1
|
Mari S, Lecomte CG, Merlet AN, Audet J, Yassine S, Arab RA, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Changes in intra- and interlimb reflexes from forelimb cutaneous afferents after staggered thoracic lateral hemisections during locomotion in cats. J Physiol 2024. [PMID: 39340178 DOI: 10.1113/jp286808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send inputs to spinal circuits to co-ordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles. After the first (right T5-T6) and second (left T10-T11) hemisections, forelimb-hindlimb co-ordination was altered and weakened. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-, mid- and long-latency homonymous and crossed reflex responses in forelimb muscles and their phase modulation remained largely unaffected after staggered hemisections. The occurrence of homolateral and diagonal mid- and long-latency responses in hindlimb muscles evoked with left and right superficial radial nerve stimulation was significantly reduced at the first time point after the first hemisection, but partially recovered at the second time point with left superficial radial nerve stimulation. These responses were lost or reduced after the second hemisection. When present, all reflex responses, including homolateral and diagonal, maintained their phase-dependent modulation. Therefore, our results show a considerable loss in cutaneous reflex transmission from cervical to lumbar levels after incomplete spinal cord injury, albeit with preservation of phase modulation, probably affecting functional responses to external perturbations. KEY POINTS: Cutaneous afferent inputs co-ordinate muscle activity in the four limbs during locomotion when the forepaw dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb co-ordination. We investigated cutaneous reflexes from forelimb afferents during quadrupedal locomotion by electrically stimulating the superficial radial nerve bilaterally, before and after staggered lateral thoracic hemisections in cats. We showed a loss/reduction of mid- and long-latency homolateral and diagonal reflex responses in hindlimb muscles early after the first hemisection that partially recovered with left superficial radial nerve stimulation, before being reduced after the second hemisection. Targeting cutaneous reflex pathways from forelimb afferents projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Bikchentaeva L, Nikulina M, Shulman A, Baltin M, Zheltukhina A, Semenova E, Smirnova V, Klepikova S, Baltina T. Different Factors Influencing Postural Stability during Transcutaneous Electrical Stimulation of the Cervical Spinal Cord. J Funct Morphol Kinesiol 2024; 9:142. [PMID: 39311250 PMCID: PMC11417861 DOI: 10.3390/jfmk9030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) is a promising noninvasive alternative to epidural stimulation. However, further studies are needed to clarify how tSCS affects postural control. The aim of this study was to investigate the effect of transcutaneous cervical spinal cord stimulation on postural stability in healthy participants via computerized stabilization. The center of pressure and the frequency spectrum of the statokinesiogram were assessed in 14 healthy volunteers under tSCS conditions with frequencies of 5 Hz or 30 Hz, subthreshold or suprathreshold stimulus strength, open or closed eyes, and hard or soft surfaces in various combinations. The results revealed that not all the changes in the center of the pressure oscillations reached statistical significance when the tSCS was used. However, tSCS at a frequency of 30 Hz with a suprathreshold stimulus strength improved postural stability. The use of subthreshold or suprathreshold tSCS at 5 Hz led to a shift of 60% of the signal power to the low-frequency range, indicating activation of the vestibular system. With tSCS at 30 Hz, the vestibular component remained dominant, but a decrease in the proportion of high-frequency oscillations was observed, which is associated with muscle proprioception. Thus, transcutaneous electrical stimulation of the cervical spinal cord may be an effective method for activating spinal cord neural networks capable of modulating postural control.
Collapse
Affiliation(s)
- Leisan Bikchentaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karla Marksa 76, 420015 Kazan, Russia; (L.B.); (M.N.); (A.S.); (A.Z.)
| | - Margarita Nikulina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karla Marksa 76, 420015 Kazan, Russia; (L.B.); (M.N.); (A.S.); (A.Z.)
| | - Anna Shulman
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karla Marksa 76, 420015 Kazan, Russia; (L.B.); (M.N.); (A.S.); (A.Z.)
| | - Maxim Baltin
- Sport Science Department, Sirius University of Science and Technology, Olympic Ave. 1, 354349 Sirius Federal Territory, Russia;
| | - Angelina Zheltukhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karla Marksa 76, 420015 Kazan, Russia; (L.B.); (M.N.); (A.S.); (A.Z.)
