de Debarquement Syndrome (MdDS) is a debilitating neuro-otological disorder where individuals consistently feel self-motion, often triggered by motion like being on a boat (MT-MdDS). Due to the unknown pathophysiological mechanism, available treatment options for managing symptoms are limited. Our objective was to develop a virtual reality application (VRA) to simulate the full field optokinetic stimulation (OKS) booth and evaluate its efficacy compared to the standard treatment. In our randomized, open, non-inferiority clinical trial with 30 MT-MdDS patients, 15 received the OKS booth and 15 the new VRA over four consecutive days. Two 4-min treatment blocks were scheduled in the morning and afternoon, with a total of four blocks. Treatment effectiveness was evaluated through questionnaires and posturography. Our findings suggest that the choice of modality does not significantly differ in achieving an overall improvement in symptoms. We advocate that the VRA can be used as an accessible alternative to the booth method worldwide, effectively mitigating MdDS symptoms and enhancing the QoL of numerous MdDS patients.
Collapse
Affiliation(s)
- Catho Schoenmaekers
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium.
| | - Dario De Smet
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Jan Van Riel
- Telmio BV, Luchthavenlaan 27, Vilvoorde, Belgium
| | - Andrzej Zarowski
- Telmio BV, Luchthavenlaan 27, Vilvoorde, Belgium; European Institute for ORL-HNS, Sint-Augustinus Hospital, Wilrijk, Belgium
| | - Floris L Wuyts
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium; Telmio BV, Luchthavenlaan 27, Vilvoorde, Belgium; European Institute for ORL-HNS, Sint-Augustinus Hospital, Wilrijk, Belgium
| |
Collapse
|
3
|
Mohammed A, Li S, Liu X. Exploring the Potentials of Wearable Technologies in Managing Vestibular Hypofunction. Bioengineering (Basel) 2024; 11:641. [PMID: 39061723 PMCID: PMC11274252 DOI: 10.3390/bioengineering11070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/28/2024] Open
Abstract
The vestibular system is dedicated to gaze stabilization, postural balance, and spatial orientation; this makes vestibular function crucial for our ability to interact effectively with our environment. Vestibular hypofunction (VH) progresses over time, and it presents differently in its early and advanced stages. In the initial stages of VH, the effects of VH are mitigated using vestibular rehabilitation therapy (VRT), which can be facilitated with the aid of technology. At more advanced stages of VH, novel techniques that use wearable technologies for sensory augmentation and sensory substitution have been applied to manage VH. Despite this, the potential of assistive technologies for VH management remains underexplored over the past decades. Hence, in this review article, we present the state-of-the-art technologies for facilitating early-stage VRT and for managing advanced-stage VH. Also, challenges and strategies on how these technologies can be improved to enable long-term ambulatory and home use are presented.
Collapse
Affiliation(s)
- Ameer Mohammed
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Shutong Li
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Xiao Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; (A.M.); (S.L.)
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
Tramonti Fantozzi MP, De Cicco V, d’Ascanio P, Cataldo E, De Cicco D, Bruschini L, Barresi M, Faraguna U, Manzoni D. Trigeminal Stimulation and Visuospatial Performance: The Struggle between Chewing and Trigeminal Asymmetries. Biomedicines 2023; 11:2307. [PMID: 37626803 PMCID: PMC10452603 DOI: 10.3390/biomedicines11082307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Chewing improves visuospatial performance through locus coeruleus (LC) activation. The effects of bilateral and unilateral mastication were investigated in subjects showing different degrees of asymmetry in masseter electromyographic (EMG) activity during clenching and in pupil size at rest (anisocoria), which is a proxy of LC imbalance. Correlations between performance changes and asymmetry values were found in males, but not in females. Among males, subjects with low asymmetry values (balanced-BAL) were more sensitive than those with high asymmetry values (imbalanced-IMB) to bilateral and unilateral chewing on the side with higher EMG activity (hypertonic). The opposite was true for hypotonic side chewing. BAL subjects were sensitive to unilateral chewing on both sides, while in IMB subjects, hypertonic side chewing did not influence performance in either males or females. Bilateral chewing elicited larger effects in BAL subjects than in IMB subjects, exceeding the values predicted from unilateral chewing in both groups. Finally, pupil size and anisocoria changes elicited by chewing were correlated with asymmetry values, independent of sex. Data confirmed the facilitation of visuospatial performance exerted by chewing. Trigeminal asymmetries modulate the chewing effects, making occlusal rebalancing an appropriate strategy to improve performance.