| | - Elena Semenova
- Lobachevskii Institute of Mathematics and Mechanics, Kazan Federal University, Kremlevskaya 35, 420008 Kazan, Russia; (E.S.); (V.S.)
| | - Viktoriya Smirnova
- Lobachevskii Institute of Mathematics and Mechanics, Kazan Federal University, Kremlevskaya 35, 420008 Kazan, Russia; (E.S.); (V.S.)
| | - Svetlana Klepikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karla Marksa 76, 420015 Kazan, Russia; (L.B.); (M.N.); (A.S.); (A.Z.)
| | - Tatyana Baltina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Karla Marksa 76, 420015 Kazan, Russia; (L.B.); (M.N.); (A.S.); (A.Z.)
| |
Collapse
|
3
|
Xiao Y, Bai H, Gao Y, Hu B, Zheng J, Cai X, Rao J, Li X, Hao A. Interactive Virtual Ankle Movement Controlled by Wrist sEMG Improves Motor Imagery: An Exploratory Study. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5507-5524. [PMID: 37432832 DOI: 10.1109/tvcg.2023.3294342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Virtual reality (VR) techniques can significantly enhance motor imagery training by creating a strong illusion of action for central sensory stimulation. In this article, we establish a precedent by using surface electromyography (sEMG) of contralateral wrist movement to trigger virtual ankle movement through an improved data-driven approach with a continuous sEMG signal for fast and accurate intention recognition. Our developed VR interactive system can provide feedback training for stroke patients in the early stages, even if there is no active ankle movement. Our objectives are to evaluate: 1) the effects of VR immersion mode on body illusion, kinesthetic illusion, and motor imagery performance in stroke patients; 2) the effects of motivation and attention when utilizing wrist sEMG as a trigger signal for virtual ankle motion; 3) the acute effects on motor function in stroke patients. Through a series of well-designed experiments, we have found that, compared to the 2D condition, VR significantly increases the degree of kinesthetic illusion and body ownership of the patients, and improves their motor imagery performance and motor memory. When compared to conditions without feedback, using contralateral wrist sEMG signals as trigger signals for virtual ankle movement enhances patients' sustained attention and motivation during repetitive tasks. Furthermore, the combination of VR and feedback has an acute impact on motor function. Our exploratory study suggests that the sEMG-based immersive virtual interactive feedback provides an effective option for active rehabilitation training for severe hemiplegia patients in the early stages, with great potential for clinical application.
Collapse
|
4
|
Harnie J, Al Arab R, Mari S, Yassine S, Eddaoui O, Jéhannin P, Audet J, Lecomte C, Iorio-Morin C, Prilutsky BI, Rybak IA, Frigon A. Forelimb movements contribute to hindlimb cutaneous reflexes during locomotion in cats. J Neurophysiol 2024; 131:997-1013. [PMID: 38691528 PMCID: PMC11381123 DOI: 10.1152/jn.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Pierre Jéhannin
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Charly Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Chu X, Liu S, Zhao X, Liu T, Xing Z, Li Q, Li Q. Case report: Virtual reality-based arm and leg cycling combined with transcutaneous electrical spinal cord stimulation for early treatment of a cervical spinal cord injured patient. Front Neurosci 2024; 18:1380467. [PMID: 38826775 PMCID: PMC11140104 DOI: 10.3389/fnins.2024.1380467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Spinal cord injury is a condition affecting the central nervous system, causing different levels of dysfunction below the point of nerve damage. A 50-year-old woman suffered a neck injury as a result of a car accident. After undergoing posterior cervical C3-C6 internal fixation with titanium plates on one side and C7 lamina decompression, the patient, who had been diagnosed with C3-C7 cervical disk herniation and spinal stenosis causing persistent compression of the spinal cord, was transferred to the rehabilitation department. After implementing the combined therapy of Virtual Reality-based arm and leg cycling along with transcutaneous electrical stimulation of the spinal cord, the patients experienced a notable enhancement in both sensory and motor abilities as per the ASIA scores. The patient's anxiety and depression were reduced as measured by the Hamilton Anxiety and Hamilton Depression Tests. As evaluated by the SCIM-III, the patient's self-reliance and capacity to carry out everyday tasks showed ongoing enhancement, leading to the restoration of their functionality. Hence, the use of Virtual Reality-based arm and leg cycling along with transcutaneous electrical spinal cord stimulation has potential to positively impact function in patients with spinal cord injury. However, as this is a case report, the small number of patients and the fact that the intervention was initiated early after the injury, we were unable to separate the recovery due to the intervention from the natural recovery that is known to occur in the initial weeks and months after SCI. Therefore, further randomized controlled trials with a large sample size is necessary.
Collapse
Affiliation(s)
- Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Shuaiyi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Xiaoxuan Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Tao Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Zheng Xing
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| |
Collapse
|
6
|
Atkinson DA, Steele AG, Manson GA, Sheynin J, Oh J, Gerasimenko YP, Sayenko DG. Characterization of interlimb interaction via transcutaneous spinal stimulation of cervical and lumbar spinal enlargements. J Neurophysiol 2022; 127:1075-1085. [PMID: 35320019 PMCID: PMC8993515 DOI: 10.1152/jn.00456.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
The use of transcutaneous electrical spinal stimulation (TSS) to modulate sensorimotor networks after neurological insult has garnered much attention from both researchers and clinicians in recent years. Although many different stimulation paradigms have been reported, the interlimb effects of these neuromodulation techniques have been little studied. The effects of multisite TSS on interlimb sensorimotor function are of particular interest in the context of neurorehabilitation, as these networks have been shown to be important for functional recovery after neurological insult. The present study utilized a condition-test paradigm to investigate the effects of interenlargement TSS on spinal motor excitability in both cervical and lumbosacral motor pools. Additionally, comparison was made between the conditioning effects of lumbosacral and cervical TSS and peripheral stimulation of the fibular nerve and ulnar nerve, respectively. In 16/16 supine, relaxed participants, facilitation of spinally evoked motor responses (sEMRs) in arm muscles was seen in response to lumbosacral TSS or fibular nerve stimulation, whereas facilitation of sEMRs in leg muscles was seen in response to cervical TSS or ulnar nerve stimulation. The decreased latency between TSS- and peripheral nerve-evoked conditioning implicates interlimb networks in the observed facilitation of motor output. The results demonstrate the ability of multisite TSS to engage interlimb networks, resulting in the bidirectional influence of cervical and lumbosacral motor output. The engagement of interlimb networks via TSS of the cervical and lumbosacral enlargements represents a feasible method for engaging spinal sensorimotor networks in clinical populations with compromised motor function.NEW & NOTEWORTHY Bidirectional interlimb modulation of spinal motor excitability can be evoked by transcutaneous spinal stimulation over the cervical and lumbosacral enlargements. Multisite transcutaneous spinal stimulation engages spinal sensorimotor networks thought to be important in the recovery of function after spinal cord injury.
Collapse
Affiliation(s)
- D. A. Atkinson
- Doctor of Physical Therapy program, University of St. Augustine for Health Sciences, Austin, Texas
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - A. G. Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - G. A. Manson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - J. Sheynin
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Houston, Texas
| | - J. Oh
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Y. P. Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
- Department of Physiology, University of Louisville, Louisville, Kentucky
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - D. G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
7
|
Barss TS, Parhizi B, Porter J, Mushahwar VK. Neural Substrates of Transcutaneous Spinal Cord Stimulation: Neuromodulation across Multiple Segments of the Spinal Cord. J Clin Med 2022; 11:639. [PMID: 35160091 PMCID: PMC8836636 DOI: 10.3390/jcm11030639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) has the potential to promote improved sensorimotor rehabilitation by modulating the circuitry of the spinal cord non-invasively. Little is currently known about how cervical or lumbar tSCS influences the excitability of spinal and corticospinal networks, or whether the synergistic effects of multi-segmental tSCS occur between remote segments of the spinal cord. The aim of this review is to describe the emergence and development of tSCS as a novel method to modulate the spinal cord, while highlighting the effectiveness of tSCS in improving sensorimotor recovery after spinal cord injury. This review underscores the ability of single-site tSCS to alter excitability across multiple segments of the spinal cord, while multiple sites of tSCS converge to facilitate spinal reflex and corticospinal networks. Finally, the potential and current limitations for engaging cervical and lumbar spinal cord networks through tSCS to enhance the effectiveness of rehabilitation interventions are discussed. Further mechanistic work is needed in order to optimize targeted rehabilitation strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Trevor S. Barss
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (T.S.B.); (B.P.)