Collapse
Affiliation(s)
- Maria Paola Tramonti Fantozzi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56123 Pisa, Italy
| | - Vincenzo De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56123 Pisa, Italy
| | - Paola d’Ascanio
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56123 Pisa, Italy
| | - Enrico Cataldo
- Department of Physics, University of Pisa, 56127 Pisa, Italy
| | - Davide De Cicco
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56123 Pisa, Italy
| | - Luca Bruschini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy
| | - Massimo Barresi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56123 Pisa, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56123 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Diego Manzoni
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
5
|
Jairam A, Halevi T, Raphan T. Improving Mobile Device Security by Embodying and Co-adapting a Behavioral Biometric Interface. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.754716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
At present, interfaces between users and smart devices such as smart phones rely primarily on passwords. This has allowed for the intrusion and perturbation of the interface between the user and the device and has compromised security. Recently, Frank et al. have suggested that security could be improved by having an interface with biometric features of finger swiping. This approach has been termed touchalytics, in maintaining cybersecurity. The number of features of finger swiping have been large (32) and have been made available as a public database, which we utilize in our study. However, it has not been shown which of these features uniquely identify a particular user. In this paper, we study whether a subset of features that embody human cognitive motor features can be used to identify a particular user. We consider how the security might be made more efficient embodying Principal Component Analysis (PCA) into the interface, which has the potential of reducing the features utilized in the identification of intruders. We compare the accuracy and performance of the reduced feature space to that of having all the features. Embodying a robust continuous authentication system will give users an extra layer of security and an increased sense of peace of mind if their devices are lost or stolen. Consequently, such improvements may prevent access to sensitive information and thus will save businesses money. Consequently, such improvements may prevent access to sensitive information and thus will save businesses money. If continuous authentication models become successful and easily implementable, embodiment and co-adaptation of user authentication would inhibit the growing problem of mobile device theft.
Collapse
|
6
|
Maramattom BV. Concurrent Periodic Alternating Gaze Deviation and Periodic Alternating Nystagmus in Brainstem Glioma. Ann Indian Acad Neurol 2022; 25:274-275. [PMID: 35693664 PMCID: PMC9175413 DOI: 10.4103/aian.aian_290_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/14/2021] [Indexed: 11/05/2022] Open
|
7
|
Wagner AR, Akinsola O, Chaudhari AMW, Bigelow KE, Merfeld DM. Measuring Vestibular Contributions to Age-Related Balance Impairment: A Review. Front Neurol 2021; 12:635305. [PMID: 33633678 PMCID: PMC7900546 DOI: 10.3389/fneur.2021.635305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Aging is associated with progressive declines in both the vestibular and human balance systems. While vestibular lesions certainly contribute to imbalance, the specific contributions of age-related vestibular declines to age-related balance impairment is poorly understood. This gap in knowledge results from the absence of a standardized method for measuring age-related changes to the vestibular balance pathways. The purpose of this manuscript is to provide an overview of the existing body of literature as it pertains to the methods currently used to infer vestibular contributions to age-related imbalance.
Collapse
Affiliation(s)
- Andrew R. Wagner
- School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, United States
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University, Columbus, OH, United States
| | - Olaoluwa Akinsola
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
| | - Ajit M. W. Chaudhari
- School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, United States
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
| | - Kimberly E. Bigelow
- Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH, United States
| | - Daniel M. Merfeld
- School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, United States
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Maruta J. The Scientific Contributions of Bernard Cohen (1929-2019). Front Neurol 2021; 11:624243. [PMID: 33510708 PMCID: PMC7835511 DOI: 10.3389/fneur.2020.624243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Throughout Bernard Cohen's active career at Mount Sinai that lasted over a half century, he was involved in research on vestibular control of the oculomotor, body postural, and autonomic systems in animals and humans, contributing to our understanding of such maladies as motion sickness, mal de débarquement syndrome, and orthostatic syncope. This review is an attempt to trace and connect Cohen's varied research interests and his approaches to them. His influence was vast. His scientific contributions will continue to drive research directions for many years to come.
Collapse
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Yakushin SB, Zink R, Clark BC, Liu C. Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study. Front Neurol 2020; 11:814. [PMID: 33013617 PMCID: PMC7461907 DOI: 10.3389/fneur.2020.00814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Mal de Debarquement syndrome (MdDS) is composed of constant phantom sensations of motion, which are frequently accompanied by increased sensitivity to light, inability to walk on a patterned floor, the sensation of ear fullness, head pressure, anxiety, and depression. This disabling condition generally occurs in premenopausal women within 2 days after prolonged passive motion (e.g., travel on a cruise ship, plane, or in a car). It has been previously hypothesized that MdDS is the result of maladaptive changes in the polysynaptic vestibulo-ocular reflex (VOR) pathway called velocity storage. Past research indicates that full-field optokinetic stimulation is an optimal way to activate velocity storage. Unfortunately, such devices are typically bulky and not commonly available. We questioned whether virtual reality (VR) goggles with a restricted visual field could effectively simulate a laboratory environment for MdDS treatment. A stripes program for optokinetic stimulation was implemented using Google Daydream Viewer. Five female patients (42 ± 10 years; range 26-50), whose average MdDS symptom duration was 2 months, participated in this study. Four patients had symptoms triggered by prolonged passive motion, and in one, symptoms spontaneously occurred. Symptom severity was self-scored by patients on a scale of 0-10, where 0 is no symptoms at all and 10 is the strongest symptoms that the patient could imagine. Static posturography was obtained to determine objective changes in body motion. The treatment was considered effective if the patient's subjective score improved by at least 50%. All five patients reported immediate improvement. On 2-month follow-ups, symptoms returned only in one patient. These data provide proof of concept for the limited-visual-field goggles potentially having clinical utility as a substitute for full-field optokinetic stimulation in treating patients with MdDS in clinics or via telemedicine.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reilly Zink
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Chang Liu
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States
| |
Collapse
|