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (T.S.B.); (B.P.)
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Porter
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; (T.S.B.); (B.P.)
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
8
|
Samejima S, Caskey CD, Inanici F, Shrivastav SR, Brighton LN, Pradarelli J, Martinez V, Steele KM, Saigal R, Moritz CT. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys Ther 2022; 102:6514473. [PMID: 35076067 PMCID: PMC8788019 DOI: 10.1093/ptj/pzab228] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study investigated the effect of cervical and lumbar transcutaneous spinal cord stimulation (tSCS) combined with intensive training to improve walking and autonomic function after chronic spinal cord injury (SCI). METHODS Two 64-year-old men with chronic motor incomplete cervical SCI participated in this single-subject design study. They each underwent 2 months of intensive locomotor training and 2 months of multisite cervical and lumbosacral tSCS paired with intensive locomotor training. RESULTS The improvement in 6-Minute Walk Test distance after 2 months of tSCS with intensive training was threefold greater than after locomotor training alone. Both participants improved balance ability measured by the Berg Balance Scale and increased their ability to engage in daily home exercises. Gait analysis demonstrated increased step length for each individual. Both participants experienced improved sensation and bowel function, and 1 participant eliminated the need for intermittent catheterization after the stimulation phase of the study. CONCLUSION These results suggest that noninvasive spinal cord stimulation might promote recovery of locomotor and autonomic functions beyond traditional gait training in people with chronic incomplete cervical SCI. IMPACT Multisite transcutaneous spinal stimulation may induce neuroplasticity of the spinal networks and confer functional benefits following chronic cervical SCI.
Collapse
Affiliation(s)
- Soshi Samejima
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Charlotte D Caskey
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Fatma Inanici
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Siddhi R Shrivastav
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Lorie N Brighton
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Vincente Martinez
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA,Address all correspondence to Dr Moritz at:
| |
Collapse
|
9
|
Lockyer EJ, Compton CT, Forman DA, Pearcey GE, Button DC, Power KE. Moving forward: methodological considerations for assessing corticospinal excitability during rhythmic motor output in humans. J Neurophysiol 2021; 126:181-194. [PMID: 34133230 DOI: 10.1152/jn.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of transcranial magnetic stimulation to assess the excitability of the central nervous system to further understand the neural control of human movement is expansive. The majority of the work performed to-date has assessed corticospinal excitability either at rest or during relatively simple isometric contractions. The results from this work are not easily extrapolated to rhythmic, dynamic motor outputs, given that corticospinal excitability is task-, phase-, intensity-, direction-, and muscle-dependent (Power KE, Lockyer EJ, Forman DA, Button DC. Appl Physiol Nutr Metab 43: 1176-1185, 2018). Assessing corticospinal excitability during rhythmic motor output, however, involves technical challenges that are to be overcome, or at the minimum considered, when attempting to design experiments and interpret the physiological relevance of the results. The purpose of this narrative review is to highlight the research examining corticospinal excitability during a rhythmic motor output and, importantly, to provide recommendations regarding the many factors that must be considered when designing and interpreting findings from studies that involve limb movement. To do so, the majority of work described herein refers to work performed using arm cycling (arm pedaling or arm cranking) as a model of a rhythmic motor output used to examine the neural control of human locomotion.
Collapse
Affiliation(s)
- Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Chris T Compton
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Davis A Forman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gregory E Pearcey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Shirley Ryan Ability Lab, Chicago, Illinois
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
10
|
Parhizi B, Barss TS, Mushahwar VK. Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans. Front Neurosci 2021; 15:615103. [PMID: 33958979 PMCID: PMC8093452 DOI: 10.3389/fnins.2021.615103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Coupling between cervical and lumbar spinal networks (cervico-lumbar coupling) is vital during human locomotion. Impaired cervico-lumbar coupling after neural injuries or diseases can be reengaged via simultaneous arm and leg cycling training. Sensorimotor circuitry including cervico-lumbar coupling may further be enhanced by non-invasive modulation of spinal circuity using transcutaneous spinal cord stimulation (tSCS). This project aimed to determine the effect of cervical, lumbar, or combined tSCS on spinal reflex (Hoffmann [H-]) and corticospinal (motor evoked potential [MEP]) excitability during a static or cycling cervico-lumbar coupling task. Fourteen neurologically intact study participants were seated in a recumbent leg cycling system. H-reflex and MEP amplitudes were assessed in the left flexor carpi radialis (FCR) muscle during two tasks (Static and Cycling) and four conditions: (1) No tSCS, (2) tSCS applied to the cervical enlargement (Cervical); (3) tSCS applied to the lumbar enlargement (Lumbar); (4) simultaneous cervical and lumbar tSCS (Combined). While cervical tSCS did not alter FCR H-reflex amplitude relative to No tSCS, lumbar tSCS significantly facilitated H-reflex amplitude by 11.1%, and combined cervical and lumbar tSCS significantly enhanced the facilitation to 19.6%. Neither cervical nor lumbar tSCS altered MEP amplitude alone (+4.9 and 1.8% relative to legs static, No tSCS); however, combined tSCS significantly increased MEP amplitude by 19.7% compared to No tSCS. Leg cycling alone significantly suppressed the FCR H-reflex relative to static, No tSCS by 13.6%, while facilitating MEP amplitude by 18.6%. When combined with leg cycling, tSCS was unable to alter excitability for any condition. This indicates that in neurologically intact individuals where interlimb coordination and corticospinal tract are intact, the effect of leg cycling on cervico-lumbar coupling and corticospinal drive was not impacted significantly with the tSCS intensity used. This study demonstrates, for the first time, that tonic activation of spinal cord networks through multiple sites of tSCS provides a facilitation of both spinal reflex and corticospinal pathways. It remains vital to determine if combined tSCS can influence interlimb coupling after neural injury or disease when cervico-lumbar connectivity is impaired.
Collapse
Affiliation(s)
- Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Trevor S Barss
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Vivian K Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Sasaki A, Kaneko N, Masugi Y, Milosevic M, Nakazawa K. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion. J Neurophysiol 2020; 124:652-667. [DOI: 10.1152/jn.00705.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We found that upper limb muscle contractions facilitated corticospinal circuits controlling lower limb muscles even during motor preparation, whereas motor execution of the task was required to facilitate spinal circuits. We also found that facilitation did not depend on whether contralateral or ipsilateral hands were contracted or if they were contracted bilaterally. Overall, these findings suggest that training of unaffected upper limbs may be useful to enhance facilitation of affected lower limbs in paraplegic individuals.
Collapse
Affiliation(s)
- Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Institute of Sports Medicine and Science, Tokyo International University, Kawagoe, Saitama, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
12
|
Klarner T, Pearcey GEP, Sun Y, Barss TS, Zehr EP. Changing coupling between the arms and legs with slow walking speeds alters regulation of somatosensory feedback. Exp Brain Res 2020; 238:1335-1349. [PMID: 32333034 DOI: 10.1007/s00221-020-05813-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/13/2020] [Indexed: 11/30/2022]
Abstract
Arm swing movement is coordinated with movement of the legs during walking, where the frequency of coordination depends on walking speed. At typical speeds, arm and leg movements, respectively, are frequency locked in a 1:1 ratio but at slow speeds this changes to a 2:1 ratio. It is unknown if the changes in interlimb ratio that accompany slow walking speeds alters regulation of somatosensory feedback. To probe the neural interactions between the arms and legs, somatosensory linkages in the form of interlimb cutaneous reflexes were examined. It was hypothesized that different interlimb frequencies and walking speeds would result in changes in the modulation of cutaneous reflexes between the arms and legs. To test this hypothesis, participants walked in four combinations of walking speed (typical, slow) and interlimb coordination (1:1, and 2:1), while cutaneous reflexes and background muscle activity were evaluated with stimulation applied to the superficial peroneal nerve at the ankle and superficial radial nerve at the wrist. Results show main effects of interlimb coordination and walking speed on cutaneous reflex modulation, effects are largest in the swing phase, and a directional coupling was observed, where changes in the frequency of arm movements had a greater effect on muscle activity in the legs compared to the reverse. Task-dependent modulation was also revealed from stimulation at local and remote sources. Understanding the underlying neural mechanisms for the organization of rhythmic arm movement, and its coordination with the legs in healthy participants, can give insight into pathological walking, and will facilitate the development of effective strategies for the rehabilitation of walking.
Collapse
Affiliation(s)
- Taryn Klarner
- School of Kinesiology, Lakehead University, Thunder Bay, Canada.,Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada. .,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada. .,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
13
|
Barss TS, Parhizi B, Mushahwar VK. Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks. J Neurophysiol 2020; 123:158-166. [DOI: 10.1152/jn.00433.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been established that coordinated arm and leg (A&L) cycling facilitates corticospinal drive and modulation of cervico-lumbar connectivity and ultimately improves overground walking in people with incomplete spinal cord injury or stroke. This study examined the effect of noninvasive transcutaneous spinal cord stimulation (tSCS) on the modulation of cervico-lumbar connectivity. Thirteen neurologically intact adults participated in the study. The excitability of the Hoffmann (H) reflex elicited in the soleus muscle was examined under multiple conditions involving either the arms held in a static position or rhythmic arm cycling while tSCS was applied to either the cervical or lumbar cord. As expected, soleus H-reflex amplitude was significantly suppressed by 19.2% during arm cycling (without tSCS) relative to arms static (without tSCS). Interestingly, tSCS of the cervical cord with arms static significantly suppressed the soleus H-reflex (−22.9%), whereas tSCS over the lumbar cord did not suppress the soleus H-reflex (−3.8%). The combination of arm cycling with cervical or lumbar tSCS did not yield additional suppression of the soleus H-reflex beyond that obtained with arm cycling alone or cervical tSCS alone. The results demonstrate that activation of the cervical spinal cord through both rhythmic arm cycling and tonic tSCS significantly modulates the activity of lumbar networks. This highlights the potential for engaging cervical spinal cord networks through tSCS during rehabilitation interventions to enhance cervico-lumbar connectivity. This connectivity is influential in facilitating improvements in walking function after neurological impairment. NEW & NOTEWORTHY This is the first study to investigate the modulatory effects of transcutaneous spinal cord stimulation (tSCS) on cervico-lumbar connectivity. We report that both rhythmic activation of the cervical spinal cord through arm cycling and tonic activation of the cervical cord through tSCS significantly modulate the activity of lumbar networks. This suggests that engaging cervical spinal cord networks through tSCS during locomotor retraining interventions may not only enhance cervico-lumbar connectivity but also further improve walking capacity.
Collapse
Affiliation(s)
- Trevor S. Barss
- Neuroscience and Mental Health Institute, University of Alberta, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Kato T, Sasaki A, Yokoyama H, Milosevic M, Nakazawa K. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles. Exp Brain Res 2019; 237:3195-3205. [PMID: 31602493 PMCID: PMC6882749 DOI: 10.1007/s00221-019-05660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
Abstract
It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hikaru Yokoyama
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.,Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
15
|
Sun Y, Zehr EP. Training-Induced Neural Plasticity and Strength Are Amplified After Stroke. Exerc Sport Sci Rev 2019; 47:223-229. [PMID: 31283528 PMCID: PMC6887626 DOI: 10.1249/jes.0000000000000199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Following stroke, sensorimotor brain networks and descending regulation are compromised but spinal interlimb neural connections remain morphologically intact. After cross-education strength and locomotion training, amplified neural plasticity and functional responses are observed in chronic stroke compared with neurologically intact participants. We hypothesize that poststroke neuroplasticity is amplified because of the involvement of interlimb neural connections that persist from our quadrupedal ancestry.
Collapse
Affiliation(s)
- Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Exp Brain Res 2019; 237:2319-2329. [PMID: 31286172 DOI: 10.1007/s00221-019-05598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Abstract
Arm cycling causes suppression of soleus (SOL) Hoffmann (H-) reflex that outlasts the activity period. Arm cycling presumably activates propriospinal networks that modulate Ia presynaptic inhibition. Interlimb pathways are thought to relate to the control of quadrupedal locomotion, allowing for smooth, coordinated movement of the arms and legs. We examined whether the number of active limb pairs affects the amount and duration of activity-dependent plasticity of the SOL H-reflex. On separate days, 14 participants completed 4 randomly ordered 30 min experimental sessions: (1) quiet sitting (CTRL); (2) arm cycling (ARM); (3) leg cycling (LEG); and (4) arm and leg cycling (A&L) on an ergometer. SOL H-reflex and M-wave were evoked via electrical stimulation of the tibial nerve. M-wave and H-reflex recruitment curves were recorded, while the participants sat quietly prior to, 10 and 20 min into, immediately after, and at 2.5, 5, 7.5, 10, 15, 20, 25, and 30 min after each experimental session. Normalized maximal H-reflexes were unchanged in CTRL, but were suppressed by > 30% during the ARM, LEG, and A&L. H-reflex suppression outlasted activity duration for ARM (≤ 2.5 mins), LEG (≤ 5 mins), and A&L (≤ 30 mins). The duration of reflex suppression after A&L was greater than the algebraic summation of ARM and LEG. This non-linear summation suggests that using the arms and legs simultaneously-as in typical locomotor synergies-amplifies networks responsible for the short-term plasticity of lumbar spinal cord excitability. Enhanced activity of spinal networks may have important implications for the implementation of locomotor training for targeted rehabilitation.
Collapse
|
17
|
Zhou R, Alvarado L, Kim S, Chong SL, Mushahwar VK. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury. J Neurophysiol 2017; 118:2507-2519. [PMID: 28701544 PMCID: PMC5646203 DOI: 10.1152/jn.00663.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
The spinal cervico-lumbar interaction during rhythmic movements in humans has recently been studied; however, the role of arm movements in modulating the corticospinal drive to the legs is not well understood. The goals of this study were to investigate the effect of active rhythmic arm movements on the corticospinal drive to the legs (study 1) and assess the effect of simultaneous arm and leg training on the corticospinal pathway after incomplete spinal cord injury (iSCI) (study 2). In study 1, neurologically intact (NI) participants or participants with iSCI performed combinations of stationary and rhythmic cycling of the arms and legs while motor evoked potentials (MEPs) were recorded from the vastus lateralis (VL) muscle. In the NI group, arm cycling alone could facilitate the VL MEP amplitude, suggesting that dynamic arm movements strongly modulate the corticospinal pathway to the legs. No significant difference in VL MEP between conditions was found in participants with iSCI. In study 2, participants with iSCI underwent 12 wk of electrical stimulation-assisted cycling training: one group performed simultaneous arm and leg (A&L) cycling and the other legs-only cycling. MEPs in the tibialis anterior (TA) muscle were compared before and after training. After training, only the A&L group had a significantly larger TA MEP, suggesting increased excitability in the corticospinal pathway. The findings demonstrate the importance of arm movements in modulating the corticospinal drive to the legs and suggest that active engagement of the arms in lower limb rehabilitation may produce better neural regulation and restoration of function.NEW & NOTEWORTHY This study aimed to demonstrate the importance of arm movements in modulating the corticospinal drive to the legs. It provides direct evidence in humans that active movement of the arms could facilitate corticospinal transmission to the legs and, for the first time, shows that facilitation is absent after spinal cord injury. Active engagement of the arms in lower limb rehabilitation increased the excitability of the corticospinal pathway and may produce more effective improvement in leg function.
Collapse
Affiliation(s)
- R Zhou
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - L Alvarado
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S Kim
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S L Chong
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - V K Mushahwar
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada;
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|